Логика, единство в трёх лицах

Main Article Content

И. А. Горбунов

Аннотация

Эта работа в своей большей части имеет обзорный характер. В ней рассмотрены некоторые основополагающие результаты, полученные в рамках так называемой алгебраической логики. В частности, обсуждаются факты о взаимосвязях, существующих между такими основными синтаксическими объектами логики, как логическое следование, операция добавления следствий и решётка теорий логики.


Основное внимание в работе уделяется обоснованию того факта, что для того, чтобы определить логику синтаксически, необходимо и достаточно задать один из этих объектов. Для этого детально показано, как задание одного из этих объектов полностью определяет и два других объекта, а значит, и логику. А именно, показано что отношение логического следования определяет и операцию добавления следствий, и решётку теорий логики. В свою очередь, задание оператора добавления следствий определяет и логическое следование, и решётку теорий логики. Особенно подробно рассматриваются условия, которые являются необходимыми и достаточными для того, чтобы семейство множеств формул порождало операцию замыкания, которую можно трактовать как операцию добавления следствий. Для этого в работе вводится понятие семейства множеств формул, образующего решётку теорий. Доказывается, что такое семейство определяет логику. Намечаются возможные подходы к способам задания таких семейств.


В заключение обращается внимание на то, что наиболее популярные синтаксические определения логик (такие, как исчисления секвенций, исчисления фрегевского типа, замыкание множеств относительно правил вывода) одинаково успешно можно понимать как определения и логического следования, и операции добавления следствий, и компактных элементов решётки теорий логики (а значит, в силу её алгебраичности, и самой решётки теорий).

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
[1]
И. А. Горбунов. Логика, единство в трёх лицах // Логические исследования / Logical Investigations. 2018. Т. 24. № 1. С. 9-25.
Раздел
Традиционная логика