Equality of consequence relations in finite-valued logical matrices

Leonid Yu. Devyatkin

Abstract. In this paper the procedure is presented that allows to determine in finite number of steps if consequence relations in two finite-valued logical matrices for propositional language L are equal.

Keywords: product of logical matrices, consequence relation, equality of matrices

In his paper ‘A test for the equality of truth-tables’ [2], J. Kalicki has described a general method for testing the equality of the classes of tautologies in different finite-valued matrices. Below I present a generalization of Kalicki’s method which allows to test whether the consequence relations in two finite-valued logical matrices are equal.

First, the question of equality of consequence relations in two arbitrary matrices will be reduced to the question of the properties of a single matrix. This matrix will be obtained from initial matrices via the operation of product, but it will have four classes of truth-values instead of the standard two (designated and non-designated). On the basis of these four classes I will define several consequence relations. The properties that these relations display in the product matrix will define if two initial matrices are equal in terms of consequence relation. Then I will show that it is sufficient to consider a finite set of formulas to investigate the properties in question, and that therefore a finite number of steps is required to determine if consequence relations are equal in two finite-valued matrices.

Let us begin with some necessary definitions.
Definition 1. A logical matrix is a structure $\mathfrak{M} = < V, F, D >$, where V is the set of truth-values, F is a set of functions on V called basic functions, and D is a designated subset of V.

In this paper we will only consider the logical matrices where V is finite.

If for any n it is true that \mathfrak{M} contains as much n-ary elements of F as there are n-ary connectives in some propositional language L, \mathfrak{M} is a logical matrix for L. In that case we can establish a one-to-one correspondence between the elements of F and the connectives of L, and define a valuation of a formula in \mathfrak{M}.

Definition 2. A valuation v of formula A in \mathfrak{M} is a homomorphism of L in $< V, F >$ such that

1. if A is a propositional variable, then $v(A) \in V$;

2. if A_1, A_2, \cdots, A_n are formulas, and C is an n-ary connective of L, then $v(C(A_1, A_2, \cdots, A_n)) = f^n(v(A_1), v(A_2), \cdots, v(A_n))$, where f^n is a function from F corresponding to C.

The definition of consequence relation in \mathfrak{M} is a standard one.

Definition 3. $\Gamma \models (\mathfrak{M})B$ iff there is no valuation v in \mathfrak{M}, such that $v[\Gamma] \subseteq D(\mathfrak{M})$ (i.e. every formula from Γ assumes a truth-value designated in \mathfrak{M}), and $v(A) \notin D(\mathfrak{M})$.

Let us denote as $C(\mathfrak{M})$ a set of ordered pairs $< \Gamma, B >$, such that Γ is a set of formulas, B is a formula, and $\Gamma \models (\mathfrak{M})B$. Now we will define the equality of consequence relations in two arbitrary matrices for L.

Definition 4. Let \mathfrak{A} and \mathfrak{B} be the matrices for L. The consequence relations in \mathfrak{A} and \mathfrak{B} are equal iff $C(\mathfrak{A}) = C(\mathfrak{B})$.

Now we will make the transition from two matrices to one by applying the product operation. If \mathfrak{A} and \mathfrak{B} are the matrices for L, a one-to-one correspondence between the elements of their sets of basic functions can be established. This allows us to give the following definition.

Definition 5. A product of matrices \mathfrak{A} and \mathfrak{B} is a matrix $\mathfrak{C} = \mathfrak{A} \otimes \mathfrak{B}$, such that
• \(V(\mathcal{C}) \) is a Cartesian product of \(V(\mathcal{A}) \) and \(V(\mathcal{B}) \);

• for each pair of mutually corresponding \(k \)-ary basic functions \(f^k(x_1, x_2, \ldots, x_k) \) from \(\mathcal{A} \) and \(g^k(y_1, y_2, \ldots, y_k) \) from \(\mathcal{B} \) there is one and only one basic operation \(h^k \) from \(\mathcal{C} \), and \(h^k(< x_1, y_1 >, < x_2, y_2 >, \ldots, < x_k, y_k >) = < f^k(x_1, x_2, \ldots, x_k), g^k(y_1, y_2, \ldots, y_k) > \).

This is a standard product operation. However, the truth-values in \(\mathcal{C} \) will be divided into four classes\(^3\):

- \(< x_i, y_j > \in \omega(\mathcal{C}) \) iff \(x_i \in D(\mathcal{A}) \) and \(y_j \in D(\mathcal{B}) \);
- \(< x_i, y_j > \in \xi(\mathcal{C}) \) iff \(x_i \in D(\mathcal{A}) \) and \(y_j \notin D(\mathcal{B}) \);
- \(< x_i, y_j > \in \xi'(\mathcal{C}) \) iff \(x_i \notin D(\mathcal{A}) \) and \(y_j \in D(\mathcal{B}) \);
- \(< x_i, y_j > \in \phi(\mathcal{C}) \) iff \(x_i \notin D(\mathcal{A}) \) and \(y_j \notin D(\mathcal{B}) \).

I will now consider two definitions of consequence relation based on these four classes, \(\vdash_{\cup} \) and \(\vdash_{\cap} \).

Definition 6. \(\Gamma \vdash_{\cup} (\mathcal{C})B \) iff there is no valuation \(w \) in \(\mathcal{C} \), such that \(w[\Gamma] \subseteq \omega(\mathcal{C}) \), and \(w(A) \in \phi(\mathcal{C}) \).

Lemma 1. \(\Gamma \vdash_{\cup} (\mathcal{C})B \) iff \(\Gamma \vDash (\mathcal{A})B \) or \(\Gamma \vDash (\mathcal{B})B \).

Proof. (i) Let \(\Gamma \vdash_{\cup} (\mathcal{C})B \), and \(\Gamma \not\vDash (\mathcal{A})B \), and \(\Gamma \not\vDash (\mathcal{B})B \). Then there exists a valuation \(v^* \) in \(\mathcal{A} \), such that \(v^*[\Gamma] \subseteq D(\mathcal{A}) \) and \(v^*(A) \notin D(\mathcal{A}) \), and there exists a valuation \(u^* \) in \(\mathcal{B} \), such that \(u^*[\Gamma] \subseteq D(\mathcal{B}) \) and \(u^*(A) \notin D(\mathcal{B}) \). For every \(v \) and \(u \) there is a mapping \(w \) of the propositional variables of \(L \) on \(V(\mathcal{A}) \times V(\mathcal{B}) \), such that \(w(p_k) = v(p_k), w(p_k) > \), where \(p_k \) is a propositional variable. Obviously, every such \(w \) is a valuation in \(\mathcal{C} \). By definition of \(\mathcal{C} \), \(w^* \) obtained from \(v^* \) and \(u^* \) is such a valuation that \(w^*[\Gamma] \subseteq \omega(\mathcal{C}) \), and \(w^*(A) \in \phi(\mathcal{C}) \). That contradicts our assumption.

(ii) Let \(\Gamma \not\vdash_{\cup} (\mathcal{C})B \), and \(\Gamma \vDash (\mathcal{A})B \) or \(\Gamma \vDash (\mathcal{B})B \). Then there is a valuation \(w^* \) in \(\mathcal{C} \), such that \(w^*[\Gamma] \subseteq \omega(\mathcal{C}) \), and \(w^*(A) \in \phi(\mathcal{C}) \). For

\(^3\)This is essentially a distribution introduced by Kalicki [2], but he only needed three classes, so elements of \(\xi(\mathcal{C}) \) and \(\xi'(\mathcal{C}) \) were assigned to the same class.
every valuation \(w \) in \(\mathcal{C} \) there is the following valuation \(v \) in \(\mathfrak{A} \): if
\(w(p_k) = \langle x_i, y_j \rangle \), then \(v(p_k) = x_i \). By definition of \(\mathcal{C}, v^* \) obtained
this way from \(w^* \) is such a valuation in \(\mathfrak{A} \) that \(v^*[\Gamma] \subseteq D(\mathfrak{A}) \) and
\(v^*(A) \notin D(\mathfrak{A}) \). The reasoning for valuation \(u^* \) in \(\mathfrak{B} \) is analogous,
and leads to the contradiction. \(\square \)

Definition 7. \(\Gamma \models_\cap (\mathcal{C})B \) iff all three of the following conditions
are fulfilled:

- there is no valuation \(w \) in \(\mathcal{C} \), such that \(w[\Gamma] \subseteq \omega(\mathcal{C}) \), and \(w(A) \notin \omega(\mathcal{C}) \);
- there is no valuation \(w \) in \(\mathcal{C} \), such that \(w[\Gamma] \subseteq \omega(\mathcal{C}) \cup \xi(\mathcal{C}) \),
 and \(w(A) \notin \omega(\mathcal{C}) \cup \xi(\mathcal{C}) \);
- there is no valuation \(w \) in \(\mathcal{C} \), such that \(w[\Gamma] \subseteq \omega(\mathcal{C}) \cup \xi'(\mathcal{C}) \),
 and \(w(A) \notin \omega(\mathcal{C}) \cup \xi'(\mathcal{C}) \).

Lemma 2. \(\Gamma \models_\cap (\mathcal{C})B \) iff \(\Gamma \models (\mathfrak{A})B \) and \(\Gamma \models (\mathfrak{B})B \).

Proof. (i) Let \(\Gamma \models_\cap (\mathcal{C})B \), and \(\Gamma \models (\mathfrak{A})B \), and \(\Gamma \models (\mathfrak{B})B \). The
reasoning is analogous to the one in Lemma 1.

(ii) Let \(\Gamma \models_\cap (\mathcal{C})B \), and either \(\Gamma \models (\mathfrak{A})B \) or \(\Gamma \models (\mathfrak{B})B \).
Suppose \(\Gamma \models (\mathfrak{A})B \) and \(\Gamma \models (\mathfrak{B})B \). Then there is a valuation \(v^* \) in \(\mathfrak{A} \),
such that \(v^*[\Gamma] \subseteq D(\mathfrak{A}) \) and \(v^*(A) \notin D(\mathfrak{A}) \). Now we have to consider
two possibilities.

(ii.1) There is a valuation \(u^* \) in \(\mathfrak{B} \), such that \(u^*[\Gamma] \subseteq D(\mathfrak{B}) \) and
\(u^*(A) \in D(\mathfrak{B}) \). In this case, from \(v^* \) and \(u^* \) we can obtain a
corresponding valuation \(v^* \) in \(\mathcal{C} \) (see Lemma 1), such that \(v^*[\Gamma] \subseteq \omega(\mathcal{C}) \),
and \(v^*(A) \in \xi'(\mathcal{C}) \). But then \(\Gamma \models_\cap (\mathcal{C})B \), which contradicts
our assumption.

(ii.2) For every valuation \(u \) in \(\mathfrak{B} \), \(u[\Gamma] \notin D(\mathfrak{B}) \). Let \(u' \) be such a
valuation that \(u'[\Gamma] \notin D(\mathfrak{B}) \), and \(u'(A) \notin D(\mathfrak{B}) \). The corresponding
valuation \(w' \) in \(\mathcal{C} \) obtained from \(v^* \) and \(u' \) in the same way as in
Lemma 1 will be such that \(w'[\Gamma] \subseteq \xi(\mathcal{C}) \), and \(w'(A) \in \phi(\mathcal{C}) \). Let \(u'' \)
be such a valuation that \(u''[\Gamma] \notin D(\mathfrak{B}) \), and \(u''(A) \in D(\mathfrak{B}) \). The corresponding
valuation \(w'' \) in \(\mathcal{C} \) obtained from \(v^* \) and \(u'' \) will be such that \(w''[\Gamma] \subseteq \xi(\mathcal{C}) \),
and \(w''(A) \in \xi'(\mathcal{C}) \). Both cases lead us to the contradiction with the assumption that \(\Gamma \models_\cap (\mathcal{C})B \).
The reasoning for $\Gamma \models (A)B$ and $\Gamma \not\models (B)B$ is analogous.

(iii) Let $\Gamma \not\models (C)B$, and $\Gamma \models (A)B$, and $\Gamma \models (B)B$. If $\Gamma \not\models (C)B$, three cases are possible:

(iii.1) There is a valuation w in C, such that $w[\Gamma] \subseteq \omega(C)$, and $w(A) \notin \omega(C)$;

(iii.2) There is a valuation w in C, such that $w[\Gamma] \subseteq \omega(C) \cup \xi(C)$, and $w(A) \notin \omega(C) \cup \xi(C)$;

(iii.3) There is a valuation w in C, such that $w[\Gamma] \subseteq \omega(C) \cup \xi'(C)$, and $w(A) \notin \omega(C) \cup \xi'(C)$.

The reasoning for all three cases is the same. We obtain from w the corresponding valuations v in A and u in B in the same way as we did in Lemma 1. Due to the properties of w described in (iii.1)–(iii.3), either v, or u, or both of them will be such that they will lead to the contradiction with the assumption that $\Gamma \models (A)B$ and $\Gamma \models (B)B$.

From Lemma 1 we have that $C(C,\models\cup) = C(A) \cup C(B)$. From Lemma 2 we have that $C(C,\models\cap) = C(A) \cap C(B)$. Also, we have that $C(A) = C(B)$ iff $C(A) \cup C(B) = C(A) \cap C(B)$. Therefore, $C(A) = C(B)$ iff $C(C,\models\cup) = C(C,\models\cap)$.

Now let us consider another consequence relation.

Definition 8. $\Gamma \models^* (C)B$ iff either

- there is no valuation w in C, such that $w[\Gamma] \subseteq \omega(C)$, and $w(A) \notin \omega(C)$,
- and there is no valuation w in C, such that $w[\Gamma] \subseteq \omega(C) \cup \xi(C)$, and $w(A) \notin \omega(C) \cup \xi(C)$,
- and there is no valuation w in C, such that $w[\Gamma] \subseteq \omega(C) \cup \xi'(C)$, and $w(A) \notin \omega(C) \cup \xi'(C)$,
- or there is a valuation w in C, such that $w[\Gamma] \subseteq \omega(C)$, and $w(A) \in \phi(C)$.

Lemma 3. $C(C,\models\cup) = C(C,\models\cap)$ iff $\Gamma \models^* (C)B$ for each set of formulas Γ and each formula B.
Proof. If $C(\xi, \models \cup) = C(\xi, \models \cap)$, for each Γ and B it is true that either $\Gamma \models \cap (C)B$ or $\Gamma \not\models \cup (C)B$. Both cases lead to $\Gamma \models^* (C)B$. Now let us assume that $\Gamma \models^* (C)B$ for some arbitrary Γ and B. Then (i) for every valuation w in ξ, if $w[\Gamma] \subseteq \omega(\xi)$ then $w(A) \in \omega(\xi)$, if $w[\Gamma] \subseteq \omega(\xi) \cup \xi'(!\xi)$, then $w(A) \in \omega(\xi) \cup \xi'(!\xi)$, if $w[\Gamma] \subseteq \omega(\xi) \cap \xi'(!\xi)$, then $w(A) \in \omega(\xi) \cap \xi'(!\xi)$, or (ii) there is at least one valuation in ξ, such that all formulas from Γ assume a truth value from $\omega(\xi)$, and B assumes a value from $\phi(\xi)$. In the first case $\Gamma \models \cap (C)B$. In the second case $\Gamma \not\models \cup (C)B$. Therefore $C(\xi, \models \cup) = C(\xi, \models \cap)$. □

Below, the number of formulas that need to be considered will be narrowed down to a finite set. I will use the method proposed by J. Kalicki in [1] with necessary modifications.

Lemma 4. For each matrix ξ_m, where m is the number of the elements of $V(\xi)$, the following is true: if for each pair Γ and B that contains $i \leq m$ different variables $\Gamma \models^* (\xi_m)B$, then for each pair Δ and E that contains $m + t(t = 0, 1, \cdots)$ different variables $\Delta \models^* (\xi_m)E$.

Proof. Let us use the induction by t. For $t = 0$ it is obvious that for each Γ and B that contains $i \leq m$ different variables $\Gamma \models^* (\xi_m)B$, then for each pair Δ and E that contains m different variables $\Delta \models^* (\xi_m)E$.

Let us assume that the theorem is true for $t \leq k$ and prove it for $t = k + 1$. Let there exist Δ and E that contain $m + k + 1$ different variables, and $\Delta \not\models^* (\xi_m)E$. Then there exists a valuation w_0 in ξ_m that maps the variables $p_1, p_2, \cdots, p_{m+k+1}$ to values $x_1, x_2, \cdots, x_{m+k+1}$ respectively, such that either (i) $w_0[\Delta] \subseteq \omega(\xi)$, and $w_0(E) \not\in \omega(\xi)$, or (ii) $w_0[\Delta] \subseteq \omega(\xi) \cup \xi(\xi)$, and $w(E) \not\in \omega(\xi) \cup \xi(\xi)$, or (iii) $w_0[\Delta] \subseteq \omega(\xi) \cap \xi(\xi)$, and $w(E) \not\in \omega(\xi) \cap \xi(\xi)$.

Let us consider (i). Due to the fact that in ξ_m there is m different truth-values in total, there will be at least two $i_1 \neq i_2$ among $i_1 = 1, 2, \cdots, m + k + 1$, such that $x_{i_1} = x_{i_2}$. Now let us consider Δ' and E', obtained from Δ and D by replacement of all instances of p_{i_2} with p_{i_1}. It is clear that $w_0[\Delta'] \subseteq \omega(\xi_m)$ and $w_0(E') \not\in \omega(\xi_m)$. Because Δ' and E' contain $m + k$ different variables, according to the inductive assumption, $\Delta' \models^* (\xi_m)E'$. Therefore, there exists a valuation w^* in
Equality of consequence relations in finite-valued logical... 279

\(\mathcal{C}_m \), which maps the variables \(p_1, p_2, \ldots, p_{i_2-1}, p_{i_2+1}, \ldots, p_{m+k+1} \) on the values \(y_1, y_2, \ldots, y_{i_2-1}, y_{i_2+1}, \ldots, y_{m+k+1} \) respectively, such that

\[w^*[\Delta] \subseteq \omega(\mathcal{C}_m) \text{ and } w^*(E') \in \phi(\mathcal{C}_m). \]

In this case we can construct a valuation \(w^* \), which maps the variables \(p_1, p_2, \ldots, p_{m+k+1} \) on the values \(y_1, y_2, \ldots, y_{i_2-1}, y_{i_2+1}, \ldots, y_{m+k+1} \) respectively, such that

\[w^* \subseteq \omega(\mathcal{C}_m) \text{ and } w^*(E) \in \phi(\mathcal{C}_m). \]

In this case we can construct a valuation \(w^* \), which maps the variables \(p_1, p_2, \ldots, p_{m+k+1} \) on the values \(y_1, y_2, \ldots, y_{i_2-1}, y_{i_2+1}, \ldots, y_{m+k+1} \) respectively, such that

\[w^*[\Delta] \subseteq \omega(\mathcal{C}_m) \text{ and } w^*(E) \in \phi(\mathcal{C}_m). \]

But then \(\Delta \models^* (\mathcal{C}_m)E \), which contradicts our assumption.

The reasoning for (ii) and (iii) is analogous.

For \(m \) different variables there is \(k = m^m \) different valuations \(v_1, v_2, \ldots, v_k \) in \(\mathcal{C}_m \). We can assign to each variable \(p_i (1 \leq i \leq m) \) a unique value-sequence \(|p_i| = < x_1, x_2, \ldots, x_k > \), where \(x_l = v_l(p_i) \) \((1 \leq l \leq k)\).

Now let us construct the following sequence of the classes of formulas:

- The elements of \(\mathcal{C}_0 \) are the variables \(p_1, p_2, \ldots, p_m \) exclusively;

- to a class \(\mathcal{C}_{t+1} \) belong all formulas that can be constructed by means of one connective, an element of class \(\mathcal{C}_t \), and (if needed) elements of \(\mathcal{C}_{n \leq t} \).

For each formula \(B \) from \(\mathcal{C}_n \) we can calculate the corresponding value-sequence \(|B| = < y_1, y_2, \ldots, y_k > \), where \(y_j (1 \leq j \leq k) \) is obtained from \(j \)-th elements of sequences assigned to the variables included in \(B \). Let us denote the set of value-sequences for elements of \(\mathcal{C}_n \) as \(|\mathcal{C}_n| \). Because the sequences in question consist of \(k \) elements, and the number of truth-values equals \(m \), in total there is \(m^k \) possible sequences. Therefore, there is a finite \(n_0 \leq m^k \), such that \(|\mathcal{C}_{n_0}| \) contains no value-sequence which is not also the element of some \(|\mathcal{C}_{n < n_0}| \).

Lemma 5. The value-sequence of any formula \(B \in \mathcal{C}_{n > n_0} \) is identical to some element of \(|\mathcal{C}_{n < n_0}| \).

Proof. Let \(B \in \mathcal{C}_{n_0+1} \). By definition of \(\mathcal{C}_{n_0+1} \), formula \(B \) consists of the main connective, at least one formula from \(\mathcal{C}_{n_0} \),
and probably elements of $CL_{n_i<n_0}$. By definition of n_0, each value-sequence from $|CL_{n_0}|$ is also present in some $|CL_{n_i<n_0}|$. Therefore, by definition of $|CL|$, there is a set $|CL_{\text{max}(i,j)+1}|$, which contains the value-sequence identical to $|B|$. Because $n_i < n_0$ and $n_j < n_0$, we have that $\text{max}(n_i, n_j) + 1 \leq n_0$, $|B| \in |CL_{n_i<n_0}|$. From that, according to the definition of n_0, we obtain that $|B| \in |CL_{n<n_0}|$. The theorem is proved for CL_{n_0+1}. The generalization for $CL_{n>n_0}$ is obvious.

So the set $|CL_1| \cup |CL_2| \cup \cdots \cup |CL_{n_0}|$ contains all value-sequences possible in C_m for formulas that contain no more than m different variables. From this fact and Lemma 4 it follows that $\Gamma \models^* (C_m)B$ for each Γ and B iff $\Delta \models^* (C_m)E$ for every Δ and E that consist exclusively of the elements of $CL_1 \cup CL_2 \cup \cdots \cup CL_{n_0}$.

This concludes the construction of the procedure for testing if $C(\mathfrak{A}) = C(\mathfrak{B})$ for two arbitrary finite-valued matrices \mathfrak{A} and \mathfrak{B} for some propositional language L.

References
