Potoses: Categorical Paraconsistent Universum for Paraconsistent Logic and Mathematics

Main Article Content

В. Л. Васюков

Аннотация

It is well-known that the concept of da Costa algebra [3] reects most of the logical properties of paraconsistent propositional calculi \(C_{n}, 1\leq n\leq \omega \) introduced by \(N.C.A.\) da Costa. In [10] the construction of topos of functors from a small category to the category of sets was proposed which allows to yield the categorical semantics for da Costa's paraconsistent logic. Another categorical semantics for \(C_{n}\) would be obtained by introducing the concept of \(\textit{potos}\) { the categorical counterpart of da Costa algebra (the name "potos" is borrowed from W.Carnielli's story of the idea of such kind of categories)


DOI: 10.21146/2074-1472-2017-23-2-76-95

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
[1]
В. Л. Васюков. Potoses: Categorical Paraconsistent Universum for Paraconsistent Logic and Mathematics // Логические исследования / Logical Investigations. 2018. Т. 23. № 2.
.
Раздел
Неклассические логики