Теорема о полноте для семантики пропозиционального фрагмента одной системы Аккермана.


D.P. Skvortsov


W. Аckermann [1,2] constructed a logical system with unrestricted comprehension principle. Here the propositional fragment of this logical system is considered. This logic is a weakening of the classical logic based on an informal interpretation of the implication as derivability in an unspecified deductive system. A Kripke-style semantics for this propositional logic is proposed and completeness theorem is proved.






Ackermann W. Wiederspruchsfreier Aufbau der Logik, I. Typenfreies System ohne tertium non datur II Joum. Symb. Logic. 1950. V. 15. № 1. P. 33-57.

Ackermann W. Wiederspruchsfreier Aufbau einer typenfreien Logik (erweitertes System) // Math.Zeitschr. 1952. Bd. 55. H.3. S. 364-384.

Harrop R. An investigation of the propositional calculus used in particular system of logic // Proc. Cambridge Philos. Society. 1954. V. 50. № 4. P.495-512.

Kripke S A. Semantical analysis of intuitionistic logic, I // Formal Systems and Recursive Functions. Proc. 8th logic colloq., Oxford, July 1963. Amsterdam, 1965. P. 92-130.

СкворцовД .П . О семантике пропозиционального фрагмента системы Аккермана/ / Автоматы, алгорифмы, языки. Калинин, 1982. С. 130-132.

Skvortso\’ D.P. A semantics for a consistent type-free system of Ackermann 11 In: Logic, methodology and philosophy of science (abstracts of papers of soviet scientists submitted to the Soviet National Organization Comittee for the VII International Congress of logic, methodology and philosophy of science. Austria, Salzburg, 1116 July 1983. Moscow, 1983. P. 38-41.

Воробьев H.H. Конструктивное исчисление высказываний с сильным отрицанием // ДАН СССР. 1952. Т. 85. № 3. С. 465-468.