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Preface
(The history of Finnish-Soviet Logic Colloquium)1

Finnish-Soviet Logic Colloquium has a long and interesting his-
tory. 24 May 1971 a Protocol on cooperation between Academy
of Sciences of the USSR and Academy of Finland was concluded.
Then 15 May 1980 an Agreement on scientific cooperation between
Academy of Sciences of the USSR and Academy of Finland was
concluded. At last 25 May 1993 an Agreement on scientific cooper-
ation between Russian Academy of Sciences and Academy of Fin-
land was concluded. On the basis of these documents nine Finnish-
Soviet[Russian] Logic Colloquiums were arranged.

Somewhere around 1975 J. Hintikka2 and V.A. Smirnov3 have
agreed to hold Finnish-Soviet Conference on logic. The coopera-

1Beginning with the 7th Colloquium — ‘Finnish-Russian Logic Colloquium’
2Kaarlo Jaakko Juhani Hintikka (born January 12, 1929) — Finnish logician

and philosopher. He is regarded as the founder of formal epistemic logic, model
set, and of game semantic for logic. He is known also as one of the architects
of distributive normal forms, possible-worlds semantics, and tree methods. In
recent decades, he has worked mainly on game semantics and on independence-
friendly (IF) logic known for its ‘branching quantifiers’ which he believes do
better justice to our intuitions about quantifiers than does conventional first-
order logic (see the paper of Hintikka J. and G. Sandu A revolution in logic?
in ‘Nordic Journal of Philosophical Logic’ 1(2):169–183, 1996). Note that IF-
logic has caused the big interest in a logical world. He also has done important
exegetical work on Aristotle, Kant, Wittgenstein, and C.S. Peirce. In 1998 Hin-
tikka wrote The Principles of Mathematics Revisited which takes an exploratory
stance comparable to that Russell made with his The Principles of Mathemat-
ics in 1903. A comprehensive examination of his thought appeared in 2006 as
the volume The Philosophy of Jaakko Hintikka in the series Library of Living
Philosophers.

3Vladimir Alexandrovich Smirnov (2 March 1931 – 12 February 1996) —
Russian logician and philosopher. Undoubtedly, the most important logical
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tion started with the First Finnish-Soviet Logic Colloquium
at Jyväskylä, Finland, on June 29 – July 6, 1976. The proceedings
of that Colloquium have been published under the title Essays in
Mathematical and Philosophical Logic, edited by J. Hintikka, I. Ni-
iniluoto, and E. Saarinen (D. Reidel Publishing Company, Dord-
recht, 1979)4.

The Second Finnish-Soviet Logic Colloquium was held in
Moscow, at the Institute of Philosophy, on December 3–7, 1979.
The Finnish delegation (11 scientists) led G. von Wright5 — the
teacher of J. Hintikka. The Conference generated tremendous in-
terest in the Soviet Union and was attended by over 200 people
from different logical centers of the country (Novosibirsk, Tbilisi,
Kiev, Kalinin, Minsk, Baltics etc.) By the beginning of the Confer-
ence four collections of Abstracts were published in English: Modal
and Tense Logics, Moscow, 1979; Relevant Logic and the Theory
of Inference, Moscow, 1979; Logical Analysis of Natural Languages,

work by Smirnov is his doctoral thesis Formal Deduction and Logical Calculi
(1972). This book (in Russian) has become a classic. It contained a number
of important technical results in the field of modern formal logic and was full
of new ideas. For the first time ever in the world literature the study of logics
without contraction rule was begun and the decision problem for such logics
was examined. In the very same book the problem of the classification of logical
calculi was formulated and discussed for the first time. Also he obtained results
in relevant logics, definability and logical relations between theories, modal-
temporal logics, combined logics, syllogistics, Lesniewski’s systems, completely
free logics, and proof theory. A comprehensive examination of his thought see in
special issue in memory of V.A. Smirnov edited by K. Segerberg (Studia Logica
66(2), 2000) with the introductory and survey papers by A.S. Karpenko.

4Also Proceedings of the fourth Scandinavian logic symposium are included
in this volume.

5Georg Henrik von Wright (14 June 1916 – 16 June 2003) was one of the most
prominent European philosophers of the 20th century, who succeeded Ludwig
Wittgenstein as professor at the University of Cambridge. Von Wright’s work
included important writings on philosophical logic, philosophy of science, phi-
losophy of language, philosophy of mind and ethic. His 1951 books, An Essay
in Modal Logic and Deontic Logic, were landmarks in the postwar rise of formal
modal logic and its deontic version. For philosophy of science see two of his
most famous books, Explanation and Understanding (1971), and Freedom and
Determination (1980). Beyond logic, analytic philosophy and politics, he wrote
on classical Russian literature and a variety of other subjects. From 1968 to
1977, he was chancellor of Abo Academy in Finland.
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Moscow, 1979; Reports of Finnish participants, Moscow, 1979. Re-
ports of Soviet and Finnish participants in the Colloquium were
published in English under the title Intensional Logic: Theory and
Application, in ‘Acta Philoshica Fennica’ 35, 1982 (ed. by I. Niinilu-
oto and E. Saarinen) and in English under the title Modal and In-
tensional Logic and their Application to Problem of Methodology of
Sciences, ed. by V.A. Smirnov, A.S. Karpenko and E.A. Sidorenko,
NAUKA Publishers, Moscow, 1984.6

Due to the extraordinary success of the Colloquium held, the deci-
sion was made to hold such colloquiums every two years. Although,
V.A. Smirnov has proposed to invite polish logicians to the three-
sided cooperation continuing the two earlier bilateral Finnish-Soviet
Logic Colloquium. By this time an Agreement on scientific coopera-
tion between Academy of Sciences of the USSR and Polish Academy
of Sciences was also concluded7. The first Finish-Polish-Soviet Logic
Conference was held at Polanica Zdrój, Poland, on September 7–12,
1981. Proceeding of this Conference was published in special issue
‘Studia Logica’ XLII(2/3), 1983 (ed. by I. Niiniluoto and J. Zyg-
munt). Unfortunately, at this point three-sided cooperation was
ended.

The Third Finnish-Soviet Logic Colloquium was held at
Helsinki, on May 23–27, 1983. The Colloquium was also attended
by Swedish logicians. Reports of the participants in the Colloquium
were published in English in a special issue of the journal ‘Synthese’
61(1), 1986 (Guest Editor I. Niiniluoto)8.

The Fourth Finnish-Soviet Logic Colloquium was held at
Telavi (Georgia), on May 20–24, 1985. The Georgian side, as usual,
has amazed everyone by its hospitality and friendliness. By the
beginning of the Conference, Abstracts in Russian have been pub-
lished: Intensional Logics and Logical Structure of Theories, (eds.
V.A. Smirnov and M.N. Bezhanishvili), Mecniereba, Tbilisi, 1985.

6Also Proceedings of the Soviet-Hungarian logic symposium on modal logics
are included in this volume.

7Let us note that three bilateral Polish-Soviet Logical Conferences were held
in total.

8A welcome reception for all the participants was held by G.H. von Wright
at his house.
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Part of the Colloquium, concerning to problems of provability logic,
syllogistics, and logical structure of scientific theories was published
in Russian under the title Intensional Logics and Logical Structure of
Theories, (eds. V.A. Smirnov and M.N. Bezhanishvili), Mecniereba,
Tbilisi, 1988. The other part was published also in Russian under
the title Investigations in Non-Classical Logics (editor in chief V.A.
Smirnov), NAUKA Publishers, Moscow, 1989.

The Fifth Finnish-Soviet Logic Colloquium was held at
Helsinki, on May 26–30, 1987. Note, that Congress of Logic, Philo-
sophy and Methodology of Science was held at Moscow in the same
year on August.

The Sixth Finnish-Soviet Logic Colloquium was held at
Moscow, on June 10–16, 1989. At this point the Finnish delegation
was joined by Gabriel Sandu, who had emigrated from Soviet Roma-
nia to Finland, his participation undoubtedly livened up the work
of the conference. Thus, Finnish-Soviet Logic Colloquium started
to gradually assume more open nature.

Between Sixth and Seventh Colloquiums a grandiose event in the
world of logic took place. The 9th International Congress of Logic,
Methodology and Philosophy of Science was held at Uppsala, Swe-
den, on August 7–14, 1991. Part of Soviet delegation made its way
to Sweden via Helsinki by steamship, where a meeting with Jaakko
Hintikka took place during which he delivered an interesting lecture.

The Seventh Finnish-Russian Logic Colloquium was held
at Helsinki — Turku — Lahti, on May, 1992.

Between the seventh and eighth Colloquium there were two
events. My old friends Ilkka Niiniluoto and Veikko Rantala took
part in International Conference ‘Philosophy of Science’ which was
held at Moscow, on February, 1993. The second event was very im-
portant for me. I was invited by I. Niiniluoto to visit the University
of Helsinki on April 28 – June 28, 1994. During the work there the
great aid was also granted by G. Sandu.

The Eighth Finnish-Russian Logic Colloquium was held at
Moscow, on June, 1995.
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As late as after V.A. Smirnov’s death I. Niiniluoto9 has organized
regular The Ninth Finnish-Russian Logic Colloquium which
was held at Helsinki, on October 22–28, 1997. As usual, 10 people
were invited. But only three participants made it to the Colloquium.
At that moment the history of Finnish-Russian Logic Colloquiums
stopped for 15 long years.

In 2011 on January 24 – February 4, The Faculty of Philosophy
of St. Petersburg University was holding the Second Winter School
‘Bridge to Logic’, participated in by J. Hintikka, I. Niiniluoto, and
G. Sandu. Here G. Sandu (the Chairman of the Department of
Philosophy in the University of Helsinki) and I. Mikirtumov (the
Chairman of the Department of Logic, Faculty of Philosophy of St.
Petersburg University) agreed to hold a Conference on logic. After
a conversation with Mikirtumov, I remembered glorious Finnish-
Russian Logic Colloquium and told him about it. I agreed to pub-
lish all plenary reports in ‘Logical Investigations’. To mark the
novelty of the conference Mikirtumov added the word ‘Open’ to the
title. As a result Open Russian-Finnish Colloquium on Logic
(ORFIC ) was held at St. Petersburg University, on June 14–16,
2012. By the beginning of the Conference, Abstracts (except for
plenary reports) in Russian have been published: Logic, Language
and Formal Models. ORFIC, (eds. Y. Chernoskutov, E. Lisanyuk,
and I. Mikirtumov), St. Petersburg University, 2012.

Present special issue of ‘Logical Investigations’ includes plenary
as well as section reports delivered at ORFIC . Besides, in ADDI-
TION section we have included the authors who eagerly wanted to
participate in ORFIC but were unable due to varying reasons.

Alexander S. Karpenko

9Rector of the University of Helsinki 2003–2008, chancellor of the University
of Helsinki, beginning 1 June 2008.



Logic and object theory in 19th
century: from Bolzano to Frege
Yury Yu. Chernoskutov1

abstract. The milestones of the object theory formation in
the course of 19th century discussions in philosophy of logic are
considered. The view, that the process mentioned was typical first
of all for the Austrian tradition in logic and philosophy, is exposed.
The hypothesis of the possible impact of that kind of approaches
on the development of Frege’s logical ideas is examined.

Keywords: object theory, content and object of concept, school
of Brentano, Frege

1 Introduction
In the paper we are going to trace the formation of the object the-
ory and its connection with the development of logic in 19th century.
There were three views on the stuff and subject of logic in that cen-
tury. The first prevailed on the continent, its general tenets were
found by I. Kant. The (pure) Logic was considered here as a sci-
ence of the form of thought. The principles of second were laid down
by R. Whately, and in fact that principles formed the paradigm of
British tradition in the philosophy of logic. The logic was consid-
ered here as an inquiry of reasoning, and its formal character was
explained by the fact that it deals with the form of language expres-
sion. The third approach, which I’d want to designate as ‘objectual’,
has been developed mainly in the framework of the Austrian tradi-
tion of logic and philosophy. According to this view, logic is a theory
of science (Wissenschaftslehre); logic may be called formal, because
it deals with the form of object in general. The Austrian tradition
was not so influential and wide-known as both former. Moreover,

1Supported by Russian Foundation for humanities, grant № 11-03-00601а.
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up to now it has been rarely identified as independent tradition. I
hope that filling that gap will provide more adequate look on the
process of modern logic formation.

Kant’s underestimate of the possibilities of pure logic is well-
known. According to him, it examines forms of understanding a
priori, i.e. of the cognitive faculty, which does not have direct con-
nection to any object of knowledge and consequently, being viewed
in itself, is contentless. It is only transcendental logic which provides
us with the capacity to deal with the ‘object in general’. Afterwards
the arguments of Kant were reinforced by Adolf Trendelenburg, due
to whom, to the word, the term pure logic was changed by the ha-
bitual nowadays label formal logic. This had led to the situation
that in the course of 19th century proper formal logic did not in-
spire German philosophers: one should hardly point learnbook or
monograph titled as Formale Logik and authored by German writer.

2 J.F. Herbart

The first important move to the objectual interpretation of the sub-
ject of logic was made by German philosopher Johann Friedrich
Herbart (1776–1841) and his school. He did not made object the
subject-matter of logical inquiry; his move consisted in shifting that
subject-matter from the sphere of epistemology or psychology in the
direction of ontology. He is wide-known due to the ‘Herbartianism’
in pedagogy, history of psychology acknowledge his merits as one
of pioneers in mathematization of psychology; but in the histories
of philosophy he attracts very few attention nowadays. The situa-
tion contrasts sharply to the role his ideas played in the progress of
philosophy during his life-time. Herbart was one of the first influen-
tial antagonists of German idealism and for a long time his school
was in fact the only force advocating rational spirit in philosophy
on the background of nearly exclusive domination of speculative
constructions. He defined philosophy as ‘reworking [bearbeitung]
of concepts’. Accordingly, different sections of philosophy super-
vise different stages, or kinds of that reworking. The first section,
logics, is to make concepts clear (draw sharp borderlines between
diverse concepts) and distinct (strict distinguish the features of cer-
tain concept from each other). The second, metaphysics, deals with
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modification of concepts. Finally, esthetics (which includes ethics)
accounts for valuating of concepts. Thus, concept serves as a cen-
tral object of not only logic, but also of Herbartian philosophy in
general.

Herbart considers concepts as kind of ultimate entities, analysis
of which in logic excludes any questions concerning their genesis.
Logic deals with concepts as something pre-given, ready-made; it
should not ask where they come from. His Hauptpunkte der Logik
(1808) starts with a claim: ‘Logic deals with representations. But
it does not deal with the act of representing: thus neither with the
way and manner by means of which we arrive at them, nor with the
mental states [Gemutszustande] to which we are moved by this’. It
is concerned only with this, ‘what is represented ’. That represented
turns to the subject of logic insofar as it is ‘afore grasped, singled
out, conceived. This is why it is named a concept’. [6, S. 467]. In
his next work, Lehrbuch zur Einleitung in die Philosophie (1813)
he unfold his views in more details. The concept is described here
as ‘thoughts, considered in view of what is thought through them’,
and the latter is explicitly contraposed to the idea of concept as
process or ‘activity of our mind’ [6, S. 77]. Thus, Herbart sharply
distinguishes representation as (psychical) act of mind from repre-
sented, thinking from thinkable. The distinction provides precondi-
tions for shifting the subject of logic from the scope of epistemology
or psychology to that of ontology. The fact partially explains the
ease of later reception of Herbartianism by the Austrian logicians
and philosophers. Herbart did not introduce into logic the category
of ‘object’ (whether actual or abstract), but, in view of his doctrine
of ‘what is represented’ and of ‘thinkable’, the step to object looks
quite natural and coherent. We should point that in the framework
of Kantianism the step is hardly possible.

It is hard to keep oneself from the comparison of Herbart’s ‘re-
presentable’ with Bolzanian ‘representation in itself’. The former
does not describe his concepts as ‘objective’ as the latter did on
his essences. Herbart didn’t go beyond negative characteristics and
informed us just of what concepts are not. Namely, they are ‘neither
real objects, nor actual [wirkliche] acts of thinking’ [6, S. 78]. In
other words, concepts belong to some intermediate domain between
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external things and internal psychical acts. He escapes from positive
characterizing the nature of concepts as well as of this intermediate
sphere, but we can suppose that he keeps in mind some kind of
platonistic world. Actually, each concept ‘is given as if in a single
exemplar’; what is to the question of relation between concepts and
thinking, Herbart says that ‘thinking of one and the same concept
may be reproduced over and over again’ in the consciousness of
different human beings, but the fact ‘does not bring the duplication
of concept’ [6, S. 78].

So, the nature of concepts is completely irrelevant to the proper-
ties of our cognitive faculties, they are not product of the mind activ-
ity. As consequence, Herbart expels any considerations of thinking
beyond the competence of logic. Thinking is ‘just a mediator, a
kind of cart which brings concepts into one place’ [6, S. 91]. It is
easy to see that logic studies not properties of ‘cart’, but properties
of what is shipped by the ‘cart’. When two concepts meet each
other in the process of thinking, they are ‘suspended and form a
question’ [ibid.]. Making an answer to that question, we commit a
judgment. This interpretation of judgment is very close to doctrines
of Brentano and Frege, for both of them explained judgment as af-
firming (in case of Brentano also rejecting) of content represented.
But Herbart believed that any kind of valuating is a psychological,
or at least extra-logical process and, consequently, we should evade
considerations of that sort as far as we are inside logic. Hence except
this, psychological sense of judgment, he adds the logical sense ––
combination of subject and predicate. Due to distinguishing the
judgment in logical sense from judgment as evaluating act, Herbart
rejected the Kantian view that different acts of thinking generate
different sorts of judgments. For him, the difference of categorical,
hypothetical and disjunctive judgments is not the difference in the
logical sense; it ‘belongs completely to the language form’ [6, S. 473]

Summing up, we should conclude that Herbart has distinguished
some special sphere, for which he managed to propose only ‘apo-
phatic’ description, which takes intermediate place between thinking
and actual world, and which constitutes the proper subject of logic.
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3 B. Bolzano
The next, more decisive move in the direction of object theory and
ontological exposition of logic was made by Bernard Bolzano (1781–
1848). His early interest was aimed at problems of foundations of
geometry, namely he tried to examine the independency of Euclidian
fifth postulate. In course of this work he came to belief that Kan-
tian views on the nature of logics and mathematics are wrong. In
particular, he discarded the belief that intuition lays in the ground
of all mathematics. Another crucial conclusion was that mathe-
matics needs more rigorous logical tools for carrying out its proofs.
But formal logic available at the period could not serve the aim
satisfactorily, and Bolzano, step by step, started developing his own
system of logic. Those efforts resulted in extensive and grandiose, in
four volumes treatise Theory of science [Wissenschaftslehre] (1837).
In the introduction he proposes to take ‘sentences in itself [satz an
sich], representations in itself [vorstellung an sich] and truths in it-
self [wahrheit an sich] as a proper subject-matter of logic’ [5, Bd. 1,
S. 63]. Under those essences in itself Bolzano means objective con-
tent of sentences and representations, which is independent of the
way of its expressing, of the way of its thinking, of our attitudes,
at last of the very fact whether we think of it or not. He separates
distinctly the representation in itself from the thinkable, subjective
representation: the former is in no way generated by the latter, nei-
ther is any special kind of it. He rather prefer to make the latter in
some way subordinate to the former, when he says, that ‘objective
representation. . . might be named the matter of subjective repre-
sentation’ [4, p. 277, § 271]. The principal property of sentences in
itself and representations in itself, which differs them from think-
able sentences and representations, as we can see, consists in their
objectivity. Logic, according to Bolzano, is a formal science, but
it is due to the fact that it considers the forms of ‘propositions-in-
itself ’, not the forms of thought. Thereby logics may not be viewed
as objectless knowledge and qualifying it as formal will not serve as
verdict in unproductiveness.

Introducing of ideal entities into logic is not the only novelty.
Along with objective representation in itself Bolzano distinguishes
object [Gegenstand] of representation: ‘Under the object of repre-
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sentation I mean that (existing or non-existing something), of which
it is said that it is represented, or that there is a representation of
it’ [5, Bd. 1, § 49]. Bolzano repeatedly stresses that object of
representation is an independent entity, which should not be mixed
with the representation in itself: ‘one should distinct sharply repre-
sentation in itself and object of representation’; it should not be
‘confused with the object of representation’ [4, p. 277, § 271]. The
object of representation plays an essential role in his logic: most of
principal logical relations are defined in terms of object. Moreover,
he in fact excludes from the consideration sentences, which do not
deal with any object. He believes that ‘if not all sentences, than
at least all true sentences are to have an object they deal with’ [4,
p. 208, § 196].

The logical innovations designed by Bolzano were essentially in-
tended to make logical apparatus applicable to the mathematical
reasoning, and more generally, to make it appropriate as a theory of
science, Wissenschaftslehre. Those innovations were discussed more
than once, and I’d want just to pay attention that above described
shifting to ontology was an important component of implementing
this intention. The fact is that Bolzano detaches acutely the subject
of logic from epistemology and psychology, and makes it to inquire
the formal properties and relations of objective entities. Besides,
Bolzano first introduced into logic three-partial structure ‘(objec-
tive) representation in itself — (subjective) thinkable representa-
tion — object of representation’. Subsequently we’ll face repeatedly
the structure in the doctrines of Austrian philosophers, in various
clothes and not only in logic.

4 R. Zimmerman

Robert Zimmerman (1824–1898) was one of last pupils of Bolzano.
Since 1852 he served as professor in the university of Prague, since
1861 up to the end of his life –– in the university of Vienna. His
role in the expansion of Bolzano’s doctrines among Austrian philoso-
phers and in particular, in the Brentano school, is a disputable mat-
ter. At least personally Brentano explicitly placed responsibility for
rebirth of some Bolzanian platonistic ideas among a number of his
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pupils on Zimmerman. I’d want to pay some attention to the role
of Zimmerman in the rise of the object theory.

In course of Austrian education reform (one of renovations in-
duced by the revolution of 1848) philosophy of Herbart was pre-
scribed as obligatory doctrine for teaching in the universities
of Habsburg monarchy. A new educational subject was incor-
porated into the curriculum of ober-gymnasiums, philosophische
propädeutik, consisting of two parts: empirical psychology and for-
mal logic. Young Zimmerman was charged to work out the textbook
for the new discipline, and it was published in 1852-53, in two parts.
The second part, Formale Logik, reproduced carefully a number of
principal ideas of Bolzano’s Wissenschaftslehre, sometimes word for
word. But in one point author declines from the teaching of master,
and the change became the birth of the object theory. The point
is that Bolzano propounds rather theory of representations in itself
which were characterized by objectness (Gegenstandlichkeit), than
the proper object theory; i.e. his representations were divided into
objectual and objectless. The latter, in turn, might be acciden-
tally objectless (e.g. golden mountain) and in general objectless, or
imaginary (e.g. round square) [5, Bd. 1, S. 297, 304–306]. But he
didn’t try to classify or in any way to discuss the objects of repre-
sentations. It seems that just Zimmerman was first who addresses
himself to tackle the matter, in the text of the second volume of
the first edition of Propädeutik. The object of representation, he
says, could be actual or non-actual; non-actual objects are of two
kinds: possible and impossible. [2, S. 9]. Thus, as we can judge,
it was R. Zimmerman who first tried to correlate an object to the
representation of any kind (including objectless!).

The second edition of Propädeutik (1860) was reworked signifi-
cantly. A number of Bolzano’s theories and definitions were super-
seded by those adopted from Herbart, in particular, it does not
contain discussions of representation in itself and of its object. But
some another novelty was introduced there, which appeared to be
very impactful in subsequence. I mean the principal characteristics,
by which Zimmerman describes the concept. Those are, first, the
content (what is thought in the concept), and second, the object
(what concept refers to) [3, S. 19]. Content and object have noth-
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ing in common except the very fact that an object is thought by
means of content. Another one remarkable point which worth to
be mentioned — insistence that neither content of the concept, nor
its object, are interchangeable with the word, which denotes that
concept. [3, S. 24].

In the second edition the problems related to the object theory are
considered in the second volume of Propädeutik, i.e. in Psychology,
not in Logic. Howbeit, Zimmerman didn’t recall here of possible
and impossible objects. Nevertheless we may fix that for seven years
most schoolboys over the all Austrian empire learned the logic after
the first edition of his textbook and absorbed the idea of ‘impossible
object’. It is even more important for us here that the distinction
of content and object, exercised in the second edition, appeared to
be survivable, and it became afterwards one of the principal break-
points in the school of Brentano.

The next crucial stage of the development of Austrian tradition
in logic and philosophy was the advent of Franz Brentano, who
lectured in the University of Vienna since 1874. Sometimes the
very formation of the Austrian philosophy is connecting primarily
with his activity. Meanwhile, as we can conclude from the above
stated, the school of Brentano has not started its way from the
blank space. Brentano felled into the community, members of which
studied logic in the gymnasiums with the textbooks of Zimmerman,
and philosophy at the universities — in the framework of Herbartian
doctrines. We can cite, as an exemplary philosopher of that ge-
neration, Alois Riehl (1844–1924), who graduated from the Graz
University in 1865. In full agreement with the tenets of Bolzano
and Zimmerman, he believes that ‘The form of science is a subject
of special science, and that science is logic’ [1, p. 88], and that
logic is ‘a theory of universal incontradictory relationships between
objects in general’, while the laws of thought in logical sense are
‘the laws of thinkable, objectual in general’ [1, p. 89].

5 F. Brentano
Franz Brentano (1838–1917), who suggested in his Psychologie vom
empirischen Standpunkt (1874) the project of descriptive psychol-
ogy, considered intentionality as an immanent property of psychical
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phenomena. Every mental act ought to correlate with its intentional
object. While in the simplest and basic act of representation some
object is thought only, than in act of judgment the object repre-
sented is affirmed as existing or is rejected as non-existing. Conse-
quently, all judgment should be considered as existential. Brentano
has demonstrated, in what way basic forms of judgments of tradi-
tional logic can be reduced to the existential form. In the result of
his reduction particular judgments are being transformed into affir-
mative existential, and universal — into negative existential. The
syllogistics constructed on the ground of this theory of judgment,
consists of two rules, or forms of inference; it does not require the
traditional division on figures and does not admit exactly those
modes, which free logics of our days use to discard. Besides, it does
not postulate that premises are to contain exactly two terms, and in
general, it looks more flexible than traditional theories of syllogism.
Thus, just as in the case of Bolzano, introducing of object into logic
had led to the radical reforming of the latter.

Alas, just as in the case of Bolzano, the reforming did not have
direct influence on the process of logic development. According
to witty remark of Peter Simons, ‘. . . Brentano played Kerensky to
Frege’s Lenin, because when the revolution came in 1879 in the
shape of Frege’s Begriffsschrift, it involved a complete break with
tradition and put Brentano’s modest advance in the shade’ [8, p.
42]. Yet one radical difference in views of Bolzano and Brentano
formed the core for one of crucial collisions inside the school of
Brentano. While distinguishing act of representation and object of
representation, Brentano rejects decisively any kind of ‘third entity’,
which could remind Bolzanian objective representation or Zimmer-
manian content of concept. Considerable group of his students,
including A. Höfler, K. Twardowski and E. Husserl, did not take
the side of master on this point, causing his great and explicit dis-
appointment.

6 G. Frege and the school of Brentano

It is often pointed out, in the works on Frege, the striking similarities
of his views on logic and mathematics with those of Bolzano; the
pointing is usually followed by the ascertaining that there are no any
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evidences that former had ever studied the works of latter. Hereafter
I’d want to specify both of the claims. First, there is a good reason
to believe not only that similarity between the two authors do exist,
but even more: a number of Frege’s ideas look as if he was very close
to the Austrian tradition in logic and philosophy. Second, there is
good reason to conclude, that Frege get learned the ideas of Bolzano
at least through third parties, not later than in the end of 1880s.

In his first revolutionary work of 1879, Begriffsscrift, Frege sug-
gested the theory of judgment, which is strikingly relative to Brenta-
nian one. Recall that Frege distinguished there thinkable content,
which may be constituted by any combination of representations
on the one hand, and the act of proper judgment, which consists in
asserting of this content being thought. Surely, it is quite reasonable
to assume here the influence of Herbart, whose ideas were doubtless
known to Frege. The hypothesis is amplified by the fact that some
other claims of Herbart are reproduced in this work almost word
to word. But if we take into account that this Frege’s theory of
judgment is combined with breaking away the traditional decompo-
sing of judgment on subject and predicate, than the kinship between
mathematician from Jena and philosopher from Vienna looks far
more persuasively. Of course, this affinity cannot prove the fact
of Frege’s acquaintance with Psychology from Empirical Point of
View, but the circumstance that this kind of treatment the judgment
was not practiced by anybody else except these two authors, looks
remarkable.

In his next seminal work, Die Grundlagen der Arithmetik (1884)
Frege draws strict distinction between concept and object. As it
was stressed above, the accentuation on this distinction is a spe-
cific feature right of Austrian philosophical community. Of course,
just fixation of this affinity cannot prove anything, but if we take
into account that creating of the opus was preceded by the corre-
spondence of the author with Brentano’s pupil and colleague Karl
Stumpf, than our suspicions would increase substantially. Moreover,
it is well known that the very idea to expose his views on the nature
of natural number and general strategy of deriving arithmetic from
logic in ‘prose’, without using the technique of Begriffsschrift, was
suggested to Frege by none other than Stumpf.
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Finally, immediately before the termination of his work on final
modification of his system, Frege examined the work of another
one, not so famous member of the Brentano school, Benno Kerry
(1858–1889). One of three epoch-making papers, published in the
beginning of 1890s, Über Begriff und Gegenstand, appeared as a
response to one of Kerry’s critical remarks against Frege, made in his
paper [7, Bd. XIII]. The work had a series of eight articles, published
from 1885 to 1891. Frege is often mentioned and discussed in initial
four articles, the fourth is completely devoted to the analysis of
Frege’s ideas. In fact, Kerry was the first Frege-inquirer2, for he
examines carefully all Frege’s works, published before 1887. Taking
into account the lack of interest to the ideas of Frege in that period
and the frustration caused by it, I cannot believe that Frege didn’t
study writings of Kerry very attentively. But the latter, in the
process of argumentation, refers regularly to the statements of Bren-
tano and his disciples. But it is Bolzano whom he sites especially
often and extensive. More than once he refers to Bolzano and Frege
in one footnote. In a word, all this may not us assume that Frege
did not have knowledge of the ideas of Bolzano, at least in the
exposition of Kerry.

Moreover, the question arises, if some conclusions of another Fre-
ge’s paper of that period, Über Sinn und Bedeutung, were inspired
by analogous considerations, which he might face over and over
again in the text of Kerry. I mean his splitting of beurteilbare Inhalt
into sense and denotation. The point is that Kerry was one of those
who adopted the triple of Bolzano and Zimmerman, which included
not only object, but also (ideal) content of concept. Besides, as
far as I know, Kerry was the first who extend the distinction up to
mathematical concepts. In particular, the second article of his opus
is completely devoted to considerations of the relationships between
content and object of concept. For instance, he pays attention, that
when some concept contains mutually exclusive features, the con-
cept is objectless. [7, Bd. X, S. 444]. In the first article we meet
the following noteworthy reasoning: “The remarkable advantage of
conceptual representations against intuitive one consists in the fact

2It is curiously, that the second one was a student of Brentano as well,
E. Husserl.
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that several completely different may refer to one and the same ob-
ject. Completely different concepts: ‘the chancellor of the German
Reich in 1884’ and ‘the owner of Warzin in 1884’ refer to one and
the same person” [7, Bd. IX, S. 460]. Really, the idea that differ-
ent (contents of) concepts might correspond to the same object was
rather habitual for the school of Brentano and served as a subject
of a discussion in the period which immediately preceded to the ap-
pearance of Fregean theory of Sinn and Bedeutung. For example,
Oskar Schmitz-Dumont in his article [9] published in the same vol-
ume of Vierteljahrschrift with the second article of Kerry explains
that equality sign in A = ϕ(a,b) is justified by the fact that ‘the
symbols have the same content, but the forms in which the content
is expressed, are different’ [9, S. 199–200].

Another student of Brentano, Anton Marty, deserves our atten-
tion. He is identified as most probable addressee of Frege’s let-
ter dated 29.08.1882. In the second article of his Über subjectlosse
Sätze un das Verhältniss der Grammatik zu Logik und Psychologie
(published in the Vierteljahrschrift again) he pays three pages of
attention to discuss Fregean theory of judgment, exposed in the Be-
griffsschrift [10, S. 185–188]; in the third article of the same work
he discusses the theory of denotations in terms very close to those of
later Fregean. He states that there necessarily must be given some
mediating link between language expression and its denotation (Be-
deutung), which he calls an Etymon. He differs two functions of the
sign: manifestating (kundgebung) and denoting, the former being
primary function, while the latter secondary one [10, S. 299]. More-
over, he remarks that this mediating Etymon serves as ‘the way by
which signs are denoting’ [10, S. 301], and expands his considera-
tions of denoting from names to sentences (Aussagen). Marty was a
true follower of Brentano and did not purport any Zimmerman-like
kind of the object theory, for him the denotation of name consists in
representation; his theory in general was rather psychologistic one.

7 Conclusion

We don’t have direct evidences that Frege has adopted some of his
ideas from anybody from school of Brentano. But I strongly suppose
that the fact that three-partial semantical structures and elements
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of object theory appeared at Frege’s works in the beginning of 1890s,
after his getting knowledge of the ideas of Austrian colleagues, is
not contingent. Except this, it might be supposed that Frege’s idea
that the extension of concept is an object with equal rights as proper
object, was a result of careless use of some ideas of Brentanian
school.
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[10] Marty, A., Über subjectlosse Sätze und das Verhältniss der Gram-
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The logic of colors in model-theoretical
and game-theoretical perspectives1

Elena G. Dragalina-Chernaya

abstract. This paper sketches two approaches to the co-
lor exclusion problem provided by model-theoretical and game-
theoretical semantics. The case study, modeling the experimen-
tally confirmed perception of ‘forbidden’ (e.g., reddish green and
bluish yellow) colors, is presented as neuropsychological evidence
for game-theoretical semantics.

Keywords: invariance criterion, permutation invariance, color ex-
clusion problem, binary colors, opponent-processing model, over-
defined games, non-strictly competitive games, payoff indepen-
dence

1 Invariance Criterion Revisited
Logical knowledge of reality is possible since logic deals with formal,
metaphysically unchanging features of reality. But what does it
mean exactly? How does our formal model of reality depend on
more or less sophisticated understanding of logicality?

According to Tarski’s model-theoretical approach, a concept is
logical if and only if ‘it is invariant under all possible one-one trans-
formations of the world onto itself’ [16, p. 149]2. Felix Klein’s fa-
mous Erlangen Program (1872) proposed the classification of various

1This study comprises research findings from the ‘Game-theoretical
foundations of pragmatics’ Project № 12-03-00528a carried out within The
Russian Foundation for Humanities Academic Fund Program.

2According to Tarski-Sher’s criterion, it is better to discuss ‘isomorphisms’
(or ‘bijections’) and ‘structures’ instead of ‘permutations’ (or ‘transformations’)
and the ‘world’. This criterion is historically traced to Lindström’s (1966) gen-
eralization of Mostowski’s approach (1957) (see [15]).
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geometries according to invariants under suitable groups of transfor-
mations. Klein pointed out that each geometric field can be charac-
terized by the invariance condition satisfied by its notions. Tarski’s
criterion of logicality extended this idea to the domain of logic. Per-
mutation invariance takes all one-one transformations into account
and as a result, characterizes, according to Tarski, the most gen-
eral notions. For Tarski, the science which studies these notions is
logic. If we interpret the formality of a theory as its invariance un-
der permutations of the universe it means that the theory does not
distinguish between individual objects and characterizes only those
properties of a model which do not depend on its nonstructural
transformations. Formal property should be preserved under the
arbitrary switching of individual objects. For example, ‘red’ and
‘green’ are non-formal properties, since they distinguish between
things which are red and green.

However the standard argument in favor of invariance under per-
mutation, which relies on the generality of logic, may be challenged.
Tarski considered the class of permutations as the most general class
of nonstructural transformations, since permutations do not respect
any extra-structure. On the contrary, as Denis Bonnay pointed out,
there are a lot of other concepts of similarity (i.e. approximate
preservation) between structures which are far less demanding then
Tarski’s criterion. Thus, ‘even if one grants that generality is a
good way to approach logicality, there is no evidence that the class
of all permutations is the best applicant for the job’ [2, p. 38].
On the other hand, Ludwig Wittgenstein, for example, does not
consider generality as a defining attribute of logicality; ‘The mark
of a logical proposition is not general validity. . . [18, 6.1231]. The
general validity of logic might be called essential, in contrast with
the accidental general validity of such propositions as ‘All men are
mortal’ [18, 6.1232]’. Yet, what kind of general validity is essential
and, as a result, logical for Wittgenstein?

2 Invariance Criterion Generalized

According to Tractatus, it is logically impossible for two colors to
be at one place at the same time. This is because of the ‘logical
structure of color’. As Wittgenstein pointed out,
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‘Just as the only necessity that exists is logical necessity,
so too the only impossibility that exists is logical impos-
sibility. . . [18, 6.375]. For example, the simultaneous
presence of two colours at the same place in the visual
field is impossible, in fact logically impossible, since it
is ruled out by the logical structure of colour (It is clear
that the logical product of two elementary propositions
can neither be a tautology nor a contradiction. The
statement that a point in the visual field has two differ-
ent colours at the same time is a contradiction.)’ [18,
6.3751].

According to Wittgenstein, color ascriptions should be elemen-
tary. But, as the concluding remark implies, they cannot be el-
ementary; the color ascriptions are logically interdependent, and
Wittgenstein said that elementary propositions are independent.
This is a well-known problem of color exclusion.

In Some Remarks on Logical Form Wittgenstein offered a solution
to this problem. Here he is interested in examining what he calls
the ‘logical structure’ or the ‘logical form’ of the ‘phenomena’. As
he says, ‘we can only arrive at a correct analysis by, what might be
called, the logical investigation of the phenomena themselves, i.e., in
a certain sense a posteriori, and not by conjecturing about a priori
possibilities’ [19, p. 163].

A posteriori color-incompatibility claims don’t express experience
in its usual sense. These tautologies are logically valid due to the
geometrical organization of color space. However, unlike Kant, this
appeal to geometry does not entail the synthetical character of the
corresponding statements. The point is that color space is a ‘space
of possibilities’ which is for Wittgenstein a logical space.

If our logic takes into account a spectrum of invariance which
preserves several additional structures, for example, a structure of
color space, we may get various types of logical invariance. There-
fore, following Wittgenstein we turn back from Tarski’s permutation
invariance criterion to Klein’s original program. From the point of
view of Klein’s ideology, the logic of colors may be considered as a
member of a family of various logics whose notions are invariant for
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one-one transformations which respect additional formal structures,
in particular, the formal relations of colors. The invariance criterion
which is generalized in this way is wide enough to include not only
one extreme type of invariance (i.e. permutation invariance), but
a variety of invariances which respect different types of ordering of
the universe (see also [17, p. 320]).

3 Wittgenstein’s ‘puzzle proposition’; meaning
postulates or mapping functions?

Now the key question is the following: Why did Wittgenstein con-
sider relations between colors as formal, logical ones? My main con-
cern is to clarify Wittgenstein’s ‘puzzle proposition’ from Remarks
on Colour that ‘there can be a bluish green but not a reddish green’.

In his famous paper Reds, Greens, and Logical Analysis Hilary
Putnam pointed out, that Wittgenstein’s ‘puzzle proposition’ is an-
alytic, in the sense in which ‘analytic’ means ‘true on the basis of
definitions plus logic’. He proposed to define the second-level pred-
icates ‘Red(F )’ (for ‘F is a shade of red’) and ‘Grn(F )’ (for ‘F is a
shade of green’). In defining these predicates we must be restricted,
in particular, by the postulate: ‘Nothing can be classified as both
a shade of red and a shade of green (i.e., ‘that shade of red’ and
‘that shade of green’ must never be used as synonyms)’ [12, p. 216].
Putnam’s approach to color-incompatibility has gained widespread
acceptance among recent writers on perception. As Larry Hardin
says in Color for Philosophers, ‘Perhaps not being red is part of the
concept of being green. Yet it seems that all a normal human being
has to do to have the concept of green is to experience green in an
appropriately reflective manner’ [5, p. 122] (see also [22]).

Nevertheless, the introduction of certain meaning postulates
seems to be irrelevant to the exegesis of Wittgenstein’s ideas. The
meaning postulates expand a family of analytic truths by means of
dictionary conventions. On the contrary, for Wittgenstein, internal
relations of colors are elementary (see, e.g. [20, § 80]). His ‘puz-
zle proposition’ is ‘in a certain sense a posteriori’ and its necessity
does not rely on the nature of colors or ‘normal human beings’,
but on the structural relations within the system of colors, i.e. on
the geometry of colors. The objective basis for the necessity of the
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color-incompatibility claims is the geometry of color space as ‘part
of the method of projection by which the reality is projected into
our symbolism’ [19, p. 166].

Contrary to the meaning postulates approach, Jaakko Hintikka
and Merrill Hintikka proposed to represent the concept of color ‘by
a function c which maps points in visual space into a color space.
Then the respective logical forms of ‘this patch is red’ and ‘this
patch is green’ would be c(a) = r and c(a) = g, where r and g are
the two separate objects red and green, respectively. The logical
incompatibility of the two color ascriptions is then reflected accord-
ing to Wittgensteinian principles by the fact that the colors red and
green are represented by different names. And if so, the two proposi-
tions are logically incompatible in the usual logical notation. Their
incompatibility is shown by their logical representation: a function
cannot have two different values for the same argument because of
its ‘logical form’, i.e., because of its logical type’ [6, p. 161]. As
Jaakko Hintikka pointed out, ‘nonlogical analytical truths some-
times turn out to be logical ones when their structure is analyzed
properly’ [8, p. 52].

Now here is a new puzzling question; is it possible to generalize
Hintikka’s approach on binary colors, e.g., on reddish green or bluish
yellow?

4 The opponent-processing model of binary colors
vision

We perceive many colors to be binary — purple, for example, as
a mixture of blue and red. We may see bluish red, but it seems
impossible to experience a color that would be described as a ‘red-
dish green’ or a ‘bluish yellow’ . Thus, certain antagonistic pairs of
colors seem not to be combined to form a binary color.

According to the opponent-processing model of colors which goes
back to Ewald Hering’s opponent process theory (1878), there are
different types of retinal photoreceptors with optimal spectral sen-
sitivity to specific wavelengths. Activity in any one type laterally
inhibits the activity of neighboring receptors of the same type (e.g.,
short, middle or long wavelength receptors). Signals from the cones
are assumed to be combined in an opposing fashion to produce op-
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posing signals in retinal ganglion cells. This means that the cells
are excited by the presentation of a given color and inhibited by
presence of its antagonist. Red-green and blue-yellow are supposed
to be spectrally opposing channels. Thus, it would be impossible
for a human observer to perceive both red and green (blue and yel-
low) simultaneously, as that percept would require the simultaneous
transmission of positive and negative signals in the same channel.
As red cancels green and blue cancels yellow, reddish green and
bluish yellow are considered to be ‘ forbidden’ binary colors by the
opponent-processing model.

The most surprising results in modern neuropsychological litera-
ture on color vision are reports that reddish green and yellowish blue
colors can be perceived (see, for example, [1] and [3]). In violation
of the classical opponent-processing model, ‘stabilized-image’ expe-
riments have shown that by stabilizing the retinal image between an
antagonistic pair of red/green or blue/yellow bipartite equiluminant
fields the entire region can be perceived simultaneously as both red
and green (blue and yellow) or, to be more precise, as a ‘forbidden’
homogeneous mixture color whose red and green (blue and yellow)
components were as clear as, for example, the green and blue com-
ponents of aqua.

The first attempt at modeling these opponency violations by He-
witt Crane and Thomas Piantanida was based on the hypothesis
that there is an extra stage of cortico-cortical rather then retino-
cortical visual processing, i.e. a non-opponent filling-in mechanism
[3, p. 1079]. The game-theoretical approach allows us to offer a
uniform explanation both to standard opponent perception and to
its violations in ‘stabilized-image’ experiments.

5 ‘Forbidden’ binary colors as evidence for
game-theoretical semantics

From the very beginning, the opponent-processing model of colors
developed in the game-theoretical framework. It suggested that the
basis for color sensations lies in a process of winner-take-all compe-
tition between red and green (blue and yellow). Now it is clear that
this model must take into account the competitive interactions be-
tween teams of color-labeled wavelength-selective cells. As Vincent
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Billock, Gerald Gleason and Brian Tsou pointed out, ‘Recent mod-
els of cortical color processing suggest that cortical color opponency
may not be based on hard-wired wavelength opponency within a
single cell but rather on (potentially fragile) interactions between
cortical color-sensitive cells’ [1, p. 2399]. They assumed that the
struggle between red- and green- (blue- and yellow-) labeled units
is simply blocked by the border synergy of equilumininance and
stabilization [1, p. 2401].

I suppose that there is no need to block the game processing
as a whole, as this synergistic effect may be captured by the game-
theoretical notion of payoff independence introduced by Ahti-Veikko
Pietarinen (see [13]). The main idea of my proposal is the interpre-
tation of opponency violations as payoff independence in ‘stabilized-
image’ games between red/green or blue/yellow teams of cortical
color-sensitive cells. In winner-take-all games, the following holds; if
there is a winning strategy of the red team then there does not exist
a winning strategy of the green team, and vice versa. In ‘stabilized-
image’ games the information exchange between the opponent teams
is blocked by the synergy of equilumininance and stabilization on
the cortical strategic meta-level. Consequently, both red and green
(blue and yellow) teams have winning strategies in these games. In
other words, ‘stabilized-image’ games are over-defined. Thus, the
law of non-contradiction fails in the generalized logic of colors al-
lowing the simultaneous perception of antagonistic pairs of colors.
In contrast to winner-take-all games, ‘stabilized-image’ games are
non-strictly competitive (on over-defined and non-strictly competi-
tive games see papers by Ahti-Veikko Pietarinen and Gabriel Sandu,
e.g. [14]).

Evidently, the process of ‘negotiations’ between teams of oppo-
nent colors is nonlinear and gradual. As shown by Billock, Glea-
son and Tsou, transparency and gradient effects preceded percep-
tion of homogeneous ‘forbidden’ colors. Their experiments also il-
lustrated an entirely novel percept (4 out of 7 subjects) in which
the red and green (or blue and yellow) bipartite fields abruptly
exchange sides (one subject saw a 90◦ reorganization of the bipar-
tite fields) [1, pp. 2398–2399]. These experimental data indirectly
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confirm Wittgenstein’s statement about different types of space3.
Switching effects in ‘stabilized-image’ experiments lead to simul-
taneous or serial reorganizations of both visual and color spaces.
Whereas Wittgenstein clearly does not think that the science, and
particularly neuroscience, is relevant to the resolution of philosophi-
cal problems, sometimes neuropsychological experiments influences
our colors geometry, which, in turn, constitutes what the colors are.
Perhaps, tomorrow the invention of special glasses with a built-in
eye tracker will make reddish green and bluish yellow common colors
of our ‘form of life’.

In conclusion, the basic advantage of the game-theoretical ap-
proach to the logic of colors is its procedural character. Concern-
ing the logic of binary colors, game-theoretical models seem to be
the best, since a variety of game-theoretical independences provides
important insights into the theory of opponent-processing. Game-
theoretical notion of strategy allows us to generalize Hintikka’s ap-
proach to colors as mapping functions on binary colors, in particular,
on ‘forbidden’ binary colors.
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The modified Ramsey theorem is not a
Gödel sentence
Jaakko Hintikka

abstract. Gödelian sentences are self-referential first-order
sentences in the language of arithmetics. Perhaps the most cele-
brated one is the sentence which asserts its own unprovability. It is
well known that this sentence is neither provable nor refutable in
PA (Peano Arithmetics). Some logicians and philosophers have
complained that such a sentence is difficult to grasp given its
‘meta-theoretical’ content and they started to look for undecid-
able arithmetical statements which have a combinatorial content.
One such sentence is a variant of Ramsey’s sentence: the Paris-
Harrington theorem asserts its undecidability. In the present pa-
per I shall argue that such a sentence is not first-order expressible
and thereby it does not provide the desired example of a combi-
natorial, undecidable arithmetical sentence. Instead I shall argue
that it is expressible in Independence-friendly (IF) logic.

Keywords: Peano Arithmetics, Gödel’s Incompleteness theorem,
undecidability, Ramsey theorem, IF logic

Mathematicians, logicians and philosophers have been puzzled
by Gödel’s first incompleteness theorem ever since it was published.
What kinds of limitations on our logic does it reveal? If not all
arithmetical truths are provable from Peano axioms by means of
first-order logic, what additional resources should we resort to in
arithmetic and in mathematical reasoning in general?

One way of trying to answer such questions seems to be to see
what the Gödelian true but unprovable sentences are like and how
their truth can be established. Gödel’s own proof is constructive,
but the resulting true but unprovable sentences did not turn out to
be interesting mathematically and did not suggest any systematic
ways of proving stronger results. It seemed therefore highly inter-
esting when Paris and Harrington (1977) [6] discovered a simple
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modification of the Finite Ramsey Theorem in combinatorial math-
ematics that could be proved by a straightforward non-finitary com-
binatorial argument but was not possible to prove by means of finite
combinatorial methods. This result (it will be called here modified
finite Ramsey theorem or MFRT) has been taken to suggest that
logical arguments should be supplemented, if not replaced, in the
foundations of mathematics by combinatorial reasoning.

An emphasis on combinatorial reasoning may very well be well-
placed. But if so, this recommendation is not by itself a way out
of the Gödelian conundrum. For one thing, the Paris-Harrington
modification of FRT is not itself the kind of sentence whose existence
Gödel proved. The reason is that it is not a sentence that can be
formulated in the kind of language that is used in Peano arithmetic
and presupposed in Gödel’s theorem, that is, in the language of
first-order arithmetic. The first purpose of this note is to show its
logical status. Once the logic of the modified finite Ramsey theorem
is cleared up, it can be seen that it illustrates certain remarkable
facts about computability.

The unmodified FRT can be formulated as follows (cf. [8, pp. 363–
364]):

(1) For all k, l, m, there exists n so large that: IfX = {1, 2, . . . , n}
and if [X]k = C1∪C2∪· · ·∪Cl, then there exists Y ⊆ X such
that [Y ] ≥ m and [Y ]k ⊆ Ci for some i ≤ l.

Here X and Y are sets of natural numbers and i, j, k, l, m, n are
natural numbers. The cardinality of any X is [X]. Also let N be
the set of all natural numbers. For any subset Z of N , [Z]k is the
set of all (unordered) subsets of Z with k members.

For the purpose of this paper, it suffices to consider the special
case known as the party problem. In it a symmetric relation R —
any given symmetric relation — is assumed to be defined on N .
Also, l = 2, k = 2. C1 is the set of all the pairs ⟨x, y⟩ of numbers
such that R(x, y) and C2 of the pairs such that ∼ R(x, y). If we
think of R(x, y) as the relation of knowing each other, then the
resulting ‘party problem’ illustration asks whether you can assume
that there is a uniform set Y of m guests simply by inviting large
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enough a number n of guests. The unmodified FRT answers this
question affirmatively.

In the MFRT, an extra requirement is imposed on Y , viz. that
Y ‘large’ in the sense that

(2) [Y ] > minx(x ∈ Y ).

What is the logical form of this MFRT? The obvious prima facie
answer is, assuming a fixed R,

(3) (∀m)(∃n)(∀X)((X = {1, 2, . . . , n}) ⊃ (∃Y )(([Y ] ≥ m) ∧ (Y ⊆
X) ∧ (([Y ]2 ⊆ C1) ∨ ([Y ]2 ⊆ C2)) ∧ ([Y ] > minx(X ∈ Y ))))).

On the face of things, this is not a Gödel sentence. Gödel’s in-
completeness theorem deals with first-order arithmetic, whereas (3)
contains two second-order quantifiers. However, they range over fi-
nite subsets of N . By means of the technique Gödel used, we can
express such existential quantifiers in terms of first-order quantifiers.
This takes care of (∃Y ), and it is easily seen that we can similarly
deal with (∀X). This is undoubtedly the basis for thinking that the
MFRT is a Gödel sentence.

But this is not the full story. For the MFRT is supposed to hold
for any partition C1, C2, . . . ergo in the case of the party problem
for any symmetric relation R. Hence there is in effect an additional
quantifier (∀R) in (3). What is more, this additional quantifier
matters, because of its relations of dependence and independence of
other quantifiers. One important relation is that (∃n) must be inde-
pendent of (∀R) in order for MFRT to be valid. This independence
is the main insight of this paper. This dependence is the crucial
fact here.

In order to prove the independence, assume that on the contrary
R does depend on n. Then given n we can define R in such a way
that there are no uniform subsets large enough in X. From the
unmodified FRT and its proof we can see that it takes a set of at
least superexponential function of m to express the size required,
i.e. the size at which it is necessary that there it has a uniform
subset of m numbers (See e.g. [8, p. 363]). Assume that such a
subset X of N of superexponential size is given.
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We can choose X as small as possible so that the cardinality of
the only uniform subset Y is precisely m, i.e. [Y ] = m. This only
requires choosing the relation R in a suitable way. Suppose now
that we rename (reorder) the set X = {1, 2, . . . , [X]}. The result is
structure of the same kind as before, but with a different definition of
R onX, in other words, a new value of R. Otherwise, the numbering
of the members of X does not enter into the MFRT. In particular,
we can re-order the set X in such a way that the members of the
uniform subset Y come last in the re-ordered X. It is important
that we are dealing with a re-numbering of n = [X] elements and
hence presuppose intuitively speaking knowing n. Since [X] is a
superexponential as a function of m, we have

(4) minx(x ∈ Y ) > ([X] −m) > m = [Y ]

But this violates the ‘largeness’ requirement (2). The counter-
assumption is hence impossible, and R must not depend on n.

But where does the argument leave the MFRT? We know that
it is valid. How is it to be expressed in the first place? We have
in to amplify (3) by bringing in the quantifier (∀R) explicitly. The
question is what its dependence and independence relations to the
other quantifiers in (3) are. Options include the following:

(5) (∀m)(∃n)(∀R)(−−−)

(6) (∀m)(∀R)(∃n/∀R)(−−−)

(7) (∀m)(∀R)(∃n)(−−−)

Each of these formulas gives rise to a semantical game. The ar-
gument just given shows in effect that each strategy of the vertex in
the game with (5) is defeated by a suitable strategy by the falsifier.
Hence (5) cannot be true and consequently cannot express MFRT.

Also, (7) is weaker than (6) and weaker than the intended force
of MFRT. Hence (6) shows the logical form of the theorem.

Accordingly, MFRT involves an irreducibly independent (IF)
quantifier. Hence it cannot be a formula of a traditional first-order
formula or equivalent to one. And since Gödel is using a received
first-order language, MFRT is not a Gödel sentence.
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The irreducibly IF character of MFRT has other interesting con-
sequences and it is related to important theoretical questions. They
are discussed in [2] and [3]. From (6) it is seen that n is a function of
m only, n = r(m). This function is not general recursive. If it were,
it would be definable in terms of a finite set of equations. This set
corresponds to a set of traditional first-order sentences. Derivations
from these in turn correspond to computations (see [2]). In the case
of f , the formula (6) can serve as one of these sentences. But it
cannot if f is to be general recursive, for (6) involves irreducibly IF
Skolem functions. Hence f cannot be general recursive.

Yet f is obviously computable by a mechanical process, for we
can simply by going through for a given m all the possible relations
R (different ‘colorings’) for n = m, m+ 1, m+ 2, . . . Hence MFRT
appears to be highly interesting even if it is not a Gödel sentence.
It is a counterexample to Church’s Thesis: in a pretheoretical sense
computable, but not general recursive nor therefore a Turing ma-
chine computable function.

This line of thought clearly needs fuller argument than what can
be given in general. The current research is not free of confusion,
and even mistakes, and needs systematic scrutiny (cf. [5]).

These questions are not examined in any detail in this paper,
however. Instead, we return briefly to the initial question raised in
this paper. It is not a good strategy in trying to understand Gödel’s
first incompleteness theorem to examine particular instances of true
but unprovable arithmetical sentences. What Gödel’s theorem says
is essentially that the set of true arithmetical sentences is not recur-
sively enumerable. The different axiomatizations are but different
methods of enumeration (see [4]). That some particular true arith-
metical sentence is not provable in some particular axiomatization
is hence informative only of why one particular attempted enumera-
tion fails, not about why every such enumeration fails, that is, what
Gödel’s incompleteness really means.
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Von Wright’s truth-logic and around
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abstract. In this paper von Wright’s truth-logic T′′ is consid-
ered. It seems that it is a De Morgan four-valued logic DM4 (or
Belnap’s four-valued logic) with endomorphism e2. In connection
with this many other issues are discussed: twin truth operators, a
truth-logic with endomorphism g (or logic Tr), the lattice of ex-
tensions of DM4, modal logic V2, Craig interpolation property,
von Wright–Segerberg’s tense logic W, and so on.

Keywords: Wright’s truth-logic, De Morgan four-valued logic,
twin truth operators, tetravalent modal logic TML, truth logic
Tr, modal logic V2, von Wright–Segerberg’s tense logic

1 Four-valued classical logic C4 and four-valued
De Morgan logic DM4

Let MC
4 be a four-valued logical matrix

MC
4 =< {1, b, n, 0},⊃,∨,∧,¬, {1} >

which is obtained from the direct product of the matrix M (for
classical propositional logic C2) with itself, i.e. MC

4 = MC
2 ×MC

2 ,
where matrix operations ⊃,∨,∧,¬ are the following:

x ¬x
1 0

b n

n b

0 1

⊃ 1 b n 0

1 1 b n 0

b 1 1 n n

n 1 b 1 b

0 1 1 1 1
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∨ 1 b n 0

1 1 1 1 1

b 1 b 1 b

n 1 1 n n

0 1 b n 0

∧ 1 b n 0

1 1 b n 0

b b b 0 0

n n 0 n 0

0 0 0 0 0

Note that the set of truth-values {1, b, n, 0} is partially-ordered
in the form 0 < n, b < 1, i.e. n and b are incomparable. As usual

x ∨ y =: ¬x ⊃ y,

x ∧ y =: ¬(¬x ∨ ¬y),

x ≡ y =: (x ⊃ y) ∧ (y ⊃ x).

It is well known that matrix MC
4 is characteristic for calculus C2.

The logic with the above operations is denoted as C4. As usual,
we will denote connectives and the similar operations by the same
symbols.

Then the logic with the operations ∨,∧ and ∼ is called four-
valued De Morgan logic DM4, where ∼ is De Morgan negation:
∼ 1 = 0,∼ b = b, ∼ n = n, ∼ 0 = 1 (see [5], [9]). In another
terminology, DM4 is Belnap’s four-valued logic [3].

2 Endomorphismus in the distributive lattices
In [6] the authors point out the fact that the modal and tense oper-
ations in a number of modal and tense logics and in corresponding
algebras are expressed in terms of endomorphismus in the distribu-
tive lattices.

Let us consider one-place operations g, e1 and e2

x g(x) e1(x) e2(x)

1 1 1 1

b n 0 1

n b 1 0

0 0 0 0
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which are the endomorphismus in the distributive lattices:

f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) = f(x) ∧ f(y),

f(¬x) = ¬f(x), f(1) = 1, f(0) = 0, f(xδ) = (f(x))δ, 1

where f can be any operations from g, e1 and e2.

3 Von Wright’s truth-logic T′′

Now in the new terms introduced above we can define Wright’s
truth-logic. The expansion of DM4 by the endomorphism e2 leads
to the logic which G.H. von Wright in 1985 denoted as T′′LM and
called a ‘truth-logic’ (see [28]). For the sake of brevity, we will denote
it as T′′. Here a truth-operator T is the endomorphism e2. Note
that the following important definitions hold:

(∗) e1(x) =:∼ (e2(∼ x)) and e2(x) =:∼ (e1(∼ x)).2

It is easy to show that all four-valued Ji(x)-operations are defin-
able in T′′LM, where

Ji(x) =

{
1, if x = i
0, if x ̸= i

(i = 1, n, b, 0).

Thus, we have:

x J1(x) Jb(x) Jn(x) J0(x)

1 1 0 0 0

b 0 1 0 0

n 0 0 1 0

0 0 0 0 1

1

xδ =

{
x, if δ = 1

¬x, if δ = 0.

2In [19] a four-valued ‘logic of falsehood’ FL4 is formalized. In our terms
it is the expansion of the language of DM4 by the endomorphism e1. So, in
virtue of (∗) logics FL4 and T′′ are functionally equivalent.
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One may easily verify that

J1 =: e1(x) ∧ e2(x),

Jb =:∼ e1(x) ∧ e2(x),

Jn =: e1(x)∧ ∼ e2(x),

J0 =:∼ e1(x)∧ ∼ e2(x).

Note that e2(x) =: J1∨Jb. Then Wright’s logic T′′ is De Morgan
logic DM4 with all Ji(x)-operators (but, it is important, without
classical negation ¬). Note also that in many finite modal logics the
operator J1 is the modal operator of necessity �. Then the well-
known tetravalent modal logic TML is DM4 with the operator �
added to its language (see especially [9]3). So T′′ is an extension of
TML.

Now we need some additional definitions. A finite-valued logic Ln

with all Ji(x)-operators is called truth-complete logic, and a logic Ln

is said to be C-extending iff in Ln one can functionally express the
binary operations ⊃,∨,∧, and the unary negation operation, whose
restrictions to the subset {0, 1} coincide with the classical logical
operations of implication, disjunction, conjunction, and negation.
In virtue of result of [2] every truth-complete and C-extending logic
has Hilbert-style axiomatization extending the C2. It means that
Wright’s T′′ logic has such an axiomatization. Moreover, it follows
from [1] that we have adequate first-order axiomatization for logic
T′′ with quantifiers.

It is very interesting to generalize given four-valued von Wright’s
logic, i.e. to consider an arbitrary finite-valued De Morgan logic
with all Ji(x)-operators. As a result, we obtain an entirely new class
of many-valued logics which I suggest to call ‘Wright’s many-valued
logics’ and a new class algebras which I suggest to call ‘Wright’s
algebras’. Then again it follows from [1] that for such logics we
have adequate first-order axiomatization.

3However, see also [5].
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4 Properties of a truth-operator T and the twin
truth operators

The following two properties of a truth-operator T are useful:

(I) T (∼ x) ≡∼ T (x)

(II) T (x) ∨ T (∼ x) — the law of excluded middle.

Note that these two conditions are required in the Tarski’s ax-
iomatic theory of truth with a predicate symbol True (see [12]).

None of these conditions is fulfilled in the logic T′′. However it
is interesting to consider the operations e1 and e2 as the twin truth
operators T1 and T2 bearing in mind (∗). Then

(I’) T1(∼ x) ≡∼ T2(x)

(II’) T1(x) ∨ T2(∼ x) — the law of excluded middle.

Here we must note that the main goal pursued by von Wright has
been the construction of paraconsistent logic. So the choice of the
operations ∼ and T2 is such that the law of contradiction

∼ (T2(x) ∧ T2(∼ x))

is not valid in T′′. But it is interesting that this law is valid in the
form

∼ (T1(x) ∧ T2(∼ x)) or ∼ (T2(x) ∧ T1(∼ x)).

We want to stress that von Wright’s truth logic with the twin
truth operators T1 and T2 seems to us very interesting.

5 Logic Tr
Let us consider the expansion of DM4 by the endomorphism g.
Now the conditions (I)–(II) are fulfilled. Note that operators ∼ and
g commute among themselves, i.e.

∼ g(x) ≡ g ∼ (x).
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Moreover, this allows to define the classical negation ¬:

¬(x) =:∼ g(x).

We denote a truth logic with the set of operations {∨,∧,∼, g}
by Tr.

There is a very simple and nice axiomatization of this logic (see
justification below), where the operation T is g:

(A0) Axioms of classical propositional logic C2.

(A1) T (A ⊃ B) ≡ (TA ⊃ TB).

(A2) ¬TA ≡ T¬A.

(A3) TTA ≡ A.

The single rule of inference: modus ponens.4

It is worth to mention that there is a generalized truth-value space
in kind of bilattice (see [11]). Indeed, smallest nontrivial bilattice is
just the four-valued Belnap’s logic. In [8] M. Fitting extends a first-
order language by notation for elementary arithmetic, and builds
the theory of truth based on bilattice. This four-valued theory of
truth is an alternative to Tarsky’s approach.

Also in one case, Fitting extends this language by the operation
‘conflation’ (endomorphism g).

6 Interrelations between T′′ and Tr
Let P4 be Post’s four-valued functionally complete logic (see [20]).
The set operation R is called functionally precomplete in P4 if every
enlargement {R, f} = R ∪ {f} of the set R by an operation f such
that f /∈ R and f ∈ P4 is functionally complete.

It is not difficult to prove, that the logic with the set of the
operations {∨,∧,∼, e2, g} is four-valued  Lukasiewicz logic  L4 which
first appeared in [15]). According to Finn’s result  L4 is precomplete
in P4 (see [4]). Note that in  L4

4At the time of my report G. Sandu had asked about the logic Tr with the
axiom (A4) TA ≡ A. Let’s denote this logic by Trc. If we take the operation
T as identity operation of C2 then the logic Trc is a conservative extension of
C2.
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x ∨ y = max(x, y) and x ∧ y = min(x, y),

i.e. the truth-values in  L4 are linearly-ordered5.
As a result, we have the following lattice of extensions of DM4:

t
t

t
tT′′

 L4

Tr

DM4

7 Modal logic V2
In [25] Sobochiński presents the formula (β2):

�p ∨�(p ⊃ q) ∨�(p ⊃ ¬q).

He establishes that it is not provable in S5, and S5 plus (β2) is
not classical calculus C2. In [26] this logic is denoted by V2. As
a consequence of Scroggs’ result about pretabularity of S56 logic
V2 is finite-valued one. It was remarked that four-valued matrix of
‘group III’ from [14], i.e. matrix

< {1, b, n, 0},⊃,¬,�, {1} >,

is characteristic for V2 (see e.g. [5, p. 190]).
In [6] it has been shown that logics Tr and V2 are functionally

equivalent:
5In details about different finite-valued logics see in [13, ch. 5].
6A logic L is said to be pretabular if it is not finite (tabular), but its proper

extension is finite. Scroggs [22] has shown that S5 has no finite characteristic
matrix but every proper normal extension does.
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�p =: p ∧ g(p),

♢p =: ¬�¬p,

g(p) =: �p ∨ (¬p ∧ ♢p).7

Note that in [5] an algebraic semantics (named to MB-algebras)
has been developed for logic Tr (V2). MB-algebra is an expan-
sion of De Morgan algebra by Boolean negation ¬. In this case
g(x) =∼ ¬(x) = ¬ ∼ (x). It is interesting that Pynko [21] intro-
duces a similar algebraic structure called De Morgan boolean algebra.
He also suggests Gentzen-style axiomatization of four-valued logic
denoted by DMB4.

In [17] Maksimova considers all normal extensions of modal logic
S4 with the Craig interpolation property. From this it follows that
modal logic V2 is the single normal extension of modal logic S5
with the Craig interpolation property (between S5 and C2). Since
the logics Tr and V2 are functionally equivalent then the following
theorem can be proved:

Theorem 1. A logic Tr has the Craig interpolation property.

8 Von Wright–Segerberg’s tense logic W
It is interesting that we can come to the logic Tr on the basis of an
entirely different considerations. In [27] von Wright presents a tense
logic ‘And next’ which deals with discrete time. In [23] Segerberg
reformulates it under the name W and provides other proofs of
completeness theorem, and decision procedure.8

A logic W is a very simple propositional logic in which a new
unary operation S with the intuitive meaning of ‘tomorrow’ is added
to the language of the classical propositional calculus. W is axiom-
atized in the following way:

(A0) Axioms of classical propositional logic C2.

(A1) S(A ⊃ B) ≡ (SA ⊃ SB).

(A2) ¬SA ≡ S¬A.
7However, see [23, p. 49].
8For detailed overview of von Wright’s tense logic see Segerberg’s paper [24].
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The rules of inference:

R1. Modus ponens,

R2. From A follows SA.

Segerberg suggests the following Kripke-style semantics for W
(this semantics in a simplified way is presented in [7, p. 288]). Let
N = 0, 1, 2, . . . be the set of possible worlds. Valuation v(pi, w) =
1, 0 (‘truth’, ‘falsehood’) for propositional variables pi and w ∈ N .
For ⊃ and ¬ as usual, and for SA : v(SA,w) = v(A,w + 1). Pay
attention that W is the logic that defines the set formulas valid
in N .

Concerning the logic W there are the following meta-logical re-
sults:

1) There is no finite axiomatization of W with modus ponens as
sole inference rule [23].

2) Logic W is pretabular [7].

It is worth emphasizing that in [6] Mučhnik has devised algebraic
semantics for W, named Bg-algebras, and has proved Stone’s rep-
resentation theorem for them. Here it is noted that Bg-algebra with
involution, where gg(x) = x, corresponds to the logic V2. Thus we
again have come to the logic Tr.

Note than in [18] Kripke frame, consisting two possible worlds,
is represented for V2. Here we describe Kripke frame ı =< T,R >
for W and Tr, where T is the set of instants of time.

A Kripke frame ı =< T,R > is a frame for W if the following
conditions fulfill:

1. ∀w ∈ T ∃v ∈ TwRv

‘from every point (instant) something is accessible’.

2. ∀w ∈ T ∀v1 ∈ T ∀v2 ∈ T (wRv1 &wRv2 ⇒ v1 = v2)

‘from every point no more than one point is accessible’.

And for Tr it is necessary to add:
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3. ∀w1 ∈ T ∀w2 ∈ T ∀w3 ∈ T (w1Rw2 &w2Rw3 ⇒ w3 = w1)

‘from every point in two steps we once again find ourselves in
the same point ’.

Theorem 2. Logic W + axiom (A3) SSA ≡ A and logic Tr are
the same as the sets of derivable formulas.
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[4] Bočvar, D. A., and V. K. Finn, On many-valued logics that permit
the formalization of analysis of antinomies, I, in D. A. Bochvar (ed.),
Researches on Mathematical Linguistics, Mathematical Logic and In-
formation Languages, NAUKA Publishers, Moscow, 1972, pp. 238–295
(in Russian).

[5] Ermolaeva, N. M., and A. A. Mučnik, A modal extensions of Hao
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shin (eds.), Investigations on the Set Theory and Non-classical Logics,
NAUKA Publishers, Moscow, 1976, pp. 229–246 (in Russian).

[7] Ermolaeva N. M., and A. A. Mučnik, A pretabular tense logic, in
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The path of logic in Ukraine: a history
of concepts
Irina V. Khomenko

abstract. This paper traces the development of history of
logic in Ukraine in the 19th century and early 20th century. The
author particularly discusses and compares the logical concepts of
representatives of Kyiv philosophies, who made their contribution
to the development of logic as a science and academic discipline.
Some of them had sunk into oblivion for a long time and their
names are still unknown in the logic community.

Keywords: logic, history of logic in Ukraine, Kyiv Theological
Academy, St. Vladimir University of Kyiv

Nowadays one of the most important tasks for logic in Ukraine
is to study the history of logical thought development. Since the
research activities of logicians were always closely connected to their
teaching activities it is expedient to consider history of logic as
history of its teaching.

The teaching of logic in Ukraine has begun at the end of the
17th century. At that time higher educational institutions founded
in Ukraine were influenced by Western Europe. The Ostroh Slavic
Greek Latin Academy was the first institution of such type. It was
established by Prince Konstiantyn-Vasyl Ostrozhsky and Princess
Halshka Ostrozhska in 1576. The Zamojska Academy was opened
later in 1594.

The quality of education offered by the academies at that time
was very high. The undergraduate programs were based on the
European educational standards including seven courses of ‘free
arts’ divided into trivium (grammar, rhetoric, logic) and quadrivium
(arithmetic, geometry, music, astronomy). The greatest attention
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was paid to trivium. Logical courses (also called dialectic) were
based on the European universities’ programs.

However, there were practically no students from Kyiv in these
academies. Many sons of wealthy Cossack families studied abroad in
prestigious universities of Western Europe. Only in the 17th century
the first educational institution was opened in Kyiv. It was the
Kyiv-Mohyla Academy, founded by Petro Mohyla, the Metropolitan
of Kyiv, in 1615. The Academy has seen its golden ages from the
end of the 17th century and till the beginning of the 18th century.
With respect to teaching logic the Academy adopted methods and
the curriculum of the Jesuit schools of Rzeczpospolita. The greatest
philosophers of that period like Innocent Gizel (1600–1683), Stefan
Iavorskyi (1658–1722) and Pheophan Prokopovich (1681–1736) gave
logical lectures in the academy.

Unfortunately, after Moscow University was opened in 1755 the
Kyiv-Mohyla Academy influence started rapidly to decline and in
1817 it was closed down. At the beginning of the 19th century the
territory of the Left-Bank Ukraine witnessed opening of several ed-
ucational institutions: in 1805 — Kharkov University, in 1817 —
Richelieu Lyceum and a bit later — Novorossiysk Imperial Uni-
versity. One more institution — Lyceum of Higher Sciences was
organized in Nizhyn.

At the same time after the Kyiv-Mohyla Academy was closed
down the territory of the Right-Bank Ukraine was left with no higher
educational institutions until 1819 when Kyiv Theological Academy
(KTA) was founded. Educational institutions of such type were not
numerous at that time. In the Russian Empire there were only four
Theological Academies: in St. Petersburg (since 1809), in Moscow
(since 1814), in Kyiv (since 1819) and in Kazan (since 1842).

It was planned to open the Theological Academy in Kyiv as far
back as in 1816. However it wasn’t opened because of lack of schol-
ars. Therefore, instead of the KTA, the theological seminary had
been functioning for two years. Its major task was to prepare stu-
dents as well as teachers for the new educational institution.

Kyiv Theological Academy was ceremoniously opened on Septem-
ber, 28, 1819 and quickly became one of the centers of classical aca-
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demic education in Ukraine. It had been functioning for about 100
years and was closed down in 1920.

At that time it was very difficult to enter the academy since the
prospective students had to take special exam to be accepted and
logic was one of them.

During the first few years of the Academy’s functioning most stu-
dents were Ukrainians but with a lapse of time the Sacred Synod
suggested to start admitting seminary graduates from other eccle-
siastical educational regions. As a result, Russians began to prevail
among students of the Academy. The 1860s saw the increase of the
number of foreign students — Serbians, Bulgarians, Greeks, Roma-
nians and Syrians. Some of them became outstanding ecclesiastical
and secular figures in their countries. Greek Catholics studied at
the Academy as well.

The major task for all KTA students was to fundamentally study
religion through in-depth mastering of the subjects included into
the Academy’s curriculum, in order to attain spiritual erudition.
The full academic course lasted four years and was divided into
lower and higher divisions. A weekly schedule of students’ classes
was the following: at the lower division — Holy Scripture (2 hours),
Philosophy (10 hours), General Literature (6 hours), Civil History
or Mathematics (selectively) (8 hours), Greek (4 hours), Hebrew (2
hours), one of modern languages German or French (2 hours). The
higher division — Holy Scripture (2 hours), Theology (12 hours),
Church Literature (6 hours), Church History (6 hours), Greek (4
hours), Hebrew (2 hours), one of modern languages (2 hours).

Logic was part of the Philosophy disciplines cycle. It was taught
at the lower division during the first year of studies together with
the History of Ancient Philosophy and Psychology. The second year
of studies contained other subjects of the Philosophy cycle: History
of Contemporary Philosophy, Metaphysics and Moral Philosophy.

During one hundred years of the KTA’s functioning there were
about two dozens of teachers majoring in Philosophy disciplines.
Those who made their contribution to the development of logic
as a science and academic discipline were also among them. For
example, Ivan Skvortsov (1795–1863), Vasilii Karpov (1798–1867),
Iosif Mikhnevich (1809–1885), Orest Novitskyi (1806–1884), Silvestr
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Hogotskyi (1813–1889), Pamfil Yurkevich (1826–1874) and Piotr Li-
nitskyi (1839–1906). Some of them taught logic not only in KTA but
also in other high institution, particularly in St. Vladimir Imperial
University of Kyiv.

Although Kyiv Theological Academy played a significant role in
preparing graduates, it was still an ecclesiastical educational institu-
tion. Therefore opening of secular educational establishment in the
Right-Bank Ukraine, where students could chose majors in different
specialties became a significant problem. Only 15 years after KTA
was opened the establishment of such type was founded in Kyiv.

On November 8, 1833, Emperor of the Russian Empire expressed
his will to open a new university in Kyiv. On July 15, 1834,
St. Vladimir University of Kyiv accepted its first 62 students. At
that time there was only one faculty — the Faculty of Philosophy. In
1835 the Faculty of Law was opened and in 1841 Medical Faculty
started to accept students. In a while the Faculty of Philosophy
was divided in two separate departments and such structure of the
University persisted up until 1917.

By statute of 1842 the Faculty of Philosophy comprised of the
First Department (History and Philology) and the Second Depart-
ment (Physics and Mathematics).

The Department of Philosophy was university-wide department.
Professor Orest Novitskyi was appointed as Head of the Department
on the recommendation of the KTA rector, Archbishop Innocent.
He became the first professor, who gave logical lectures for students
of Kyiv University.

In September of 1850 teaching of Philosophy was banned follow-
ing the closing of all Departments of Philosophy in universities of
Russian Empire. By the way, logic as an academic discipline had
not suffered any limitations then. Teaching Philosophy in secular
educational institutions was limited to Logic and Psychology till ‘a
special command’. However, these subjects could be taught solely
by theology professors.

Moreover, the Sacred Synod instructed all theological academies
to develop Logic curriculum for Russian universities, and the cur-
riculum submitted by Moscow Theological Academy was accepted.
University teachers were obliged to follow it as a model [1]. Mean-
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while other theological academies, including KTA, continued teach-
ing Philosophy, Logic and Psychology according to their own cur-
riculums.

Starting in 1850 I. Skvortsov, who was an ordinary professor of
Philosophy in KTA, Doctor of Theology, an Archpriest, started to
give lectures on Logic at St. Vladimir University of Kyiv. The
unique document proving this has been saved in archives — Skvort-
sov’s written consent to be appointed for the proposition by R.
Tautffetter, rector of the university, to teach Logic and Psychology
courses [2].

I. Skvortsov was teaching Logic until the end of 50s of the 19th

century. Most probably, after him Logic course were passed to
N. Favorov, an ordinary professor of Philosophy, Doctor of Theology,
due to his position of professor of Theology, Logic and Psychology
at St. Vladimir University of Kyiv at that time.

In 1876–1887 A. Kozlov held position of a privat-docent and later
extraordinary, ordinary professor at the university. It is possible to
find information in the list of philosophical subjects that he gave
lectures on logic (theory of induction, theory of proof and theory
of scientific system) for students of Historical-Philological Depart-
ment in 1885–1886 [2] following the textbook on logic written by
Ziegward.

At the end of 19th — the beginning of the 20th century curriculum
subjects of Historical-Philological Department divided into compul-
sive and basic disciplines; compulsive and additional disciplines;
compulsive and additional subjects, depending on the additional
specialty. Logic was included into the block of compulsive and ba-
sic disciplines [3]. It was taught for three hours per week.

The archives contain preserved program that was used to teach
students in 1911. To get a bigger picture on the course of Logic,
which was followed at the university in the beginning of 20th century,
we give it in full:

‘Logic. Its definition and division. Historical explanation of the term.
The general essay on the development of logical doctrines.
Cognitive activity. Its elements and cognition.
Representation. Psychology formation and logical significance. His-
torical explanation of the term.
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Notion. Psychology and Metaphysics of notion. The content and
scope of the notion, its interrelation. Division of notion by content
and scope. Historical essay on categories’ doctrine.The basic logical
rules on relations between the notions.

Definition and division. Their psychology. The basic logical rules.
Fallacies in definition and division. Types of division. Historical
essay on definition and division.

Judgement. Its psychological, grammatical, logical essence.

Logical laws and their formulas. Historical essay on these laws.

Argument. Its types. Psychological essence of judgement. Direct
arguments. Historical essay on direct inferences.

Indirect arguments. Deduction and syllogistics. The basic axiom
of syllogism. Its elements. Distinction between syllogisms by the
character of premises.

Syllogistic figures and modus. The basic and special rules of syl-
logism. Conditional and dividing syllogisms. Aristotle’s and Mill’s
doctrines on syllogism.

Induction. Methods of inductive generalization. Its basic axiom.
Four inductive methods. Fallacies in induction. Analogy. Its types.
Historical essay on analogy.

Hypothesis and proof. Its relation to inferences. Historical essay.

General information about system and methods of its construction.
Analysis and synthesis. Historical essay [3]’.

In the late 19th century — early 20th century G. Chelpanov, P. Ti-
homirov and V. Zenkovskyi took over teaching of Logic.

It is acknowledged that G. Chelpanov was giving lectures on Logic
at the university starting from 1892 and till 1907. It can be supposed
that after his departure to Moscow logical course was passed to
P. Tihomirov, who was holding position of a privat-docent of the
Department of Philosophy from 1907 and till 1917. It is possible
to find information about the fact that logical lectures were given
by P. Tihomirov in the list of philosophical and theological subjects
that were taught at St.Vladimir University of Kyiv in fall semesters
of 1910 [4]. P. Tihomirov recommended students the textbook on
Logic by V. Minto, Th. Lipps, Ch. Sigward, A. Vvedenskyi [5].
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Together with P. Tihomirov, in early 20th century V. Zenkovskii
was working at the Department of Philosophy. It is known that he
taught Logic after teaching course of Psychology and together with
course of History of Philosophy in spring semester of first year.

The teachers of Kyiv Theological Academy and St. Vladimir
University of Kyiv were the cream of Kyiv philosophical commu-
nity from 19th and till the beginning of 20th centuries. Among
them were those who made their contribution to the development
of logic as a science and academic discipline. The issues discussed
by representatives of Kyiv philosophy were in the mainstream of the
Western European philosophy of those times: how can logic be re-
formed? In what way shall its subject matter be determined? Can
logic be considered only as a formal discipline? What are the rela-
tions between logic and psychology? Can psychology be considered
as a foundation of logic? May logic be considered as a philosophical
discipline? Is it necessary to include epistemological issues to the
scope of logical matters? What is the methodological significance
of logic? What is the significance of applied logic?

Addressing these issues, Kyiv philosophers have created original
conceptions of logic which pose interest, in our opinion, not only
from the point of view of history of logic but also from the point of
view of current streams of the logical knowledge development.

Unfortunately, not all of them had their works published. One
can learn about their views only by studying the manuscripts that
had been preserved. Herewith some of the manuscripts were not
written by the teachers themselves but are saved in the form of
students’ notes written during the lectures.

Let us attempt to enumerate representatives of Kyiv academic
and university philosophy who were dealing with matter of Logic.
It poses interest at least with respect to the fact that some of them
had sunk into oblivion for a long time and their names are still
unknown in the logical community.

The prime specialist in the field of logic in the KTA was Ivan
Skvortsov, an ordinary professor of Philosophy, Doctor of Theology,
an Archpriest. For more than 30 years he was delivering logical lec-
tures at the KTA and for almost 25 years at St. Vladimir University
of Kyiv. His views of logic were fully represented in his handwrit-
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ten lectures on logic which are accessible today at the Institute of
Manuscripts of the National Library of Ukraine. These are notes
of the lectures delivered by him in 1837 written by a KTA student
Andrii Monastyriov [6].

Vasilyi Karpov is another representative of Kyiv ecclesiastical
academic philosophy. He was a graduate and teacher of Philoso-
phy disciplines (including Logic) at the KTA. Later he became an
ordinary professor of the St. Petersburg Theological Academy. He
was devoted to teaching for over forty years (from 1825 to 1867). His
textbook ‘Systematic Exposition of Logic’ (1856) ranks first among
his works in logic [7]. It was recognized as one of the best text-
books in logic in the Russian Empire. Unfortunately, what can be
found in Kyiv archives preserved only V. Karpov’s personal record
for the years of 1829–1830. Neither manuscripts nor lecture notes
are available in Kyiv. If they do exist at all, they should be saved
in St.Petersburg.

Another representative of Kyiv philosophy is Iosif Mikhnevich, a
KTA graduate and an extraordinary professor. Later he became a
professor of Richelieu Lyceum (Odessa), where he was teaching all
Philosophy disciplines including the course of Logic. I. Mikhnevich’s
views of logic are expounded in his work ‘An Experience of Gradual
Development of Major Thinking Activity as a Guideline for Initial
Teaching of Logic’(1847) [8].

From the point of view of history of logic, textbooks of Orest
Novitskyi are of great interest. Or. Novitskyi was Master of The-
ology and Philology, an Extraordinary Professor at the KTA, the
first Ordinary Professor of Philosophy and the Dean of the first De-
partment of the Faculty of Philosophy of St.Vladimir University of
Kyiv. In 1844 his ‘Compendium of Logic with Preliminary Outline
of Psychology’ [9] was published [6]. Besides this work, issues of
logic were raised in Novitskyi’s short manuscript ‘Something about
Logic from Novitskyi’s Lectures’ [10], which is accessible at the In-
stitute of Manuscripts of the National Library of Ukraine.

Views of logic of another representative of Kyiv philosophy Sil-
vestr Hogotskyi, a KTA graduate and later an ordinary professor
of Philosophy, merited ordinary professor of St.Vladimir Univer-
sity of Kyiv at the department of Philosophy, Doctor of Philosophy



The path of logic in Ukraine: a history of concepts 59

and Ancient Philology, are expounded in his ‘Philosophy Lexicon’
(1857–1873). It was the first in Russia four-volume Philosophy En-
cyclopedia [11].

A substantial hand-written heritage in logic has been left by an-
other KTA ordinary professor, who later became a professor of
Moscow University, Pamfil Yurkevich. His manuscripts are avail-
able at the Institute of Manuscripts of the National Library of
Ukraine. Among them ‘Curriculum and Readings in Logic’ [12],
‘Readings in Logic (abridged)’ [13], ‘Trandelenburg’s Research in
Logic, Abridged’ [14], ‘Lectures in Logic’ [15], notes with regard
to H.Х.W. Ziegward’s ‘Logic’ [16], ‘From Logic’ (lithographic lec-
tures) [17].

The last representative of Kyiv ecclesiastical academic philoso-
phy, who was teaching Logic at Kyiv Theological Academy, was
Piotr Linitskyi, the KTA Merited ordinary professor at the De-
partment of Logic and Metaphysics, Doctor of Theology. He left
both published works and manuscripts in logic. Among his pub-
lished works one can find ‘Adolf Trandelenburg’s Research in Logic,
translated by Korsh’ (1868) [18], ‘On Forms and Laws of Thinking’
(1895) [19], etc. Handwritten lectures in Logic by P. Linitskyi are
accessible today at the Institute of Manuscripts of the National Li-
brary of Ukraine named after V.S. Vernadskyi. These are notes of
the lectures delivered by him in 1889–1890 academic years written
by his student P. Kudriavtsev [20].

George Chelpanov (1862—1936) arrived at Kyiv in 1892. He held
position of Head of the Department of Philosophy at St. Vladimir
University of Kyiv and began to teach Logic, Psychology and Phi-
losophy. In 1907 he returned to Moscow, where became a professor
of Moscow University. His logical views were presented in a well
known textbook on Logic, which had been reprinted eight times
before 1917 [21].

It is interesting that each of the representatives of Kyiv academic
and university philosophy has been developing different conceptions
of logic. They were united only by the fact that each of them tried
to solve the problem of reforming logic.This problem was becoming
a topical issue. Kyiv philosophers were actively participating in the
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discussions on how to reform the discipline and each was willing to
propose an option.

The first research program for logic reforming was proposed by
I. Skvortsov. Unlike Kh. Baumeister, who focused on artificial
speculative logic, boiling down practical logic to a set of trivial
techniques used in everyday life, I. Skvortsov was more original.
He suggested not the logic of pure thinking but the logic oriented at
a human being including ‘metaphysical ontology, i.e. epistemology’
and methodology of scientific cognition. This approach leads to two
results.

Firstly, I. Skvortsov suggests considering logic together with epis-
temology. As a rule, philosophers consider laws of thinking and laws
of cognition separately. The first one relates to logic, whereas the
second relates to metaphysical ontology, or epistemology. However,
in I. Skvortsov’s opinion, due to close relationship between thinking
and cognition (thinking is a way of cognition whereas cognition is a
goal of thinking) both of them should be assigned to the single sci-
ence, which could be called logic. Precisely this science investigates
the required and universal forms and laws of thinking and leads to
correct and profound cognition.

Secondly, the philosopher maintains practical significance of logic
as a science. In his opinion, in order to learn how to think and
cognize the objective world correctly, it is necessary not only to
know forms and laws of thinking but also to be able to apply one’s
knowledge in practice.

As a result, I. Skvortsov proposes the following division of his
logic. The first part is the logic of reason or theory of thinking. Here
it deals with forms of thinking: notion, judgment and argument.
The second part is the logic of mind or theory of cognition, which
is divided into analytics of feelings, analytics of common sense and
analytics of reason. The third part deals with methodology or the
doctrine of application of laws and forms of thinking to the process
of cognition.

In doing so, I. Skvortsov clearly separates logic per se from psy-
chology. According to him, psychology plays the role of propaedeu-
tics to epistemology, i.e. to the second part of his logic.
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Unlike I. Skvortsov, V. Karpov believed that psychology alone
may be the basis for logic. Substantiating logic on the basis of
psychology he thought that within the complete system of philos-
ophy, logic together with all other formal philosophy sciences fol-
lows psychology, it is psychology that plays the role of philosophical
propaedeutics. Herewith, however, in V. Karpov’s opinion, there is
a risk of identifying logic with psychology insofar as both sciences
study the process of thinking. According to him, the difference
between logic and psychology consists in two words: being and ac-
tivities.

By the way, according to V. Karpov, real sciences are those that
study actual things. In addition to psychology, these are history,
jurisprudence and natural history. Formal sciences are those that
study relations between things. These are mathematics, grammar
and logic. Since all real sciences cannot exist without expressing
their content in certain forms of thinking, it is logic that plays the
role of a formal instrument of cognition, although it cannot enrich
a researcher with the knowledge of real life facts.

So, V. Karpov defined logic as a science specifying what forms
our thinking can take driven by the aspirations of the forces of our
soul that are trying to cognize any object and reveal this cognition.

The basis for such logic is psychology which studies internal side
of a spiritual characteristic of being. This spirit’s activity is the
subject-matter of logic.

Thus one can believe that V. Karpov adhered to the standpoint of
psychologism in logic. However, his psychologism is not of empirical
but of speculative or even theological nature.

Proceeding from the aforementioned facts, one can understand
why V. Karpov divides his textbook on logic into three parts. The
first part is psychological one. Here the author deals with the psy-
chological basis of logic. The second part is logical proper where
author depicts forms of thinking. And the third part is methodolog-
ical, which is devoted to the issues of application-oriented, practical
logic.

Comparing to the reformist programs of I. Skvortsov and V. Kar-
pov, the program of I. Mikhnevich demonstrates certain new fea-
tures. I. Mikhnevich published his works in logic after he had retired
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from professorship at the KTA and moved to Richelieu Lyceum in
Odessa. His program of logic reform was influenced by the lyceum
specialization, which was a secular, philologically-oriented educa-
tional institution. This circumstance is most likely to be the reason
for his understanding of logic as propaedeutics to philology but not
to philosophy.

Comparing grammar and logic, i.e. a form of word and form
of thought, I. Mikhnevich states that grammar teaches us to write
and speak correctly, whereas logic teaches us to think and reason
correctly. Logic is the basis for Grammar whereas Grammar is a
supplement to Logic.

In view of this, I. Mikhnevich proposes the following division of
logic. Firstly, it is a study on composition and formation of notions,
propositions and inferences. Secondly, it is a study on the ways of
connecting thoughts.

Or. Novitskyi is another representative of Kyiv ecclesiastical aca-
demic philosophy who attempted to reform logic and creatively ap-
proached to its renovation. A KTA graduate and teacher, later
he moved to St.Vladimir University of Kyiv and began to teach a
course of logic there.

This is how the subject matter of logic was defined by Or. Novits-
kyi. Logic is a science of laws on the basis of which thinking shall
process the ideas and notions accumulated in memory and apply
them to objects for the purpose of perceiving their essence. As
can be seen, Or. Novitskyi’s definition radically differs from those
considered above. While his predecessors focused on studying the
process of thinking, here the process of cognition is being dealt with.

In order to study laws of thinking, one should become familiar
with actions and abilities of a soul that are studied by psychology.
However, Or. Novitskyi was already interested not in speculative
(theoretical) psychology but in empirical (experiential) psychology,
which has just appeared in West European philosophy. In his opin-
ion, logic (together with ethics and aesthetics) is a part of experi-
ential psychology.

Unlike his predecessors, Or. Novitskyi was consistently upholding
the view of the need for integrating metaphysical and logical analysis
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of thinking. Logic must, was supposed, to become metaphysical
whereas metaphysics must become logical.

Proceeding to the issue of logic division, the philosopher dwells
on the issue of natural thinking and artificial one, i.e. scientific
thinking. He treats as natural such thinking which is subordinated
to laws dictated by nature. Artificial thinking is the thinking that
elaborates scientific cognition subject to certain rules.

Accordingly, Or. Novitskyi divides logic into pure logic, i.e. the
science of laws of natural, universal thinking and applied logic or
methodology. Pure logic studies laws and forms of correct thinking,
whereas applied logic deals with the fundamental methods scientific
cognition is subordinated to. According to Or. Novitskyi, these are
mathematical, systematic and historical methods.

One more Kyiv philosopher, S. Hohotskyi, was reforming logic
under the slogan ‘Back to Aristotle!’ He believed that the way
out of the deadlock for logic was reached and suggested returning
to the meaning imparted by Aristotle. It was an appeal to start
understanding logic as an instrument of thinking.

P. Yurkevych proposed an absolutely new high-principled ap-
proach to logic reforming, distinct from that of his predecessors. He
directs his search at the logic that is able to assimilate experience
and be not just perceived as the basis for speculative constructions.
He believes that the teaching of thinking in logic is closely related to
the teaching of cognition. Logic must show what objective knowl-
edge is conditioned by; applying what forms and laws a cognizing
spirit switches from a subjective perception to objective cognition
and how knowledge of an object is enhanced not on a mental basis
but on a subject matter one.

The curriculum of Yurkevich’s course in logic was not the stan-
dard and traditional one although he could not deviate far from
the Sacred Synod’s generally accepted instructions pertaining to
the teaching of logic. His works were distinguished by in-depth
knowledge of topic and conflicting approaches to logical knowledge
in the middle of the 19th century. It was with an overview of those
approaches that he started his course in logic.

The first thing that immediately catches one’s attention when
start examining P. Yurkevich’s Kyiv lectures in logic is the fact that
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he begins his course with the differentiation of formal and dialectic
logic. None of the KTA professors that taught logic ever mentioned
that.

P. Yurkevich highly appreciated the methodological significance
of logic as a science. He believed that logic was the basis not only
for theoretical but also for experiential sciences. Firstly, forms of
connecting notions are absolutely identical in all sciences and these
forms do not depend on the content of scientific reasoning. Secondly,
the task of logic revolves around discovering the laws and norms that
reveal the idea of truth.

Truth can be formal and material. Formal reflects the conformity
of an object of reality with the subject matter of thought, whereas
material refers to consistency of thoughts. The subject matter of
logic is primarily formal truths pertaining to the correctness of rea-
soning but not the content thereof.

Logic is especially important for philosophy, since within philos-
ophy perfect thinking is indispensable which makes logic a heart of
philosophy.

The Kyiv philosopher emphasized the difference between logic
and psychology. Psychology should study thinking as a phenomenon
with all its random characteristics, which are irrelevant for the ob-
jective reality cognition. It is the task of logic to discover funda-
mental laws, norms, and forms of thinking and to show thinking not
as it is but as it should be.

Is not it true that most of provisions of P. Yurkevich’s concept
can be found in modern textbooks on logic as well? In our opinion,
out of all Kyiv philosophers he came closer to modern interpretation
of logic as a science comparing to the others.

In the late 19th and early 20th centuries logic at the KTA was
taught by P. Linitskyi. He had never set the task of developing a
consistent concept of logic but just attempted to discover the general
foundation for this science. ‘Logic is a philosophical science and in
the area of philosophy one of the most important matters is the
issue of general foundation and origins’ [15].

Why does the philosopher consider Logic as a philosophical sci-
ence? In P. Linitskyi’s opinion, thinking is a common element in
all kinds of cognition. However, in the purest form it is displayed
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in philosophy. Therefore one of the major tasks of philosophy is
research into the process of thinking. Logic is neither a part of psy-
chology nor a science of philology but merely a branch of philosophy,
a major propaedeutic disciplin. Herewith, in the philosopher’s opin-
ion, logic should be not only a formal science. It is a science that
deals with cognition in general as well. It is impossible to perceive
the nature of thinking without taking into account its goal which
consists of cognitive activity of thinking.

G. Chelpanov believed that the main task of cognition is achieve-
ment of the truth by thinking. Logic is the science which considers
how thinking should occur in order for the truth to be reached. The
process of thinking which allows a person to reach the truth, Chel-
panov calls valid thinking. Consequently Chelpanov perceives logic
as a science about laws of valid thinking or in other words a science
about laws which govern valid thinking.

He draws a clear distinction between Logic and Psychology.
Thinking can be viewed from two standpoints: as a process, in-
vestigated by certain laws, and as a method of reaching the truth.
The first standpoint relates to Psychology, the second one — to
Logic. This is what defines a difference between them. Psychology
is a descriptive science and explains how thinking processes occur.
Logic is a normative science and considers norms and laws, which
govern valid thinking.

Therefore, it can be stated that in the 19th century – early the 20th

century logical issues were actively developed by the representatives
of Kyiv Theological Academy and St.Vladimir University of Kyiv.
The professors of the Departments of Philosophy have created the
innovative concepts of logic, which formed the ground for teaching
courses for students of these educational institutions.

However, it should be noted that identification of any tradition or
approach incorporating views of Kyiv logicians is impossible. Orig-
inal author’s approaches are among the main reasons for this situ-
ation with perceiving of logic.
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First-order logics of branching time:
on expressive power of temporal
operators1

Ekaterina Kotikova, Mikhail Rybakov

abstract. We consider the logic QCTL, a first-order exten-
sion of CTL defined as a logic of Kripke frames for CTL. We
study the question about recursive enumerability of its fragments
specified by a set of temporal modalities we use. Then we discuss
some questions concerned axiomatizability and Kripke complete-
ness.

Keywords: non-classical logic, temporal logic, branching time
logic, first-order logic, recursive enumerability, Kripke complete-
ness

1 Introduction
There are at least two reasons to study branching time logics: philo-
sophical and originating in computer science. Such logics provides
us with formalisms allowing to construct and verify sentences about
indeterminate future (philosophical aspect) or about some state
transition systems (in computer science).

There are a lot of propositional temporal logics, and they found
their applications both in philosophy, and computer science, see [4].
Here we deal with first-order logics of branching time, more ex-
actly, first-order extensions of the logic CTL introduced by A.Prior,
see [10].2 It is known that such logics are undecidable and even not

1The work was supported by Russian Foundation for Basic Research,
Projects № 11–06–00456 and № 13–06–00861.

2The abbreviation ‘CTL’ means ‘computational tree logic’. In [10] A. Prior
does not introduce this abbreviation but he discuss logics of branching time, in
particular, Cocchiarella’s tense-logic (which may have the same abbreviation).
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recursively enumerable; moreover for correspondent proofs it is suf-
ficient to use only unary predicate letters, see [5, 6, 12].

The main aim of the paper is to show how one may prove that a
logic (a fragment of a logic) is not recursively enumerable.

To do this we simulate positive integers with the relation ‘less
than’; this is the key part of the paper. Then, we use positive
integers to embed the finite model theory (which is not recursively
enumerable) into first-order branching time logic.

On the one hand, as a result we obtain that many fragments of
logics we consider are not finitely (and even recursively) axiomati-
zable. Note that we define these logics semantically by means of
Kripke frames; therefore, on the other hand, it follows that many
calculi are not Kripke complete.

Note that the results (as theorems) presented in this paper are
quite expected; moreover, most of them are known or follow from
other known facts. The feature of our proofs is that, in fact, we
use only embeddings of logics and nothing more. Therefore, to
understand our proofs it is sufficient to be familiar with the classical
first-order logic (theory) of finite domains.

2 Definitions
To define the logic we deal with, first of all we need a language.
Consider the language containing

• individual variables x0, x1, x2, . . .;

• predicate letters Pm
i , for every m, i ∈ N;

• logical constant ⊥;

• logical connectives ∧, ∨, →;

• quantifier symbols ∀, ∃;

• modality symbols A, E, X, G, F , U ;

• symbols (, ), and comma.

Now define formulas we consider here. Atomic formulas are ⊥
and Pm

i (xk1 , . . . , xkm) where m, i, k1, . . . , km are positive integers.
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If φ and ψ are formulas then (φ∧ψ), (φ∨ψ), (φ→ ψ), ∀xiφ, ∃xiφ,
AXφ, EXφ, AFφ, EFφ, AGφ, EGφ, (φAUψ), and (φEUψ)
are formulas, too. We call such formulas temporal.

Also we use ⊤, ¬, and ↔ as usual abbreviations:

¬φ = (φ→ ⊥);

⊤ = ¬⊥;

(φ↔ ψ) = ((φ→ ψ) ∧ (ψ → φ)).

We omit parenthesis that can be recovered according to the fol-
lowing priority of the connectives: unary modalities, quantifiers, ¬,
binary modalities, ∧, ∨, ↔, →.

We make a remark about modalities used in formulas. Any
‘atomic’ modality consists of two symbols: the first symbol is E
or A and the second one is X, G, F , or U . Every of these sym-
bols corresponds to some modality in more general language, see [2].
The intending meaning of the modalities E, A, X, G, F , U is as
follows: let us imagine that we are in some situation (current state)
and it is possible to define consequences of future states; then

E means ‘there is a consequence of future states
(starting in the current one) such that. . . ’;

A means ‘for every consequence of future states
(starting in the current one) it is true
that. . . ’;

Xφ means ‘φ is true in the next state of the conse-
quence’;

Gφ means ‘φ is true in every state of the conse-
quence’;

Fφ means ‘φ is true in some state of the consequence’;
φUψ means ‘ψ is true in at least one state of the con-

sequence and φ is true until ψ is true’.

Of course, since we use modalities only in pairs we have no formulas
like Xφ or φUψ; but now we have some informal definition for our
modalities. For example AFφ means that for every consequence of
future states (starting in the current one), φ is true in some state
of the consequence.
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To make the meaning of the modalities more clear we need se-
mantics. As semantics for this language we use Kripke frames and
models.

A pair F = ⟨W,R⟩ is called Kripke frame if W is non-empty set
and R is a binary relation on W . We call elements of W worlds or
states; we call R accessibility relation on W . We write wRw′ instead
of ⟨w,w′⟩ ∈ R; if wRw′ we say that w′ is accessible from w.

We may understand a Kripke frame as a structure of (branching)
time where wRw′ means that w′ is a possible next future state
relative to w.

Here we consider mainly serial Kripke frames; recall that a frame
F = ⟨W,R⟩ is said to be serial if, for any w ∈ W , there is w′ ∈ W
such that wRw′.

An infinite consequence π = w0, w1, w2, . . . is called a path in a
frame F = ⟨W,R⟩ if, for any k ∈ N, we have wk ∈W and wkRwk+1.
We assume that πk denotes the k-th element of the path π. We say
that a path π starts in a world w if π0 = w.

Note that if w is a world of a serial Kripke frame F then there is
at least one path in F starting in w.

A triple F(D) = ⟨W,R,D⟩ is called predicate Kripke frame if
⟨W,R⟩ is a Kripke frame and D is a map associating with every
w ∈W some non-empty set Dw (i. e., D(w) = Dw) such that

wRw′ =⇒ D(w) ⊆ D(w′),

for any w,w′ ∈ W . Elements in Dw are called individuals of the
world w, the set D(w) is called domain of w.

Now we need a tool connecting predicate frames with our lan-
guage. As such tool we use two notions: interpretation of predicate
letters and interpretation of individual variables.

Let F(D) = ⟨W,R,D⟩ be a predicate Kripke frame. A function I
is called interpretation of predicate letters in F(D) if I(w,Pm

i ) is
an m-ary relation on D(w), for every w ∈ W and every predicate
letter Pm

i .
A tuple M = ⟨W,R,D, I⟩ is called Kripke model if ⟨W,R,D⟩

is a predicate Kripke frame and I is an interpretation of predicate
letters in ⟨W,R,D⟩.
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Let F(D) = ⟨W,R,D⟩ be a predicate Kripke frame and let w be
a world in it. A function α is called interpretation of individual
variables in a world w ∈ W if α(xi) ∈ D(w), for every individual
variable xi.

Note that if w′ is accessible from w and α is an interpretation of
individual variables in w then α is an interpretation of individual
variables in w′, too, because in this case we have D(w) ⊆ D(w′).

For any individual variable xi, we define the binary relation xi=
between interpretations. For interpretations α and β we put

α
xi= β � α(xk) = β(xk), for any k ∈ N such that k ̸= i.

Let F = ⟨W,R⟩ be a serial Kripke frame, M = ⟨W,R,D, I⟩ be
a Kripke model on F. We define the truth relation ‘a formula φ is
true at a world w ∈ W in a model M under an interpretation α of
individual variables in w’ inductively (by constructing of φ):

(M, w) ̸|=α ⊥;

(M, w) |=α Pm
i (x) � α(x) ∈ I(w,Pm

i ) where
x = (xk1 , . . . , xkm),
α(x) = ⟨α(xk1), . . . , α(xkm)⟩;

(M, w) |=α φ1 ∧ φ2 � (M, w) |=α φ1 and (M, w) |=α φ2;

(M, w) |=α φ1 ∨ φ2 � (M, w) |=α φ1 or (M, w) |=α φ2;

(M, w) |=α φ1 → φ2 � (M, w) ̸|=α φ1 or (M, w) |=α φ2;

(M, w) |=α AXφ1 � for any path π starting in w the re-
lation (M, π1) |=α φ1 is true;

(M, w) |=α EXφ1 � there is a path π starting in w such
that (M, π1) |=α φ1;

(M, w) |=α AFφ1 � for any path π starting in w
there is some k ∈ N such that
(M, πk) |=α φ1;
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(M, w) |=α EFφ1 � there are a path π starting in w and
k ∈ N such that (M, πk) |=α φ1;

(M, w) |=α AGφ1 � for any path π starting in w
and for any k ∈ N the relation
(M, πk) |=α φ1 is true;

(M, w) |=α EGφ1 � there is a path π starting in w such
that for any k ∈ N the relation
(M, πk) |=α φ1 is true;

(M, w) |=α φ1AUφ2 � for any path π starting in w
there is some k ∈ N such that
(M, πk) |=α φ2 and, for any j ∈ N,
such that j < k the relation
(M, πj) |=α φ1 is true;

(M, w) |=α φ1EUφ2 � for some path π starting in w
and some k ∈ N such that
(M, πk) |=α φ2 and, for any j ∈ N,
such that j < k the relation
(M, πj) |=α φ1 is true;

(M, w) |=α ∀xiφ1 � for any interpretation β such that
β

xi= α and β(xi) ∈ D(w) the rela-
tion (M, w) |=β φ1 is true;

(M, w) |=α ∃xiφ1 � there is an interpretation β such
that β

xi= α, β(xi) ∈ D(w), and
(M, w) |=β φ1.

The relations ‘φ is true at w in M’, ‘φ is true in M’, ‘φ is true in
F(D)’, and ‘φ is true in F’ are defined as follows:

(M, w) |= φ � (M, w) |=α φ, for any interpretation
α of individual variables in w;

M |= φ � (M, w) |= φ, for any w ∈W ;
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F(D) |= φ � M |= φ, for any model M based
on F(D);

F |= φ � M |= φ, for any model M based
on F.

Note that any world w in a model M = ⟨W,R,D, I⟩ may be
understood as a usual model for the classical first-order language.
Indeed, as such model one may take the model Mw = ⟨Dw, Iw⟩
where Dw = D(w) and Iw(Pm

i ) = I(w,Pm
i ), for every predicate

letter Pm
i .

We define the logic QCTL as the set of all temporal formulas
that are true in any serial Kripke frame.

The logic CTL is a propositional fragment of QCTL.
Let also QCL denote the classical first-order logic in the modal-

free fragment of the language for QCTL and let QCLfin denote the
logic of all finite models, i. e., the set of classical first-order formulas
that are true in any model with finite domain.

3 Some facts
In this section we just recall some ‘algorithmic’ definitions and facts;
so, the reader may omit this section.

Let U be some universal set (for example, a set of all formulas in
some language). A set X is called decidable if there is an effective
procedure (algorithm) A such that, for any x ∈ U ,

A(x) =

{
1 if x ∈ X,
0 if x ̸∈ X;

otherwise X is called undecidable.
A set X is called recursively enumerable if X = ∅ or there is

an effective procedure (algorithm) A such that A(n) is defined for
every n ∈ N and X = {A(n) : n ∈ N}, in other words, if there is an
effective enumeration for elements of X.

Note that if a logic is recursively (in particular, finitely) axiom-
atizable then it is recursively enumerable because in this case it
is possible to enumerate effectively all derivations, and hence, all
derivable formulas.
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For a logic L, let L denote the complement of L in the set of all
formulas in the language of L.

Below we will use the following facts, see [1, 11]:

• the logic QCL is undecidable; QCL is recursively enumerable
and QCL is not;

• the logic QCLfin is undecidable; QCLfin is recursively enu-
merable and QCLfin is not.

A set X is called recursively reducible to a set Y if there is an
effective procedure (algorithm) A such that

x ∈ X ⇐⇒ A(x) ∈ Y,

for any x (in the appropriate universal set U).
Let X be recursively reducible to Y . It is not hard to see that

• if Y is decidable then X is decidable;

• if Y is recursively enumerable then X is recursively enumer-
able.

4 Main aim
Let M ⊆ {AX,EX,AG,EG,AF ,EF ,AU ,EU} and let X be a
set of formulas (in some language). We use the denotation X � M
for the set of formulas in X those modalities belong to the set M∗

(i. e., constructed only from modalities of M).
Our main aim is to describe some (algorithmic, semantical, de-

ductive) properties of the logic QCTL �M .
Of course, it is expected that properties of QCTL � M depend

on M . Indeed, it is not hard to see that QCTL � ∅ = QCL and
hence QCTL � ∅ is finitely axiomatizable. But it follows from [12]
that QCTL � {AX,AG} is not recursively enumerable, wherefore
it is not finitely (and even recursively) axiomatizable.

Below we prove the following statement.
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Theorem 1. Let M be a set of modalities including only some of
AX, EX, AG, EG, AF , EF , AU , EU . Then the following
equivalence holds:

QCTL �M is recursively enumerable
⇐⇒

M ⊆ {AX,EX} or M ⊆ {AG,EF }.

Then, using Theorem 1 (and its proof) we will be able to prove
some statements about algorithmic, semantical, and deductive prop-
erties of some first-order extensions of CTL.

5 Recursively enumerable fragments of QCTL

In this section we prove the following part of Theorem 1: if
M ⊆ {AX,EX} or M ⊆ {AG,EF } then QCTL � M is re-
cursively enumerable.

To do this let us observe that

(a) QCTL � ∅ = QCL;

(b) for any formula φ,

AXφ↔ ¬EX¬φ ∈ QCTL,
EXφ↔ ¬AX¬φ ∈ QCTL,
AGφ ↔ ¬EF¬φ ∈ QCTL,
EFφ ↔ ¬AG¬φ ∈ QCTL.

Because of (a), the logic QCTL � ∅ is recursively enumerable and
even finitely axiomatizable. Then, because of (b), it is sufficient to
prove that QCTL � {AX} and QCTL � {AG} are recursively
enumerable.

To prove the last statement we use the first-order modal logics
QD and QS4.

The language of QD and QS4 contains the same symbols as the
language of QCL and the modality symbol 2. Also we have the
following extra rule for formula constructing: if φ is a formula then
2φ is a formula. We call formulas in this language modal formulas.
The notions of Kripke frame and Kripke model are the same as they
are defined in Section 2.
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Let F = ⟨W,R⟩ be a Kripke frame, M = ⟨W,R,D, I⟩ be a Kripke
model on F. Now we define the relation ‘a modal formula φ is
true at a world w ∈ W in a model M under an interpretation α
of individual variables in w’. To differ the truth relation for modal
formulas and the truth relation for temporal formulas we use the
sign ‘||=’ for the first of them. This relation is defined inductively
(by constructing of φ) in the same way as for temporal formulas, see
page 72. The cases for the atomic formulas, for the connectives ∧,
∨, →, and for the quantifiers ∀xi and ∃xi are the same (the reader
just must replace ‘|=’ with ‘||=’). As for 2, the definition looks as
follows:

(M, w) ||=α 2φ1 � for any w′ ∈W such that wRw′ the
relation (M, w′) ||=α φ1 is true.

The relations (M, w) ||= φ, M ||= φ, F(D) ||= φ, and F ||= φ are
defined as on page 73.

Now we define the logic QD as the set of all modal formulas that
are true in any serial frame and the logic QS4 as the set of all modal
formulas that are true in any reflexive and transitive frame.

It is known that QD and QS4 are finitely axiomatizable and,
in particular, recursively enumerable, see [3]. We are going to
show that QCTL � {AX} is recursively reducible to QD and
QCTL � {AG} is recursively reducible to QS4.

Let us define translations T1 and T2. Suppose a temporal formula
φ does not contain modalities different from AX and its iterations;
then define T1(φ) to be a modal formula obtained from φ by re-
placing every occurrence of AX with 2. Let φ does not contain
modalities different from AG and its iterations; then define T2(φ) to
be a modal formula obtained from φ by replacing every occurrence
of AG with 2.

Observation 1. For any temporal formula φ without modalities
different from AX and its iterations, the following equivalence
holds:

φ ∈ QCTL ⇐⇒ T1(φ) ∈ QD,

i. e., T1 recursively reduces QCTL � {AX} to QD.
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Proof. Let φ be a formula without modalities different from AX
and its iterations.

Let φ ̸∈ QCTL. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) ̸|=α0 φ.

In this case, for any formula ψ, any w ∈ W , and any interpreta-
tion α of individual variables in w, the following equivalence holds:

(M, w) |=α ψ ⇐⇒ (M, w) ||=α T1(ψ).

The proof proceeds by induction on constructing of ψ and we left
the details to the reader.

As a result we obtain that (M, w0) |̸|=α0 T1(φ) and hence,
T1(φ) ̸∈ QD.

Let T1(φ) ̸∈ QD. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) |̸|=α0 T1(φ). With the same argumentation
we obtain that (M, w0) ̸|=α0 φ, therefore, φ ̸∈ QCTL. 2

Observation 2. For any temporal formula φ without modalities
different from AG and its iterations, the following equivalence holds:

φ ∈ QCTL ⇐⇒ T2(φ) ∈ QS4,

i. e., T2 recursively reduces QCTL � {AG} to QS4.

Proof. Let φ be a formula without modalities different from AG
and its iterations.

Let φ ̸∈ QCTL. Then there is a serial model M = ⟨W,R,D, I⟩,
a world w0 ∈ W , and an interpretation α0 of individual variables
in w0 such that (M, w0) ̸|=α0 φ.

Let R∗ be reflexive and transitive closure of R and let
M∗ = ⟨W,R∗, D, I⟩. Then, for any formula ψ, any w ∈W , and any
interpretation α of individual variables in w, the following equiva-
lence holds:

(M, w) |=α ψ ⇐⇒ (M∗, w) ||=α T2(ψ).

The proof proceeds by induction on constructing of ψ and we again
left the details to the reader.
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In particular, we have (M∗, w0) |̸|=α0 T2(φ). Because M∗ is a
model for QS4, we obtain T2(φ) ̸∈ QS4.

Let T2(φ) ̸∈ QS4. Then there is a reflexive and transitive model
M = ⟨W,R,D, I⟩, a world w0 ∈ W , and an interpretation α0 of
individual variables in w0 such that (M, w0) |̸|=α0 T1(φ). Because
M is reflexive, it is serial. Then, for any formula ψ, any w ∈ W ,
and any interpretation α of individual variables in w,

(M, w) |=α ψ ⇐⇒ (M, w) ||=α T2(ψ),

and hence, (M, w0) ̸|=α0 φ. Thus, φ ̸∈ QCTL. 2

Because the logics QD and QS4 are recursively enumerable,
from Observations 1 and 2 it follows that QCTL � {AX} and
QCTL � {AG} are recursively enumerable. In fact, even more
strong result holds.

Proposition 1. The temporal logics QCTL � {AX} and
QCTL � {AG} are finitely axiomatizable.

Proof. It is sufficient to observe that the translation T1 is an
isomorphism between QCTL � {AX} and QD, the translation T2
is an isomorphism between QCTL � {AG} and QS4. 2

6 Main technical construction
Now we start to prove that if M ̸⊆ {AX,EX} and
M ̸⊆ {AG,EF } then QCTL �M is not recursively enumerable.

Here we present some technical constructions and statements;
then we apply them to achieve the main aim.

Let us fix three binary letters and one unary letter; to make it
easier to understand (and with according of their intending mean-
ing) we denote them ≈, ≺, ≺1, and L. To explain the intending
meaning of these predicate letters, let us imagine that we try to
order equivalence classes of some set; then

x ≈ y means ‘x and y are equivalent’;
x ≺ y means ‘x is less than y’;
x ≺1 y means ‘y is the next element after x’;
L(x) means ‘x is a label (for a current state)’.
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With help of ‘labels’ and modalities we show how to describe the
condition that equivalence classes are ordered as positive integers
by the relation ‘less than’.

Let us define some formulas. The formula A1 claims ≈ to be an
equivalence relation:

A1 = ∀x(x ≈ x) ∧ ∀x∀y(x ≈ y → y ≈ x) ∧
∀x∀y∀z(x ≈ y ∧ y ≈ z → x ≈ z).

The formula A2 claims ≈ to be a congruence relative to ≺:

A2 = ∀x∀y∀u∀v(x ≈ u ∧ y ≈ v → (x ≺ y → u ≺ v)).

The formula A3 claims ≺ to be a strict linear order (on equivalence
classes):

A3 = ∀x¬(x ≺ x) ∧
∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z) ∧

∀x∀y(x ≺ y ∨ x ≈ y ∨ y ≺ x).

The formula A4 defines ≺1 as a successor relation with respect to ≺:

A4 = ∀x∀y((x ≺1 y) ↔ (x ≺ y ∧ ¬∃z(x ≺ z ∧ z ≺ y))).

The formula A5 means that any element has a successor:

A5 = ∀x∃y(x ≺1 y).

Let x ̸≈ y be the abbreviation for ¬(x ≈ y). The formulas A6 and
A7 claim heredity for ≺1 and ̸≈, correspondingly:

A6 = ∀x∀y(x ≺1 y → AG(x ≺1 y));
A7 = ∀x∀y(x ̸≈ y → AG(x ̸≈ y)).

The formula A8 means for a world that it has a unique label (if it
has a label at all):

A8 = ∀x∀y(L(x) ∧ L(y) → x ≈ y).

The formula A9 means that any next world has the next label:

A9 = ∀x∀y(L(x) ∧ x ≺1 y → AXL(y)).
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Let

A = AG(A1 ∧ . . . ∧A9).

Let also

B = ∃x(L(x) ∧ ¬∃y(y ≺ x)).

The formula B means that there is a least element (‘zero’) and it is
a label (in a world where B is true). Finally, let

C = ∀xEFL(x).

The formula C means that any element (of some current world)
labels some future world.

As we will see below, the formula A ∧ B ∧ C provides us with
a condition that is sufficient to prove that equivalence classes are
ordered with ≺ as positive integers with the relation ‘less than’. But
before this we show that the formula A∧B∧C is QCTL-satisfiable,
i. e., ¬(A ∧B ∧ C) ̸∈ QCTL.

Let M0 = ⟨W0, R0, D0, I0⟩ where

W0 = {wi : i ∈ N};

wiR0wj � j = i+ 1;

D0(wi) = N;

I0(wi,≈) = {⟨m,m⟩ : m ∈ N};

I0(wi,≺) = {⟨m, k⟩ : m, k ∈ N and m < k};

I0(wi,≺1) = {⟨m,m+ 1⟩ : m ∈ N};

I0(wi, L) = {⟨i⟩}.

Lemma 1. It is true that (M0, w0) |= A ∧B ∧ C.

Proof is straightforward and left to the reader. 2

Proposition 2. The formula A ∧B ∧ C is QCTL-satisfiable.

Proof. It is sufficient to observe that the accessibility relation in
the model M0 is serial and then use Lemma 1. 2
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Now let us turn to the key technical lemmas of the article.
Let M = ⟨W,R,D, I⟩ be a serial model and w∗ be a world in W

such that (M, w∗) |= A ∧B ∧ C.
For simplicity let us use the following abbreviations, for any

w ∈W :

≈w= I(w,≈), ≺w= I(w,≺), ≺w
1 = I(w,≺1), L

w = I(w,L).

Let also, for any w,w′ ∈W and any k ∈ N,

wR0w′ � w = w′;

wRk+1w′ � wRku and uRw′, for some u ∈W ;
wR∗w′ � wRmw′, for some m ∈ N.

Observe that (M, w) |= A1 ∧ . . . ∧ A9, for any w ∈ W such that
w∗R∗w; this is so because (M, w∗) |= AG(A1 ∧ . . . ∧A9).

Lemma 2. Let w ∈ W and w∗R∗w. Then the relation ≈w is a
congruence with respect to the relation ≺w.

Proof immediately follows from (M, w) |= A1 ∧A2. 2

Because of Lemma 2 we may define congruence classes: for any
w ∈W such that w∗R∗w and any a ∈ D(w) we put

[a]w = {b ∈ D(w) : b ≈w a}.

Note that the relations ≺w and ≺w
1 on D(w) generate the relations

≺w and ≺w
1 on equivalence classes defined in the following way:

[a]w ≺w [b]w � a ≺w b;

[a]w ≺w
1 [b]w � a ≺w

1 b,

for any w ∈W such that w∗R∗w and for any a, b ∈ D(w). Let also

[a]w 4w [b]w � [a]w ≺w [b]w or [a]w = [b]w.

Let, for any w ∈W such that w∗R∗w,

Dw = {[a]w : a ∈ D(w)}.
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For the rest of this section our aim is to prove that ⟨Dw∗
,≺w∗⟩ is

isomorphic to ⟨N, <⟩.
Lemma 3. Let w ∈ W and w∗R∗w. Then the relation ≺w is a
strict linear order on Dw and ≺w

1 is the successor relation on Dw

with respect to ≺w.

Proof immediately follows from (M, w) |= A3 ∧A4. 2

Since (M, w∗) |= B, there is a0 ∈ D(w∗) such that Lw∗
(a0) and

[a0]
w∗ 4w∗

[a]w
∗ , for any a ∈ D(w∗). Then, due to (M, w∗) |= A5,

there are a1, a2, a3, . . . ∈ D(w∗) such that

a0 ≺w∗
1 a1 ≺w∗

1 a2 ≺w∗
1 a3 ≺w∗

1 . . . ;

note by the way that equivalence classes generated by elements
a0, a1, a2, a3, . . . in D(w∗) are pairwise different.

Lemma 4. Let w ∈W and w∗R∗w. Then

a ≺w∗
1 b =⇒ a ≺w

1 b;

a ̸≈w∗
b =⇒ a ̸≈w b,

for any a, b ∈ D(w∗).

Proof immediately follows from (M, w∗) |= A6 ∧A7. 2

Lemma 5. Let w ∈W , k ∈ N, and w∗Rkw. Then Lw(ak) is true.

Proof proceeds by induction on k.
Let k = 0. Then we must prove that Lw∗

(a0) is true; but we have
Lw∗

(a0) to be true because of choosing of a0.
Let the statement be true for k; we prove it for k + 1. Let

w∗Rk+1w. Then there is u ∈ W such that w∗Rku and uRw.
By induction hypothesis, Lu(ak) holds. By Lemma 4, we have
ak ≺u

1 ak+1. Then, from (M, u) |= A9 and uRw we obtain Lw(ak+1).
2

Lemma 6. Let b ∈ D(w∗). Then b ≈w∗
ak, for some k ∈ N.
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Proof. Because of (M, w∗) |= C, there is w ∈W such that w∗Rkw,
for some k ∈ N, and Lw(b) is true. By Lemma 5, Lw(ak) is true.
Then, from (M, w) |= A8 we obtain b ≈w ak and, by Lemma 4, we
obtain b ≈w∗

ak. 2

As a corollary we obtain the next statement.

Proposition 3. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. For any k ∈ N, let f(k) = [ak]w
∗ . We show that f is the

required isomorphism. Clearly, k < m implies [ak]w
∗ ≺w∗

[am]w
∗ .

So, we must prove that f is injective and surjective.
Injectivity of f . Let k ̸= m; without a loss of generality we

may assume that k < m. But then [ak]w
∗ ≺w∗

[am]w
∗ and hence

f(k) ̸= f(m).
Surjectivity of f . Let b ∈ D(w∗). Then, by Lemma 6, we have

b ≈w∗
ak, for some k ∈ N; this means that [b]w

∗
= [ak]w

∗
= f(k). 2

7 Embedding of QCLfin into QCTL

Let φ be some closed classical first-order formula and let y be some
individual variable not occurring in φ. Let also x 4 y be an abbrevi-
ation for the formula (x ≺ y∨x ≈ y). We define the translation Ty:

Ty(⊥) = ⊥;

Ty(Pm
i (xk1 , . . . , xkm)) = Pm

i (xk1 , . . . , xkm);

Ty(ψ′ ∧ ψ′′) = Ty(ψ′) ∧ Ty(ψ′′);

Ty(ψ′ ∨ ψ′′) = Ty(ψ′) ∨ Ty(ψ′′);

Ty(ψ′ → ψ′′) = Ty(ψ′) → Ty(ψ′′);

Ty(∀xψ′) = ∀x(x 4 y → Ty(ψ′));

Ty(∃xψ′) = ∃x(x 4 y ∧ Ty(ψ′))

where ψ′ and ψ′′ are subformulas of the formula φ. Then we put
T (φ) = ∀y Ty(φ).

To explain the intending meaning of Ty(φ) and T (φ) let us imag-
ine that we interpret individual variables as positive integers and
4 as the relation 6 on N. Then Ty(φ) means ‘φ is true in any
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model with elements 0, . . . , y’ and T (φ) means ‘φ is true in any
finite model’.

Let Pm1
i1
, . . . , Pmk

ik
be the list of all predicate letters occurring

in φ. We define the formula Congr(φ) as a conjunction of formulas
in the following form:

∀x1 . . . ∀xmj∀y1 . . .∀ymj

( mj∧
i=1

(xi ≈ yi) →

→ (P
mj

ij
(x1, . . . , xmj ) → P

mj

ij
(y1, . . . , ymj ))

)
where j ∈ {1, . . . , k}. Let

Emb(φ) = A ∧B ∧ C ∧ Congr(φ) → T (φ).

Lemma 7. φ ∈ QCLfin ⇐⇒ Emb(φ) ∈ QCTL.

Proof. Suppose φ ̸∈ QCLfin. Then there is a classical model
S = ⟨S, J⟩ where S is a finite set, J is an interpretation of predicate
letters in S, such that S ̸|= φ. Without a loss of generality we may
assume that S = {0, . . . , n}, for some n ∈ N.

Let M0 be Kripke model defined on page 81. We extend I0 on
predicate letters occurring in φ; let

I0(w0, P
mj

ij
) = {⟨k1, . . . , kmj ⟩ : ⟨k1, . . . , kmj ⟩ ∈ J(P

mj

ij
)},

for any j ∈ {1, . . . , k}, i. e., I0(w0, P
mj

ij
) = J(P

mj

ij
). Let also

I0(wi, P
mj

ij
) = ∅, for any i ∈ N+.

Then we claim (M0, w0) ̸|= Emb(φ). Since the letter ≈ is
interpreted with the identity relation on D(w0), it is clear that
(M0, w0) |= Congr(φ). By Lemma 1, we have (M0, w0) |= A∧B∧C.
Hence we just must prove that (M0, w0) ̸|= ∀y Ty(φ). It is sufficient
to interpret y as n. More exactly, the following condition holds: for
any subformula ψ of the formula φ, for any interpretation α such
that α(x) ∈ {0, . . . , n}, for any individual variable x, and α(y) = n,

S |=α ψ ⇐⇒ (M0, w0) |=α Ty(ψ).

We left the proof of the condition to the reader; it proceeds by
induction on constructing of ψ. Thus, (M0, w0) ̸|=α Ty(φ), for any
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such interpretation α. Therefore (M0, w0) ̸|= ∀y Ty(φ) and hence
(M0, w0) ̸|= Emb(φ).

Since the model M0 is serial, we have Emb(φ) ̸∈ QCTL.
Now suppose Emb(φ) ̸∈ QCTL. Then there is a serial model

M = ⟨W,R,D, I⟩ such that (M, w∗) ̸|= Emb(φ), for some w∗ ∈W .
From (M, w∗) ̸|= Emb(φ) we obtain (M, w∗) |= A∧B∧C and hence
we may use results of Section 6. Let

≈w∗
= I(w∗,≈), ≺w∗

= I(w∗,≺).

Let also
[a] = {b ∈ D(w∗) : b ≈w∗

a};

Dw∗
= {[a] : a ∈ D(w∗)};

[a] ≺w∗
[b] � a ≺w∗

b.

Then, by Proposition 3, the structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are

isomorphic. Let g : Dw∗ → N be an isomorphism between the
structures. Let us define an interpretation J for predicate letters
occurring in T (φ). Let P be a predicate letter occurring in T (φ),
i. e., P is one of the letters Pm1

i1
, . . . , Pmk

ik
, ≈, and ≺, and let m be

the arity of P . We put

J(P ) = {⟨g([b1]), . . . , g([bm])⟩ : ⟨b1, . . . , bm⟩ ∈ I(w∗, P )}.

From (M, w∗) ̸|= Emb(φ) it follows that (M, w∗) |= Congr(φ) and
hence the relation ≈w∗ is a congruence relative to I(w∗, P

mj

ij
), for

any j ∈ {1, . . . , k}. This means that J is well defined. Note that,
in particular, J(≈) is the identity relation on N and J(≺) is the
relation < on N.

Let S = ⟨N, J⟩.
We claim S ̸|= T (φ). Let α be an interpretation of individual

variables in D(w∗) and β be an interpretation of individual variables
in N; we call α and β agreed interpretations if β(x) = g([α(x)]), for
any variable x. Then

(M0, w0) |=α χ ⇐⇒ S |=β χ,

for any agreed interpretations α and β and for any classical formula
χ containing no predicate letters different from Pm1

i1
, . . . , Pmk

ik
, ≈,
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and ≺; the details are left to the reader. Since (M, w∗) ̸|= Emb(φ),
we have (M, w∗) ̸|= T (φ), and hence, S ̸|= T (φ).

It follows from S ̸|= T (φ) that S ̸|=α Ty(φ), for some interpre-
tation α. Let n = α(y) and S′ = ⟨{0, . . . , n}, J ′⟩ where J ′ is a
restriction of J on {0, . . . , n}. Then, for any subformula ψ of the
formula φ, for any interpretation β such that β(x) ∈ {0, . . . , n}, for
any variable x, and β(y) = n,

S′ |=β ψ ⇐⇒ S |=β Ty(ψ).

The details of the proof are left to the reader.
Since S ̸|=α Ty(φ) we obtain S′ ̸|= φ. The model S′ is finite,

therefore φ ̸∈ QCLfin. 2

Corollary 1. The logic QCTL is not recursively enumerable.

Corollary 2. The logic QCTL � {AX,AG} is not recursively
enumerable.

8 Modifications for other fragments
Now we have got a ‘weak Theorem 1’: just for the case
M ⊆ {AX,EX,AG,EF }. What about other modalities? In
this section we show that the fragment of QCTL with any of the
modalities AF , EG, AU , and EU is not recursively enumerable.
Since, for any formula φ,

EGφ↔ ¬AF¬φ ∈ QCTL;

AFφ↔ ¬EG¬φ ∈ QCTL;

AFφ↔ ⊤AUφ ∈ QCTL,

it is sufficient to prove that QCTL � {EU} is not recur-
sively enumerable and that at least one of QCTL � {AF } and
QCTL � {EG} is not recursively enumerable. We consider the
first and the second fragments.

To prove that these fragments are not recursively enumerable,
it is sufficient to construct some embeddings of QCLfin into the
fragments. To construct such embeddings we modify the embed-
ding Emb defined on page 85. Our modifications do not concern
‘classical’ part of Emb(φ), i. e., we modify only the formulas A, B,
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and C defined in Section 6. The aim is to prove a statement like
Lemma 7. Observe that the formulas A, B, and C are used in
the proof of Lemma 7 only once: we need just Proposition 3 to be
true. Therefore for our purposes it is sufficient to modify A, B, and
C so that Proposition 3 remains to be true for resulting formulas.
Finally, observe that the key condition in the proof of Proposition 3
is Lemma 6.

8.1 Fragments with EU

Let AR be the dual modality for EU ; we define it as the following
abbreviation:

(φARψ) = ¬(¬φEU¬ψ),

for any formulas φ and ψ. Observe that, for any φ,

AGφ↔ ⊥ARφ ∈ QCTL;

EFφ↔ ⊤EUφ ∈ QCTL,

and therefore we may use AG and EF as corresponding abbrevia-
tions. Then, we may define all formulas A1, . . . , A8, B, and C but
not A9 because A9 contains the modality AX. Instead of A9 we
take the formula A′

9:

A′
9 = ∀x∀y

(
L(x) ∧ x ≺1 y → L(y)AR(L(x) ∨ L(y))

)
.

Let A′ = AG(A1 ∧ . . . ∧A8 ∧A′
9).

Proposition 4. The formula A′ ∧B ∧ C is QCTL-satisfiable.

Proof. It is sufficient to check that (M0, w0) |= AGA′
9 and use

Lemma 1. 2

Let us use the notations introduced in Section 6 where M is a
model and w∗ is a world in it such that (M, w∗) |= A′ ∧ B ∧ C. It
is clear that Lemmas 2, 3, and 4 are true. Lemma 5 is not true but
we will prove a similar statement.

Lemma 8. Let w ∈W , k ∈ N, and w∗Rkw. Then Lw(am) is true,
for some m ∈ {0, . . . , k}.
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Proof proceeds by induction on k. If k = 0 then with the same
argumentation as in Lemma 5 we obtain Lw∗

(a0).
Let the statement is true for k; we prove it for k+1. Let w∗Rk+1w.

Then there is u ∈ W such that w∗Rku and uRw. By induction
hypothesis, there is m ∈ {0, . . . , k} such that Lu(am) holds. By
Lemma 4, we have am ≺u

1 am+1. Then, from (M, u) |= A′
9 and uRw

we obtain Lw(am) or Lw(am+1). 2

The next lemma is like Lemma 6.

Lemma 9. Let b ∈ D(w∗). Then b ≈w∗
am, for some m ∈ N.

Proof. Because of (M, w∗) |= C, there is w ∈W such that w∗Rkw,
for some k ∈ N, and Lw(b) is true. By Lemma 8, Lw(am) is true, for
some m ∈ {0, . . . , k}. Then, from (M, w) |= A8 we obtain b ≈w am
and, by Lemma 4, we obtain b ≈w∗

ak. 2

From Lemma 9 we obtain a statement like Proposition 3.

Proposition 5. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. Follow to the proof of Proposition 3. 2

Let φ be some closed classical first-order formula. We define
Emb′(φ):

Emb′(φ) = A′ ∧B ∧ C ∧ Congr(φ) → T (φ).

Lemma 10. φ ∈ QCLfin ⇐⇒ Emb′(φ) ∈ QCTL.

Proof proceeds with the same argumentation as the proof for
Lemma 7; the difference is in use Proposition 5 instead of Proposi-
tion 3. 2

Corollary 3. The logic QCTL � {EU} is not recursively enu-
merable.
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8.2 Fragments with AF

Observe that we may use the modality EG as an abbreviation be-
cause EGφ↔ ¬AF¬φ ∈ QCTL, for any formula φ.

Let p be a propositional variable (i. e., some 0-ary predicate let-
ter). We need it to define ‘heredity’ formulas:

A′′
6 = ∀x∀y

(
(x ≺1 y ↔ AF (x ≺1 y ∧ p)) ∧
(x ≺1 y ↔ AF (x ≺1 y ∧ ¬p))

)
;

A′′
7 = ∀x∀y

(
(x ̸≈ y ↔ AF (x ̸≈ y ∧ p)) ∧
(x ̸≈ y ↔ AF (x ̸≈ y ∧ ¬p))

)
.

Let us also define A′′
9:

A′′
9 = ∀x∀y

(
L(x) ∧ x ≺1 y → AFL(y)

)
∧

∀y
(
AFL(y) → ∃x(x 4 y ∧ L(x))

)
where x 4 y is an abbreviation for (x ≺ y ∨ x ≈ y). Finally, let

A′′ = A1 ∧ . . . ∧A5 ∧A′′
6 ∧A′′

7 ∧A8 ∧A′′
9;

B′′ = ∃x
(
L(x) ∧EG(A′′ ∧ ¬∃y(y ≺ x))

)
;

C ′′ = ∀xAFL(x).

Proposition 6. The formula B′′ ∧ C ′′ is QCTL-satisfiable.

Proof. Let M0 be the model defined on page 6. We extend I0 on
p so that

(M0, wi) |= p ⇐⇒ i = 2k, for some k ∈ N,

i. e., we put p to be true exactly in ‘even’ worlds.
Then (M0, w0) |= B′′ ∧ C ′′; corresponding check is left to the

reader. 2

Let us use again the notations introduced in Section 6.
Let M = ⟨W,R,D, I⟩ be a model and w∗ be a world in it such

that (M, w∗) |= B′′ ∧ C ′′.
Since (M, w∗) |= B′′, there are a0 ∈ D(w∗) and a path π starting

in w∗ such that
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• Lπ0(a0) is true;

• b ≺πk a0 does not true, for any k ∈ N and for any b ∈ D(πk);

• (M, πk) |= A′′, for any k ∈ N.

Lemma 11. The relation ≈πk is a congruence with respect to the
relation ≺πk , for any k ∈ N.

Proof immediately follows from (M, πk) |= A1 ∧A2. 2

Because of Lemma 11, we again may define congruence classes
but just for worlds in the path π.

Lemma 12. The relation ≺πk is a strict linear order on Dπk and
≺πk

1 is the successor relation on Dπk with respect to ≺πk , for any
k ∈ N.

Proof immediately follows from (M, πk) |= A3 ∧A4. 2

From the condition (M, π0) |= A5 it follows that there are
a1, a2, a3, . . . ∈ D(π0) such that

a0 ≺π0 a1 ≺π0 a2 ≺π0 a3 ≺π0 . . .

and equivalence classes generated by a0, a1, a2, a3, . . . are pairwise
different.

Lemma 13. For any k ∈ N and for any a, b ∈ D(π0),

a ≺π0
1 b =⇒ a ≺πk

1 b;

a ̸≈π0 b =⇒ a ̸≈πk b.

Proof. Let a ≺π0
1 b, for some a, b ∈ D(π0). We prove that a ≺πk

1 b
by induction on k. If k = 0 then the statement is trivial.

Let a ≺πk
1 b and let α be an interpretation of variables in D(πk)

such that α(x) = a, α(y) = b. There are two possible cases:
(M, πk) |=α p and (M, πk) ̸|=α p.

Case (M, πk) |=α p. Suppose a ̸≺πk+1

1 b. Since (M, πk+1) |= A6,
we have (M, πk+1) ̸|=α AF (x ≺ y ∧ ¬p). This means that there
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is a path σ starting in πk+1 such that (M, σm) ̸|=α (x ≺ y ∧ ¬p),
for any m ∈ N. We define the path τ : τ0 = πk and τn+1 = σn,
for any n ∈ N; i. e., τ starts in πk and then goes along σ. Since
(M, τ0) |=α p, we have (M, τ0) ̸|=α (x ≺ y ∧ ¬p) and from the same
condition for all states in σ we obtain (M, τn) ̸|=α (x ≺ y ∧ ¬p),
for any n ∈ N. But then (M, τ0) ̸|=α AF (x ≺ y ∧ ¬p), i. e.,
(M, πk) ̸|=α AF (x ≺ y ∧ ¬p). Then, since (M, πk) |= A6, we have
(M, πk) ̸|=α x ≺ y, i. e., a ̸≺πk

1 b. But, by induction hypothesis, it
is not the case, hence the assumption a ̸≺πk+1

1 b is not true, and we
have a ≺πk+1

1 b.
Case (M, πk) ̸|=α p. We have (M, πk) |=α ¬p and with the same

argumentation (using p instead of ¬p and vice versa) we again obtain
a ≺πk+1

1 b.
Let a ≈π0

1 b, for some a, b ∈ D(π0). The proof that a ≺πk
1 b

proceeds by induction on k in the same way (with use of A7 instead
of A6); we left the details to the reader. 2

Lemma 14. Let k ∈ N. Then there is m ∈ {0, . . . , k} such that
Lπk(am) is true.

Proof proceeds by induction on k.
Let k = 0. Then we must prove that Lπ0(a0) is true; but we have

Lπ0(a0) to be true by choosing of a0.
Let the statement be true for k; we prove it for k + 1. By in-

duction hypothesis, we have Lπk(am), for some m ∈ {0, . . . , k}. Let
α be an interpretation of variables in πk such that α(x) = am,
α(y) = am+1. By Lemma 13, we have am ≺πk

1 am+1 and hence
(M, πk) |=α AFL(y) because (M, πk) |= A′′

9.
Suppose Lπk+1(a0), . . . , L

πk+1(ak+1) are not true. Then, in
particular, Lπk+1(a0), . . . , L

πk+1(am+1) are not true and hence
(M, πk+1) ̸|=α ∃x(x 4 y ∧ L(x)). Since (M, πk+1) |= A′′

9, we ob-
tain (M, πk+1) ̸|=α AFL(y). This means that there is a path σ
starting in πk+1 such that (M, σl) ̸|=α L(y), for any l ∈ N.

We define the path τ : τ0 = πk and τn+1 = σn, for any n ∈ N.
We claim (M, τn) ̸|=α L(y), for any n ∈ N. Indeed, it is the

case for any n ∈ N+ by the choice of σ. As for n = 0, we have
τ0 = πk and hence (M, τ0) |=α L(x). Supposing (M, τ0) |=α L(y),
we obtain (M, τn) |=α x ≈ y because (M, τ0) |= A8. But then
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am ≈πk am+1. From Lemmas 11 and 12 we obtain am ̸≺πk am+1,
in particular, am ̸≺πk

1 am+1, but this is impossible by Lemma 13.
Thus (M, τ0) ̸|=α L(y).

Since (M, τn) ̸|=α L(y) holds for any n ∈ N, we obtain
(M, τ0) ̸|=α AFL(y), i. e., (M, πk) ̸|=α AFL(y), but this is not
so. Hence our assumption is not true, therefore at least one of
Lπk+1(a0), . . . , L

πk+1(ak+1) is true. 2

Now we are ready to prove a lemma that is similar to Lemmas 6
and 9. Recall that π0 = w∗.

Lemma 15. Let b ∈ D(w∗). Then b ≈w∗
am, for some m ∈ N.

Proof. Since (M, w∗) |= C, in any path starting in w∗ there
is a world w such that Lw(b) is true. In particular, this is true
for the path π. Hence Lπk(b) is true, for some k ∈ N. Then,
by Lemma 15, there is m ∈ {0, . . . , k} such that Lπk(am) is true.
Since (M, πk) |= A8, we have b ≈πk am. By Lemma 13, we obtain
b ≈π0 am, i. e., b ≈w∗

am. 2

Proposition 7. The structures ⟨Dw∗
,≺w∗⟩ and ⟨N, <⟩ are iso-

morphic.

Proof. Follow to the proof of Proposition 3. 2

Let φ be some closed classical first-order formula. We define
Emb′′(φ):

Emb′(φ) = B′′ ∧ C ′′ ∧ Congr(φ) → T (φ).

Lemma 16. φ ∈ QCLfin ⇐⇒ Emb′′(φ) ∈ QCTL.

Proof proceeds with the same argumentation as the proof of
Lemma 7; the difference is in use Proposition 7 instead of Proposi-
tion 3. 2

Corollary 4. The logic QCTL � {AF } is not recursively enu-
merable.
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9 Corollaries
First of all, now we are able to give a proof for Theorem 1. Indeed,
let M be a set of modalities as in Theorem 1. If M ⊆ {AX,EX}
or M ⊆ {AG,EF } then the logic QCTL � M is recursively enu-
merable and even finitely axiomatizable by Proposition 1. Suppose
M ̸⊆ {AX,EX} and M ̸⊆ {AG,EF }. Then at least one of the
following conditions holds:

• M contains AX or EX and M contains AG or EF ;

• M contains EU ;

• M contains AU , or AF , or EG.

In every of these cases the logic QCTL � M is not recursively
enumerable by Corollaries 2, 3, and 4.

Now we give some other corollaries of Theorem 1 and its proof.
Below let M ⊆ {AX,EX,AG,EG,AF ,EF ,AU ,EU}.

9.1 Finite axiomatizability

Note that any recursively enumerable fragment we consider here is
also finitely axiomatizable; thus we have the following statement.

Corollary 5. The logic QCTL � M is finitely axiomatizable if
and only if M ⊆ {AX,EX} or M ⊆ {AG,EF }.

We make a remark. From Theorem 1 and Corollary 5 it follows
that a fragment QCTL �M is recursively enumerable if and only if
it is finitely axiomatizable. In general, recursive enumerability of a
logic is not equivalent to its finite axiomatizability; it is equivalent
just to its recursive axiomatizability. In our case such criterion is
possible maybe because of finite number of fragments we consider.

Now let us turn to the other side of axiomatizability. We mean
completeness.

9.2 Kripke completeness

Recall that a logic L is called Kripke complete if there is a class C of
(predicate) Kripke frames such that L = {φ : C |= φ} where C |= φ
means φ is true in any frame in C.
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Any fragment QCTL � M is Kripke complete by its definition;
so, the question about Kripke completeness makes sense just for
logics defined in other ways. Here we concern calculi.

We specify what we understand under a calculus. We assume a
calculus to be defined by means of two sets: a set A of axioms and
a set R of inference rules. These sets assumed to be recursively
enumerable, moreover any inference rule assumed to be effective,
i. e., as an algorithm computing the resulting formula. Of course,
finite axiomatizations provides us with calculi.

Note that the set of all derivable formulas in a calculus (in our
understanding) is recursively enumerable: to get an algorithm enu-
merating derivable formulas we may use an algorithm constructing a
consequence of all derivations. The last algorithm exists because of
algorithmic conditions we claim for the sets of axioms and inference
rules.

Let R be a set of inference rules, X be a set of formulas. We de-
note by CR(X) the least set of formulas containing X and closed un-
der inference rules in R, generalization, modus ponens, and substi-
tution (in an appropriate language). Let also X⊕RY = CR(X∪Y ).

Let L be a logic (a set of formulas). Let us call a set R of inference
rules L-admissible if CR(L) ⊆ L.

Let us call a set M of modalities quite expressive if the modal-
ities in at least one of the sets {AX,AG}, {EU}, {AF } can be
expressed via the ones in M (maybe with use of the connectives).

Corollary 6. Let M be a quite expressive set of modalities, S be a
recursively enumerable set of propositional formulas in the language
of CTL � M such that S ⊆ CTL � M , and R be a QCTL-
admissible set of inference rules. Then the logic QCL ⊕R S is not
Kripke complete.

Proof. We give just a sketch of a proof. Let us use the denotation
QS = QCL ⊕R S. The logic QS may be viewed as a calculus
with the axiom set QCL∪S, therefore it is recursively enumerable.
Suppose it is Kripke complete. Then there is a class C of Kripke
frames such that QS = {φ : C |= φ}.

First of all observe that (modulo modality equivalence) at least
one of the formulas A∧B ∧C, A′ ∧B ∧C, B′′ ∧C ′′ is a formula in
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the language of QS; this is so because M is quite expressive. Let
us denote it by Φ. We claim

φ ∈ QCLfin ⇐⇒ Φ ∧ Congr(φ) → T (φ) ∈ QS,

for any closed classical first-order formula φ.
Suppose φ ̸∈ QCLfin. Then there is a classical model S = ⟨S, J⟩

such that S is finite and S ̸|= φ; we may assume S = {0, . . . , n},
for some n ∈ N.

Observe that ¬Φ ̸∈ QS. Indeed, it follows from Proposi-
tions 2, 4, and 6 that ¬Φ ̸∈ QCTL. But QCL ⊂ QCTL and
S ⊆ CTL � M ⊂ QCTL, therefore QS ⊆ QCTL because R is
QCTL-admissible.

Since ¬Φ ̸∈ QS, there is a frame F(D) = ⟨W,R,D⟩ such that
F(D) ∈ C (or F ∈ C where F = ⟨W,R⟩) and F(D) ̸|= ¬Φ. Then
there is a model M = ⟨W,R,D, I⟩ and a world w∗ ∈ W such that
(M, w∗) ̸|= ¬Φ, i. e., (M, w∗) |= Φ.

It follows from Propositions 6, 5, and 7 that the structures
⟨Dw∗

,≺w∗⟩ and ⟨N, <⟩ are isomorphic, i. e., there is an isomor-
phism f : N → Dw∗ for the structures. Let us consider the model
M′ = ⟨W,R,D, I ′⟩ where I ′ is defined as I with the only difference
for predicate letters occurring in φ: if P is m-ary letter occurring
in φ and b1, . . . , bm ∈ D(w∗) then we put

⟨b1, . . . , bm⟩ ∈ I ′(w∗, P ) � there are k1, . . . , km ∈ S such
that ⟨k1, . . . , km⟩ ∈ J(P )
and bi ∈ f(ki), for any
i ∈ {1, . . . ,m}.

Then we obtain (M′, w∗) ̸|= Φ ∧ Congr(φ) → T (φ), and hence
Φ ∧ Congr(φ) → T (φ) ̸∈ QS; the details are left to the reader.

Now suppose Φ ∧Congr(φ) → T (φ) ̸∈ QS. Since QS ⊆ QCTL,
we have Φ ∧ Congr(φ) → T (φ) ̸∈ QCTL, and hence φ ̸∈ QCLfin

by Lemmas 6, 9, and 15.
But then QS is not recursively enumerable, and we have a con-

tradiction. Hence QS is not Kripke complete. 2
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9.3 The case of constant domains
Kripke frame F(D) = ⟨W,R,D⟩ is said to be a frame with constant
domains if

wRw′ =⇒ D(w) = D(w′),

for any w,w′ ∈W . The constant domain condition means that new
elements do not appear when we go from one state to another, i. e.,
any element we may deal with in some future state is available in
the current state, too.

Let QCTLcd be a logic of serial Kripke frames with constant
domains. Note that the propositional fragment of QCTLcd is the
logic CTL, i. e., QCTLcd as well as QCTL is a conservative first-
order extension of CTL. Here we put and answer the following
question: do the presented results remain to be true if we replace
QCTL with QCTLcd? And the answer is ‘yes, of course’.

Indeed, it is sufficient to observe that the formulas A ∧ B ∧ C,
A′ ∧B ∧C, and B′′ ∧C ′′ are satisfiable in some models based on a
serial frame with constant domains; see the proofs of Propositions 2,
4, and 6.

9.4 More simple fragments
We make remarks about fragments with restrictions on predicate
letters. First of all, observe that it is possible to define ≈ and ≺
via L. So, for example in w∗ (see Section 6)

x ≈ y means AG(L(x) ↔ L(y));

x ≺ y means AF (L(x) ∧ ¬L(y) ∧AFL(y)).

As for the QCLfin, its fragment with a binary predicate letter P is
not recursively enumerable. It is known, see [8], that a binary pred-
icate letter may be simulated with two unary letters: for example
P (x, y) may be simulated with EX(P ′(x) ∧ P ′′(y)). This means
that three unary letters are sufficient to prove that the correspon-
dent fragment of QCTL is not recursively enumerable.

Moreover even two unary letters are enough. It is known that
the theory of finite models with symmetric irreflexive binary re-
lation is not recursively enumerable; see [9]. But if a letter P
corresponds to such relation then P (x, y) may be simulated with
EX((P ′(x) ∧ ¬P ′(y)) ∨ (¬P ′(x) ∧ P ′(y))).
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As for number of individual variables, it seems to be truthful that
three ones are enough. But in view of [7], we think that even two
variables are enough.

10 Conclusion remarks
Let M be some quite expressive set of modalities. Suppose we are
asked: why the fragment QCTL � M is not recursively enumer-
able? As a possible answer we may say that this is because one may
simulate positive integers using the language of the fragment. But
why one may do this?

To answer the question let us turn to the notion of path. A path
π in a frame F = ⟨W,R⟩ is an infinite consequence of worlds
π0, π1, π2, . . . with the condition wkRwk+1, for any k ∈ N. This
means that any path is a map from N into W . Thus, we have posi-
tive integers as paths. Some modalities allow us to ‘catch’ them
because of their definition in Kripke models.

But it is not the case for the pairs AX,EX and AG,EF . This is
so because these modalities are quite ‘simple’: accessibility relations
for them are first-order definable. For example, for AX we need
just seriality of R. The modality AG seems to be more complicated.
It corresponds to the reflexive and transitive closure of R which is
not first-order definable via R. And indeed, if we use AX and AG
simultaneously then we are able to ‘catch’ positive integers. But if
we use AG only then we ‘lose’ R and, in fact, we have just some
reflexive and transitive accessibility relation.
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Deontic ‘cocktail’ according to E.
Mally’s receipt1

Elena N. Lisanyuk

abstract. In 1926, Ernst Mally, an Austrian logician, has
introduced a system of deontic logic in which he has proposed
three fundamental distinctions which proved to be important in
the context of the further development of the logic of norms. It
is argued that in his philosophical considerations Mally has in-
troduced a number of important distinctions concerning the very
concept of norm, but by getting them confused in introducing the
subsequent formalisms he failed to formally preserve them. In
some of his philosophically made distinctions Mally apparently
foresaw contemporary trends in logic of norms. To some extent
this particular feature of Mally’s system open wide opportunities
to reconstruct –– with the corresponding renovations — his ill-
formed Deontik into many nowadays known systems of logic of
norms and thus provides a fertile ground for this kind of research.

Keywords: deontic logic, Mally, agency, ought, obligation

1 Introduction
Conceptual considerations about developing a special kind of logic
capable to model norms and reasoning about norms date back at
least to the Middle Ages, but it was not until von Wright’s deontic
systems have been introduced in 1951 that the first a viable and
sound system of deontic logic was proposed. Standard von Wright-
type deontic logic which was thus launched has developed into one of
the most significant trends in the area of logic of norms, although not
without being criticized [2], [3]. Among those criticisms, the most
troublesome seemed to be the so called paradoxes of absolute deontic

1Research is supported by the Russian Foundation for Basic Research,
project № 11-06-00206.
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logic that targeted one of the central concepts of standard deontic
logic, namely the concept of deontically perfect state of affairs, the
one in which all norms are assumed to be fulfilled [4, p. 401]. Today,
when diverse trends in this area have emerged, these paradoxes are
regarded to be characteristic rather of the type of deontic system,
than of the logic of norms as a part of contemporary logic [7, p. 172].

As a logical investigation of normative reasoning, or reasoning in
the framework of normative systems, logic of norms is constantly
moving towards more adequate norms understanding which is ob-
tained in the framework of their formal representation. In the very
beginning of its development, the goal of norms’ formal represen-
tation was thought to be achieved by means of deontic calculi,
that later have been supplemented by standard semantic structures,
which yet later has proved to be in many aspects inadequate [5,
p. 148]. Contemporary normative formalisms tend to regard seman-
tic aspects of norms as more fundamental then inferential relations
among them.

Both the structure of norm and as well as the relations established
between the elements of it are assumed as relevant for being modeled
by means of a logical theory. For this reason, they form one of the
key issues in defining norm in the sense of logic. Norms consist of
four basic elements [4, p. 380]:

1) actions, or states of affairs, which can be;

2) (according to norm character) allowed, prescribed or prohib-
ited from being performed by agents;

3) agents as subjects of norms;

4) conditions (actions or states of affairs) for norms’ emerging or
ceasing.

Deontic logic proper regards (1) and (2) as more fundamental
for logical investigations about norms and for this reason it may be
called ‘objectivist’ trend in the logic of norms. Deontic logic pursues
logical aspects of the relations between (1) and (2), on the one hand,
and norms’ obedience or disobedience, on the other. This ‘objec-
tivist’ approach relies to a large extent on an assumption that proper
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understood norms are impersonal timeless absolute (condition-free)
regulations. In this way, norms, when they are obeyed, generate
a normatively ideal (perfect) state of affairs, or deontically ideal
world. According to the deontic approach, norms proper may enter
conditional regulations becoming thus the elements of them together
with (3), (4), temporal, epistemic and other modalities, but this fact
does not preclude deontic theories from studying their central con-
cept of normative relation between (1)–(2) and deontically perfect
worlds.2

Indeterministic agent-dependent logic of norms regards issues
(3)–(4) as more significant than (1)–(2) and is a major contemporary
rival of deontic logic. Norms’ analysts belonging to this trend see
the relation between agent, (3), and its strategy in goal-oriented ac-
tivities as key issue for studying human beings’ normative behavior
in which deontically understood norms (1)–(2) form a correlative
element of agent’s strategy. Indeterministic logic of norms stems
out of von Wright’s ideas of logic of action [3] and A. Prior’s theory
of branching time [17], [18] and is being developed in the works of
J. Horty [11], N. Belnap [9] and others.

Indeterministic logical theories of obligation introduce special
stit-operator of agency which may be understood in different ways
depending on the interpretations of concepts of history, time and
moment [8], all of them are related to agent’s actions. These theo-
ries incorporate two important ideas concerning logical analysis of
agency. The first is that of agent’s ability to do something as closely
related to both what an agent ought to do and what should have
done. J. Horty calls it Meinong\Chisholm analysis and reports that
it can be traced back to the works of some German and Austrian
philosophers [11, pp. 44–46]. The other one explicitly marks the
borderline distinction between SDL altogether with its further de-
velopments and indeterministic theories and proposes the concepts
of branching time and corresponding linear histories as intrinsic to
agent’s behavior in such a way that the latter is assumed to be de-
pendent of agent’s previously made choices in the way that it secures
its freedom in what concerns its future choices. Contrary to that,
SDL as well as its contemporary versions rely on certain determined

2See [7] for a substantial exposition of deontic logic proper.
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future state of affairs thus leaving no room for agent’s future choices
otherwise than being caused by those previously made.

In this paper, some arguments are proposed to support of the
idea that Austrian logician Ernst Mally should be added to the
list of those German-speaking philosophers whose conceptual con-
siderations of the issue gave rise to the idea of agent-dependent
normativity. It is also suggested that in his Deontik Mally was the
first to introduce a deontically understood agential ought as distinct
from agent-free impersonal obligation, though, apparently, did it in
somewhat vague way.

2 Who is Mally?

Ernst Mally (1879–1944), an Austrian logician, a pupil of Alexius
Meinong and the author of several philosophical writings, was born
in Slovenia which then has been a part of Austro-Hungarian Empire.
In 1926 Mally published a book Grundgesetze des Sollens: Elemente
der Logik des Willens (‘The Basic Laws of Ought: Elements of
the Logic of Willing’) [16] in which he proposed a logical theory
which happened to become the first approach to formulate a system
of deontic logic. Ernst Mally called his theory Deontik and thus
became the author of the both, the first system of deontic logic and
the term for this branch of logic.

As a viable formalism, his system has proved to be unsuccessful.
Mally‘s book is almost 100 pages long but the chapter in which
the calculi is proposed is hardly longer than 15 pages and then
throughout other 15 pages 35 theorems are given followed by
concise explanations. In the rest of his book, Chapters III and
IV, he pursues the surprising consequences his system yields. In
doing so he notoriously tries to show that the reason for those
strange consequences to follow has to be looked for not in the
axiomatic basis of the system, but instead in the properties of logic
of obligation and will itself, or in the idea of pure ethics which he
advocates in his book.

E. Mally held very radical national socialist views during the whole of
his life. He was a teenager when he has joined one of Austrian radical
movements, later he became a member of an Austrian radical society that
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have been supporting the idea of the Anschluss of Austria to Germany
even before the World War I, and joined NSDAP immediately after it
had happenned. He was an active Nazi-party member and in most of his
papers written during the last decade of his life he argues for the Nazi
ideology [22].

Yet despite these ‘hard’ facts of his biography his philosophical and
logical heritage never fully went into oblivion as one may well be inclined
to think. His intellectual life is usually divided into 3 stages. The first
stage was devoted to the object theory [21], [6]. During the second Mally
studied various philosophical issues sometimes with the help of the object
theory, and the third saw his politically oriented writings. The book
in which his Deontik is proposed belongs to the second period and was
written before he has started to pursue his political activities also in the
philosophical papers. Despite the fact that his system has turned out
to be ill-formed, and, perhaps even because of it, Mally’s deontic logic
remained being mentioned whenever the issue of the starting point of the
development in this area of deontic logic has been touched. However, in
most cases the mentioning is being done in the sense of unsuccessful start.

Unlike his teacher, A. Meinong, Ernst Mally has founded no philo-
sophical school, yet he had several pupils. One of them, Karl Wolf, in
collaboration with his pupil, Paul Weingartner, in 1971 prepared and
published the modern edition of E. Mally’s Grundgesetze des Sollens:
Elemente der Logik des Willens [16] with the substantial philosophical
foreword.

The company of Mally’s critics includes many outstanding logici-
ans that have essentially contributed to the field of logic of norms:
K. Menger, who was the first to attack Deontik, G.von Wright [2],
[3]; D. Follesdal and R. Hilpinen [10], J. Wolensky [20]. O. Weinber-
ger [19] suggests an outline of Mally’s system; J.-G. Lokhorst pro-
posed several reconstructions of Mally’s Deontik along with some
critical renovations [12], [13], [14], [15].

According to most of them, there are three main reasons res-
ponsible for Mally’s logical failure. As Lokhorst summarizes them
in [12] these are (1) the classical two-valued propositional calculus
which forms the non-deontic part of Mally’s system and (2) the fact
that some deontic axioms are vague and need modifications, and (3)
both (1)–(2). (1) is the issue particularly criticized by K. Menger,
and is also touched upon by Lokhorst, too:
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If Mally’s deontic principles are added to a system in which the
so-called paradoxes of material and strict implication are avoided,
many of the ‘surprising’ theorems (such as (34) and (35)) are no
longer derivable and A↔ !A is no longer derivable either. But most
of the theorems which Mally regarded as ‘plausible’ are still derivable.
The resulting system is closely related to Anderson’s relevant deontic
logic [12].

3 Mally and Jorgensen’s dilemma
Throughout his book Mally neither explicitly specifies the non-
deontic part of his system, nor he accepts any propositional tau-
tologies as belonging to his system. Thus, it would be unfair to
maintain as Lokhorst does [12] that Mally proposes a (classical)
propositional basis for his system in the way von Wright or later
deontic logicians did and that has become quite standard in the
second half of XX century [5].

Instead, we find a number of philosophical explanations concern-
ing the nature of implication from which one may conclude that
he clearly distinguishes his system as the logic of what is thinkable
(Denklogik) or the object logic (Gegenstandlogik) from the system
suggested in Principia Mathematica by Russell and Whitehead.3 He
holds the view that the latter describes the logical relations between
propositions understood as propositional functions and calls it lo-
gistics (Logistik) [16, p. 236, 320 (notes 4–6)]. Mally purports to
make this distinction as sharp as possible, especially in the chapters
III and IV of his book where he notoriously advocates his ill-formed
system. In doing so he believes that willing and obligatoriness are
conceptual objects that have their special logic which is different
from what he calls logistic [16, p. 237]. Unfortunately, whereas in
his philosophical explanations Mally indeed draws this distinction
between the two kinds of logic, in his formalism he gets them con-
fused. This is one of several confusions made in the Deontik that
apparently led to the failure of the system.

Another confusion in his book follows immediately out of the
one just discussed. In the same way as with the kinds of logic,
Mally says that a rigor distinction should be made between the

3See also [6] on this point.
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kinds of implications that hold in case of propositions and in case of
objects, or states of affairs (Sachverhalt), respectively. A impliziert
B (A implies B)4 and A fordert B (A demands B)5 are distinct
from each other and are meant to be propositional and normative
respectively.6 The former is apparently truth-functional and close
to what one may call material implication, whereas the latter looks
more like formal implication [16, note 31]. Consequently, in what
concerns (1) Mally did go wrong but not in the way diagnosed by
K. Menger or J.-G. Lokhorst, but rather in the other way round. He
has put the two distinct types of inferential relations into one system
and thereby has got different ontological assumptions confused, and
he did so by applying the truth-functional propositional patterns
of logical inferences to propositions he himself takes in different,
sometimes prescriptive, sense.

It seems that in these wrongly understood inferential relations
among propositions expressing norms Mally indeed had been the
first to overlook the problem [2, p. 291] which later has been called
Joergensen’s dilemma. Norms’ analysts widely recognize this dilem-
ma which amounts to the following. The practice of defining log-
ical consequence in terms of satisfiability rests on the assumption

4The relation of implication is a relation between propositions describing two
states of affairs, A and B respectively, that are understood or take place in such
a way that A implies B, but this relation is not the one to be found between
propositions expressing what is being thought or willed or ought to be, explains
E.Mally before he turns to outline his system. From the fact that the state of
affairs A does not happen any other state of affairs follow and an actual state
of affairs is implied by whatsoever state of affairs [16, pp. 238–240].

5‘When something is being desired, everything in absence of which this vo-
lition may not realize, is being also desired. This is the essence of the volition.’
[16, p. 246]. ‘It lies in the very essence of willing that willing is just willing
whatsoever that willing implies. . . It has happened to everyone that in some un-
foreseen circumstances in which one finds oneself to be obliged to apologize for
one’s undesired behavior it is natural to say that one did not know the conse-
quences if his or her actions, but should have thought that this undesired thing
would happen’ [16, p. 273].

6The fact that these are distinct is obvious in his definition of connective f:
A f B = A → !B, and in Axiom III: (A f B) ↔ !(A → B). With the help of
these Mally suggests the way how they can be expressed in terms of each other.
It is also clear that he sees the right parts of the two as equipollent, taking so
far their equipollency as innocuous for his system.
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that truth values are necessary properties of propositions describing
states of affairs. Contrary to descriptive propositions, prescriptively
taken norms lack truth value. Consequently, either no logic of norms
proper is possible, or the idea of truth value based on the concept
of satisfiability of propositions needs reconsideration. Most results
in logic of norms so far have been acquired in the framework of the
latter line.7

4 Willing, obligatoriness and norms in Mally’s
system

What concerns (2) Lokhorst suggests three sound reformulations of
Mally’s system and does so by proposing alternative non-deontic
bases that enrich Mally’s authentic system with additional pos-
tulates as well as by modifying some of Mally’s original axioms.
Lokhorst’s reconstructions result respectively in two versions of RD,
a relevant deontic system with the system R as its non-deontic part
[12] and RD with a propositional constant of andersonian type [15],
and KD, a version of standard von-Wright-type deontic system [12].

Mally has in mind three different concepts of what obligatoriness
may mean when applied to a state of affairs, to a conceptual (inten-
tional) object and to a relation among them respectively. Whereas
the first and the third may be called norms in some sense, the second
definitely may not, for it is meant to express Mally’s philosophical
idea of rationally put human will which in order to be feasible should
be understood as a conceptual objec t and, consequently, as a log-
ically consistent object. Mally suggests his system for the sake of
showing how these distinct concepts logically relate to each other,
and obviously fails on this point because gets the three formally
confused.

Mally is aware of the fact that the three are distinct and holds
the view that each of them requires different logic. The idea that
the relations between norms and the propositions expressing the
conditions for them as well as norms’ obedience or disobedience
are non-truth-functional is plain in what Mally says when trying to

7For a survey of the development of logic of norms see [4]. [5] suggests an
outline of the development of the concept of norm in the framework of logic of
norms.
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justify the ‘strange’ consequences’ his system yields. He is also very
accurate in distinguishing the types of implications, namely, formal
and material, especially when speaking of logical dependencies bet-
ween the three.

5 Mally’s Deontik
The non-deontic part of Mally’s system consists of the sentential
letters A, B, C, P and Q; the sentential variables M and N (these two
groups of symbols refer to states of affairs); the sentential constants
V (the Verum, Truth) and Λ (the Falsum, Falsity); the propositional
quantifiers ∃ and ∀, and the connectives ¬ , &, ∨, → and ↔. Λ is
defined by Λ = ¬ V.

The deontic part of Mally’s vocabulary includes the unary con-
nective !, the binary connectives f and ∞, and the sentential con-
stants ∪ and ∩. He supplies the deontic part of his system with the
following definitions:

Def. f . A f B = A → !B.

Def. ∞. A ∞ B = (A f B) & (B f A)

Def. ∩. ∩ = ¬ U

There are five axioms in Mally’s system. They are given in the
Table together with original Mally’s symbolisms and Lokhorst’s for-
malizations of them.

Basic principles Mally’s formal-
ization

Lokhorst’s
formalization

i If A requires B and if B
then C, then A requires C.

((A f B) & (B →
C)) → (A f C)

((A → !B) & (B →
C)) → (A → !C)

ii
If A requires B and if A re-
quires C, then A requires B
and C.

((A f B) & (A f
C)) → (A f (B &
C))

((A → !B) & (A →
!C)) → (A → !(B
& C))

iii
A requires B if and only
if it is obligatory that if A
then B.

(A f B) ↔ !(A
→ B)

(A → !B) ↔ !(A
→ B)

iv
There is an unconditional-
ly obligatory which is
obligatory.

∃U !U !U
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v
The unconditionally obli-
gatory does not require its
own negation.

¬(U f ∩) ¬(U → !∩)

Mally derived the following theorems from his axioms [16,
pp. 252–269].

(1) (A f B) → (A f V)

(2) (A f Λ) ↔ ∀M (A f M)

(3) ((M f A) ∨ (M f B)) → (M f (A ∨ B))

(4) ((M f A) & (N f B)) → ((M & N) f (A & B))

(5) !P ↔ ∀M (M f P)

(6) (!P & (P → Q)) → !Q

(7) !P → !V

(8) ((A f B) & (B f C)) → (A f C)

(9) (!P & (P f Q)) → !Q

(10) (!A & !B) ↔ !(A & B)

(11) (A ∞ B) ↔ !(A ↔ B)

(12) (A f B) ↔ (A → !B) ↔ !(A → B) ↔ !¬(A & ¬B) ↔ !(¬A ∨
B)

(13) (A → !B) ↔ ¬(A & ¬!B) ↔ (¬A ∨ !B)

(14) (A f B) ↔ (¬B f ¬A)

(15) ∀M (M f U)

(16) (U → A) → !A

(17) (U f A) → !A

(18) !!A → !A
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(19) !!A ↔ !A

(20) (U f A) ↔ (A ∞ U)

(21) !A ↔ (A ∞ U)

(22) !V

(23) V ∞ U

(23’) V f U

(24) A f A

(25) (A → B) → (A f B)

(26) (A ↔ B) → (A ∞ B)

(27) ∀M (∩ f ¬M)

(28) ∩ f ∩

(29) ∩ f U

(30) ∩ f Λ

(31) ∩ ∞ Λ

(32) ¬(U f Λ)

(33) ¬(U → Λ)

(34) U ↔ V

(35) ∩ ↔ Λ.

6 ‘Surprising Consequences’ and conceptual objects
Mally sees his theorems (1), (2), (7), (22) and (27)–(35) as ‘surpris-
ing’ (befremdlich) or even ‘paradoxical’. Of these, (34) and (35) are
reported to be the most surprising of his surprising theorems. Some
of Mally’s explanations concerning the reasons for calling these the-
orems surprising are also puzzling [12]. Mally’s reasons for calling
some of his theorems surprising will not be discussed here.
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The fact that theorems (23), (34) and (35) are derivable in Mally’s
system is clearly fatal for it. It has been pointed to by many deontic
logicians, f.i. Menger, von Wright, Follesdal and Hilpinen, and Lo-
khorst. Definitely, the system that states, for instance, that every
factual state of affairs is obligatory and what is obligatory is the case
(34) has no chance to be accepted as a viable system. This totally
unacceptable result has a number of confusions as its background
and Mally’s peculiar idea of what a fact is also belongs to them.

Mally believes that state of affairs, fact and object are distinct
from one another. A state of affairs may be taken to be the meaning
of a sentence which expresses the corresponding judgment (Urteil)
but in this case the sentence is different from the proposition taken
as propositional function. It is in the former sense that a proposi-
tion should be referred to as true (Tatsachen)8 or not true (Untat-
sachen), and this is distinct from how it is referred to in proposi-
tional logic, or the theory he calls logistic. ‘The concept of factual
state of affairs (Tatbestand) lies in the background of the concept of
implication, and is a very important concept of thought; it cannot
be grasped unless applied to’ [16, p. 289].

Mally insists that logistic is a logic of propositional, or linguis-
tic forms, and is not logical theory proper, for propositional forms
themselves never become available for evaluation as being true and
false unless some facts, or actual states of affairs, are understood
as being described by them. ‘This is how the same rules are used
for indefinite descriptions of states of affairs and for real facts that
indeed may differ from one another ’ [16, p. 236]. In other words,
Mally explicitly points that to say that a proposition is true is not
the same as to say that it describes what is the case, for whereas
being true as well as being not true are normally considered to be
properties of a proposition, describing what is the case is a property

8Mally significantly avoids speaking of truth (Warheit) and truthfulness in
his book. The reason for this may be that he has in mind a kind of intensional
semantic presuppositions for his system. This may serve an appropriate expla-
nation for the fact that in more or less the same significant way Mally obviates
anything analogous to truth-functional logical semantics traditionally used in
propositional logic. In doing so he seems to understand such semantic presup-
positions as extensional and thus divergent from the semantic presuppositions
his object theory requires.
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of thought. The idea that our understanding of facts always occurs
after the facts themselves occur makes the regularities we notice in
material world obsolete, warns Mally in the Foreword of his book.
However, notwithstanding that it has occurred as a material truth,
once we make a conclusion that something is the case we take the
latter as formally necessary (richtig). It is in this sense that Mally
sees judgment and willing as formally necessary whenever the two
meet in fact [16, p. 229].

This is how Mally arrives at his three-fold distinction. There are
two groups of entities: propositions which in Mally’s version are
(contingent) linguistic forms, and states of affairs (Sachverhalte)
which are kinds of conceptual objects capable of having factual
counterparts and which are referred to by sentential variables in
the non-deontic part of his system. The states of affairs fall into
true and not true.

Throughout chapters I–II Mally diligently avoids telling what true
or non-true states of affairs are. His key idea is that logic is a theory
about intensionally understood states of affairs (Sachverhalte) and
thoughts (Denken), and it is lies in the very concept of correct
thought (richtige Denken) that it should grasp and model states of
affairs and do so in order to unveil the nature of relations between
the states of affairs and conceptual objects (Gegenstande) [16, p.
231]. Because applying a thought to a state of affairs in different
empirical cases may yield diverse results [16, p. 233], logic should
start with investigating what correct thought is. True (Tatsashe)
states of affairs are those which are referred to by correct thought.
It is the relation between the two sorts of conceptual objects that
Mally places in the center of his peculiar ‘truth theory’, namely
between what is thought to be a state of affairs and a conceptual
object that is meant to correspond to it.9

9There should be a way of distinguishing between the two in order to establish
a sort of correspondence between these kinds of conceptual objects which are
clearly distinct for Mally. The borderline has to be looked for in Mally’s object
theory [22]. Conceptual objects do not necessarily instantiate the properties
they consist of; the former may be vague and logically inconsistent with respect
to the latter. The fact that such an intensional object matches its factual
instantiation is derivative from the fact that the object is sound in logical sense
[21].
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7 Formalisms for conceptual objects
At this point one may easily notice the need for adequate symboli-
zation for this three-fold division in the non-deontic part of Mally’s
system, and elementary first-order predicate logic seems to be an
appropriate candidate for this. In fact, Mally does an explicit step
towards using (monadic) predicate logic when proposing sentential
letters as symbols for states of affairs (Tatbestand), sentential vari-
ables for any state of affairs whatsoever (Sachverhalt) and sentential
constants V and for true (Tatsache) and Λ for not true (Untatsache)
states of affairs. According to him, the relation between factual
(Falle x ) and conceptual states of affairs (B(x)) (Sachverhalte) is
expressed in the judgment (Urteil) of the form

There is at least one x, for which B(x) is the case,

which may be evaluated as true or not true and which can be refor-
mulated so as to include all or some x respectively [16, pp. 236–237].
Throughout chapter I he indeed tries to use sentential variables as
quantifiers but never goes beyond this point. Unfortunately, already
in these symbolisms his three-fold distinction turns de facto to be
expressed with the help of sentential variables only and thus gets
formally collapsed.

However, this is not the only confusion in the non-deontic part
of Mally’s system. Having introduced the idea of different relations
that hold between facts and between conceptual objects Mally ap-
parently should have suggested some symbolisms that would exhibit
the difference. His attempts towards doing so are seen in the fact
that he introduces material implication which is meant to hold be-
tween states of affairs, A → B, and a kind of formal implication,
A f B, which may be interpreted as the deontic version of standard
(aletic) formal implication, according to Def. f. Recalling now that
there is a confusion among kinds of objects expressed with the help
of sentential variables, letters and constants one gets a confusion
with connectives as derived out of the sentential confusion. There
seems to be a dilemma: drop the three-fold division and replace it
with just one object, either propositional or conceptual, or aban-
don the functional distinction material\formal for implication. Had
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Mally chosen either of the two lines for constructing the non-modal
part of his system, this would have prevented it from the collapse
just discussed. Disregarding the former and adopting the latter
would result in a system of formal implication; following the oppo-
site line, namely holding the former but not the latter leads to a
first-order predicate system. Moreover, disregarding both gives a
version of classical propositional logic which could have served as a
basis for a kind of standard deontic logic. Mally adopts both in his
system and this leads him to further confusions.

8 Correct will as conceptual object
Judgments and volitions both refer to the states of affairs but they
do so in a different way, says Mally in the Introduction of his
book, and he proposes his Deontik as a theory of correct volition
[16, pp. 233–234] as distinct from correct judgment which is studied
in non-modal logic.10 Mally believes that human volitions are also
conceptual objects and they stem out of definite state of affairs,
for what is being wished in them is nothing but some other states
of affairs which can be true (Tatsache) or not true (Untatsache)
[16, p. 279]. These conceptual objects serve as the content of in-
tentionally directed acts, for intentional acts are never deprived of
their content. Because of the fact that there is always a conceptual
object that is determined by some properties, human beings’ voli-
tions may be rationally vague and inconsistent in logical sense but
this does not exclude a logical possibility for them to contingently
realize [16, p. 278].11

Contrary to not true states of affairs their true counterparts are
capable of having their factual instantiations and this is so due

10‘Even though Mally regarded many of his theorems as surprising, he thought
that he had discovered an interesting concept of ‘correct willing’ (richtiges
Wollen) or ‘willing in accordance with the facts’ which should not be confused
with the notions of obligation and willing used in ordinary discourse. Mally’s
‘exact system of pure ethics’ was mainly concerned with this concept, but we
will not describe this system because it belongs to the field of ethics rather than
deontic logic.’[12]

11‘The improper will is an obvious demonstrative experience, for the improper
ought that wants to be an equivalent to the true state of affairs seems itself to
be so only indirectly, namely through the reasoning which points to something
together with what out of which true state of affairs follow’.
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to the fact that these conceptual objects are always complete and
consistent. ‘Inasmuch logic does pursue inconsistent propositions
neither, so does not the Deontik in what concerns inconsistent and
untrue obligations’ [16, p. 248]. Only the volitions that are complete
and consistent may realize as true states of affairs. ‘Consistency is
the key property of correct thought (richtigen Denken) and right will’
[16, p. 244]. This is the reason why Mally holds the view that any
correct volition should include all its implicates. In many places of
his book Mally insists that his Deontik is a logical theory of correct
volitions. This is also plain in his Axiom III and Theorems (6), (7),
(9). Inferential totality of correct volition is echoed in Mally’s idea
of human responsibility [16, p. 273. Cf. note 4 above].

There are two other notable features of Mally’s conception of
willing: that it is agential, but impersonal, and that it is conditional,
but in a very special way. Let us consider these properties in turn.

Mally proposes symbolism !A as ‘A ought to be the case’ (A soll
sein) or as ‘let A be the case’ (es sei A) in the sense that A is
a state of affairs which is being wished by someone [16, p. 241].
Many Mally’s critics point to the fact that traditional deontic O-
symbol — be it taken as a connective, or as a sentential operator ––
is seldom read in this way [12; 10, pp. 5–6]. Mally’s !A is agen-
tial, but impersonal and is goal oriented, but not action-dependent.
Therefore, it is small wonder that deontic O-symbol is seldom read
in the way Mally introduces his !A, for the two are originally meant
to symbolize different entities.

Mally’s !A explicitly points to an obligatory state of affairs and
seems to reject being interpreted as an obligatory action. On the
other hand, Mally uses his !A to express someone’s volition which
because of being desired becomes someone’s ought rather than ob-
ligation. Mally’s philosophical insights into the nature of volition
(Wollen) show that it is because of the fact that a volition is always
human volition it may become human ought in the sense that it
performs as a goal for human conduct at issue [16, pp. 303–306]. It
is in this particular agential sense that Mally’s willing (Wollen) is
transformed by an agent into a kind of its personal ought (Sollen)
when choosing its particular strategy. Therefore, Mally’s !A is much
closer to the concept of agential choice and to an indeterministic
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interpretation of agential strategic goal of the kind suggested in
stit-theories [11], or to what is understood by tactics in the deontic
logic of A.S. Esenin-Volpin [1], then to deterministic obligations of
the sort pursued the framework of the SDL and its developments. In
fact, it may be shown that stit-reconstruction of Mally’s Deontik is
also possible with the help of some minor renovations to his system.
This is why interpreting Mally’s !A as standard O-obligation would
hardly be the best choice.

From what has been said above concerning his concept of willing
it is clear now that only correct volition may turn into agential
ought. Def. f and Axiom III suggest that what is taken to be a
formal condition for the volition is also should be regarded as a
part of the intensional content of the volition at issue. In other
words, logical antecedent of the desired state of affairs expressing
the (pre)condition of the volition is also part of this volition. On
the other hand, Theorem 5 says that correct volition is implied by
any state of affairs whatsoever [16, p. 261]. Consequently, due
to the ideas that correct volition is implied by any state of affairs
and that it should include all the consequences of the desired state
of affairs, the concept of correct volition results in unconditional
and impersonal volition notwithstanding its start as conditional and
human depending. In the beginning Mally uses distinct symbolisms
to express ought and obligation: oughts as they are introduced by
Mally in the first three postulates are different from obligations
given in the Axioms V and IV.

In doing so Mally again starts with proposing important distinct-
ions, namely, between agential strategic ought and conditional obli-
gation, but because of his idea of correct volition which should not
only imply all its consequences but its antecedents as well, he finally
drops the distinction just introduced and arrives at an ill-formed
mixture of the two. This confusion results in a problematic outcome
that in his philosophical explanations Mally’s volition (Wollen) is
gradually transformed into ought (Sollen) [16, p. 276 and ff],12

what apparently does conform with what he says when introducing

12‘In terms of the will, it lies in the very sense of the volition, that to say that
the desired state of affairs ought to be is to say that there ought to be any state
of affairs in absence of which that which is desired may not happen’.



Deontic ‘cocktail’ according to E. Mally’s receipt 117

his !A [16, p. 241]13 in agential indeterministic perspective. But
after that, when the idea that agential indeterministic ought is said
to include all its consequents, but to follow to the state of affairs
which has the predominant chances to happen,14 things de facto
go wrong and agential ought is turned into a sort of unconditional
obligation [16, pp. 299–301, axiom IV].15 Thus, at this point the
distinction is corrupted. Mally is aware of these transformations
and he notoriously purports to explain them by pointing to his idea
that in order to be capable of being realized the volition should be
complete and consistent, but this consideration does not help much
here.

Having introduced his illuminative and fertile of further deve-
lopments concept of agential volition !A, Mally could have subse-
quently developed a kind of indeterministic logic of norms, had he
abandoned the idea that correct volition should imply all the con-
sequents of itself, or keep to what is logically necessary, but he did
not. On the basis of the same concept he also could have developed
a kind of (non-agential) deterministic deontic logic, had he dropped
the idea that correct volition should include all its antecedents, or
stem out of the definite state of affairs, but he did not, too. Instead
he preserved both and once again arrived at a collapsing confusion
of ought and obligation in the deontic part of his Deontik. This is
particularly the reason for his ‘strange’ Theorem 22 which yields yet
more strange consequences.

13‘This ought, precisely the ought of the definite state of affairs, corresponds
to the will as to a counterpart conceptual object: it describes the object, namely
the state of affairs, to which the will is directed’.

14‘This is how the judgment and the subsequent decision come to be correct:
they are materially correct, if they both keep to the true state of affairs; they
are formally correct, if they have been taken in the sense of the predominant
possibility, therefore, have themselves proved to happen’ [16, p. 300].

15‘The requirement of formal correctness, enjoining what is of man as a voli-
tional essence requires and may be reasonably required: to satisfy the require-
ments of substantive correctness to the best of knowledge. The requirements of
formally correct will specify an ideal: to fulfill the aim, which cannot be required
as necessary proper, it is necessary to keep to these requirements rigorously and
unconditionally’ [16, p. 301].
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9 Unconditional obligation
Apart from volitions Mally introduces another kind of obligation,
unconditional obligation U (das unbedingt Geforderte, das Sollens-
gemaesse) which is seen as distinct from !A because of the fact that
the latter is agential and conditional. Unconditional constant U
and its negation ∩ seem to be very close to Kangerian Q-constant
which is meant to express a normative code. The difference between
Kangerian Q and Mally‘s U lies in the idea that Mally takes his
deontic constant to refer to the obligatory states of affairs whereas
Kangerian Q depict an actual normative code.

It is tempting to call the negation of U, ∩, unconditionally forbid-
den (das unbedingt Verbotene). In some places of his book Mally
occasionally does so [16, p. 296–297], but as a whole the notions of
forbidden and permitted are not to be found in his book. The reason
for this according to Mally lies in two important facts concerning
the issue. The first is that unconditionally obligatory is a conceptual
object and as such is necessarily applied to a state of affairs. The
second is that unconditional obligation is agent-free, or agent-inde-
pendent. The concepts of permission and prohibition seem not to
belong to the domain of the Deontik which is seen as logic of correct
willing. In this system, prohibition (verkert-U, Sollenswidrige) is
just the counterpart of unconditionally obligatory and is not an
object [16, p. 250].

When introducing his deontic constant U Mally speaks of a kind
of positive obligation and its negation and he takes the former to
be consistent and actual unconditionally obligatory state of affairs,
though, perhaps, in his view of conceptual objects to say that a
state of affairs is consistent and actual would be redundant. Un-
conditionally obligatory never implies what is incompatible to it, or
its negation. Consequently, the negation of U, or ∩, is principally
unobtainable as a state of affairs because of its inconsistency. This
leads us to the conclusion that it is not quite correct to take Mally’s
deontic constant ∩ as unconditionally forbidden of the same sort as
unconditionally obligatory.

Agent-dependency is the background of the distinction between
Mally’s ought and (unconditional) obligation. He draws a borderline
between obligation which he regards as definitive and independent
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of personal representations (objective Bestimmtheit) in the sense of
(2) and ought which is an agential goal and thus may be vague and
even inconsistent (subjective Unbestimmtheit) [16, pp. 280–281] in
the sense of (3)–(4). Axiom IV says that social agents in outlining
the trends of their behavior take into account that there exist some
(legal or moral) norms. This is not to say that these obligations
exist independently of agents, but just that they are not agential
ones.

In his purports to introduce a kind of deontologically understood
obligation, Mally apparently falls into the trap which he has pre-
pared for himself when diligently avoiding any semantic considera-
tions and carelessly following his object theory. In the deontic part
of his system (Axiom IV) Mally would like to propose an objectively
interpreted obligation and for this reason he speaks of !U — ‘uncon-
ditional demand as a principle of actuality of obligation (Grundsatz
der Tatsaechlichkeit des Sollens)’ ∃U !U [16, p. 249] — not only as
of existing independently of social agents, but just of the one that
exist.

And the trap shuts. Indeed, his idea of true states of affairs
as logically consistent conceptual objects taken together with the
corrupted formal distinction between the conceptual objects which
are capable of having factual instantiations and those that are not
(see section 7 and note 9 above) results in that formally there is
simply no room for any other kinds of conceptual objects to be
taken as existing in the non-modal part of his Deontik.16

Neither there is any in the deontic part of his system. Agential
ought, when taken altogether with all its consequents in the determi-
nistic way (see section 8 above), clearly overlaps with unconditional
obligation. This is the philosophical background for Mally’s ‘most
surprising consequences’ (34)–(35), which follow out of his Theorem
22 [16, p. 269].

16This is particularly why Lokhorst sees Mally’s Axiom IV as redundant [12].
However, his suggestion to replace it with !U will turn Mally’s unconditional
obligation into unconditional agential ought.
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10 Conclusion
In his Deontik Mally has made a number of powerful distinctions
significant in what regards logic of norms. These are the distinctions
between
a) Actual, or material, and intensional, or formal states of affairs;
b) Material and formal implications as holding in the case of two
mentioned in a);
c) Agential ought and obligation.

All the distinctions are grounded in his object theory and have
proved to be crucial to the development of the logic of norms after
Mally. In 1926, the ideas of (a) and (b) were already known in the
logical community [6], but he is apparently a pioneer of the idea
of (c)-distinction which has started to be developed in the logical
systems of norms in the last decades of the XXth century. Unfortu-
nately, in his formalisms he got all the three distinctions confused
and this led to the system’s collapse. However, in the paper, more
evidence is suggested to support the thesis that Mally’s pioneering
effort deserves rehabilitation rather than contempt [12].
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What trends in non-classical logic
were anticipated by Nikolai Vasiliev?
Vladimir I. Markin

abstract. In this paper we discuss a question about the
trends in non-classical logic that were exactly anticipated by Niko-
lai Vasiliev. We show the influence of Vasiliev’s Imaginary logic on
paraconsistent logic. Metatheoretical relations between Vasiliev’s
logical systems and many-valued predicate logics are established.
We also make clear that Vasiliev has developed a sketch of original
system of intensional logic and expressed certain ideas of modal
and temporal logics.

Keywords: Nikolai Vasiliev, imaginary logic, syllogistic, para-
consistent logic, many-valued logic, intensional logic, modal logic,
temporal logic

A century has passed since the publication of logical works of
outstanding Russian logician Nikolai Vasiliev. Now he is rightfully
considered to be the founder of non-classical logic together with
 Lukasiewicz, Lewis, and Brouwer. Vasiliev has published only three
papers on logic between 1910 and 1913, but these papers gave long
lasting effect on the development of non-classical logic in 20-th cen-
tury.

There are various opinions on the subject of what trends in Non-
classical logic were exactly anticipated by Nikolai Vasiliev.

Vasiliev is ordinary regarded to be the forerunner of paraconsis-
tent logic. It is true that Vasiliev’s idea to construct a consistent
logic of contradictory world (Imaginary, non-Aristotelian logic) is re-
ally in keeping with some informal attitudes of paraconsistent logic.

Before paraconsistent logic was set up, some researchers consid-
ered Vasiliev’s works to contain the ideas of many-valued logic. The
reason for this opinion was that Vasiliev introduced the third form of
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propositions (‘indifferent’, or contradictory statements) along with
affirmative and negative statements. Besides, Vasiliev put forward
an idea of logic of n dimensions which has n initial qualities of
propositions.

We’ll also make clear that Vasiliev has developed a sketch of orig-
inal system of intensional logic and expressed certain ideas of modal
and temporal logics.

1 Imaginary logic: consistent logic of contradictory
world

The best known Vasiliev’s logical system is his Imaginary non-
Aristotelian logic — one of the first ever non-classical logical theo-
ries.

Inspired by the ideas of non-Euclidean geometry contributed by
his colleague from Kazan University Nilolai Lobachevski, Vasiliev
in his paper ‘Imaginary (non-Aristotelian) logic’ [1, pp. 53–93] con-
structed a deductive theory of syllogistic kind. The language of this
theory contains besides affirmative and negative propositions con-
tradictory (so called indifferent) ones with syllogistic copula ‘is and
is not simultaneously’. According to Vasiliev, such propositions are
false in our terrestrial world but can turn to be true in a certain
imaginary world.

A. Arruda was the first who appreciated Vasiliev as a forerunner
of paraconsistent logic. On the basis of Vasiliev’s ideas she formu-
lated three propositional calculi V1–V3 useful as a logical part of
non-trivial inconsistent theories [7].

V3 calculus is the most close to Vasiliev’s Imaginary logic. It
includes standard negation (¬) and conjunction (&) together with
their non-classical analogs − and ·. In contrast to classical connec-
tives, non-classical negation (−) can be applied only to propositional
variables, and non-classical conjunction (·) concatenates a variable
and its negation: γ̄ and γ · γ̄ are the formulas if γ is a proposi-
tional variable. In the system V3 formulas γ, γ̄, γ · γ̄ are pairwise
incompatible, and the law of excluded forth γ ∨ γ̄ ∨ γ · γ̄ is valid.

However, V3 can not be regarded as an adequate formalization
of Vasiliev’s Imaginary logic. The language of propositional logic
is too poor to solve this problem. Imaginary logic was formulated
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by Vasiliev as a syllogistic of special kind, and the law of excluded
forth is valid here only for singular propositions.

Vasiliev himself singled out the following types of basic proposi-
tions in Imaginary logic (v is an arbitrary singular term, S and P
are any universal terms):

(1) singular :
‘v is P ’ (we’ll use for them symbolic notation J1vP ),
‘v is not P ’ — J2vP ,
‘v is and is not P ’ — J3vP ;

(2) universal :
‘Every S is P ’ — A1SP ,
‘Every S is not P ’ — A2SP ,
‘Every S is and is not P ’ — A3SP ;

(3) definite particular :
‘Some S are P, and all the rest of S are not P ’ — T1SP ,
‘Some S are P, and all the rest of S are and are not P ’ — T2SP ,
‘Some S are not P, and all the rest of S are and are not P ’ — T3SP ,
‘Some S are P, some S are not P, and all the rest of S are and are
not P ’ — T4SP .

In addition Vasiliev used indefinite particular propositions:
‘Some S are P ’ — I1SP ,
‘Some S are not P ’ — I2SP ,
‘Some S are and are not P ’ — I3SP .

T. Kostyuk and V. Markin [3] constructed the calculus IL with
initial constants J1, J2, J3, I1, I2, I3 that is an adequate for-
malization of Vasiliev’s Imaginary logic. IL contains the following
deductive postulates.

Axiom schemes:

A0. Propositional tautologies,
A1. ¬(J1vP & J2vP ), A5. (J1vP & J1vS) ⊃ I1SP ,
A2. ¬(J1vP & J3vP ), A6. (J2vP & J1vS) ⊃ I2SP ,
A3. ¬(J2vP & J3vP ), A7. (J3vP & J1vS) ⊃ I3SP ,
A4. J1vP ∨ J2vP ∨ J3vP , A8. I1SS.
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Rules:

R1.
A ⊃ B,A

B
, R3.

(J1vS & J2vP ) ⊃ A

I2SP ⊃ A
,

R2.
(J1vS & J1vP ) ⊃ A

I1SP ⊃ A
, R4.

(J1vS & J3vP ) ⊃ A

I3SP ⊃ A

(in R2–R4 the term v does not occur in А).

Definitions of universal and definite particular propositions:
A1SP 
 ¬I2SP & ¬I3SP ,
A2SP 
 ¬I1SP & ¬I3SP ,
A3SP 
 ¬I1SP & ¬I2SP ,
T1SP 
 I1SP & I2SP & ¬I3SP ,
T2SP 
 I1SP & ¬I2SP & I3SP ,
T3SP 
 ¬I1SP & I2SP & I3SP ,
T4SP 
 I1SP & I2SP & I3SP .

Formal counterparts of all the laws of Imaginary logic which
Vasiliev marked out are provable in IL.

The semantics of IL proposed by T. Kostyuk and V. Markin [3]
is based on assignment several extensional characteristics to each
universal term — its extension, anti-extension and contradictory
domain. Such an idea was implicitly presented in Vasiliev’s text.

Define IL-model as follows: < D, φ, ψ1, ψ2, ψ3 >, where D ̸= ∅,
φ(v) ∈ D, ψ1, ψ2, ψ3 are functions which put in correspondence ev-
ery universal term P with a subset of D and satisfy the follow-
ing conditions: ψ1(P ) ̸= ∅, ψ1(P ) ∩ ψ2(P ) = ∅, ψ1(P ) ∩ ψ3(P ) =
∅, ψ2(P ) ∩ ψ3(P ) = ∅, ψ1(P ) ∪ ψ2(P ) ∪ ψ3(P ) = D.

Informally, ψ1(P ) is an extension of P, ψ2(P ) is an anti-extension
of P, аnd ψ3(P ) is a contradictory domain with respect to P.

Truth definitions for atomic formulas in a model
< D, φ, ψ1, ψ2, ψ3 >:
| J1vP |= 1 iff φ(v) ∈ ψ1(P ),
| J2vP |= 1 iff φ(v) ∈ ψ2(P ),
| J3vP |= 1 iff φ(v) ∈ ψ3(P ),
| I1SP |= 1 iff ψ1(S) ∩ ψ1(P ) ̸= ∅,
| I2SP |= 1 iff ψ1(S) ∩ ψ2(P ) ̸= ∅,
| I3SP |= 1 iff ψ1(S) ∩ ψ3(P ) ̸= ∅.
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Truth definitions for complex formulas are usual.
It can easily be shown that the truth conditions for the forms of

universal propositions are the following:
| A1SP |= 1 iff ψ1(S) ⊆ ψ1(P ),
| A2SP |= 1 iff ψ1(S) ⊆ ψ2(P ),
| A3SP |= 1 iff ψ1(S) ⊆ ψ3(P ).

A formula A is true in a model < D, φ, ψ1, ψ2, ψ3 > iff | A |= 1
in this model. A formula A is valid iff it is true in every model.

The adequacy of the semantics for IL was proved by T. Kostyuk in
her Ph.D. thesis ‘Reconstruction of N.A. Vasiliev’s logical systems
by means of modern logic’ defended in Lomonosov Moscow State
University in 1999.

2 Logic of n dimensions and n-valued logic
Some researchers (L. Chwistek, A.N. Maltsev, G.N. Kline,
N. Rescher, M. Jammer, V.V. Anosova) considered Vasiliev to be a
predecessor of many-valued logic. It appears that such an opinion
is grounded on the three types of propositions’ quality in his Imag-
inary logic. Moreover, in the paper ‘Imaginary (non-Aristotelian)
logic’ Vasiliev advanced an idea of possible development of the logic
of n dimensions [1, pp. 76–77]. For him, such systems differ in a
number of types of propositions varying in quality. Aristotelian syl-
logistic is bidimensional, imaginary logic has three dimensions. In
general, a logic of n dimensions must contain n types of proposi-
tions with different qualities. Vasiliev himself did not develop these
idea into a logical theory.

The reconstruction of the logic on n dimensions was realized by
T. Kostyuk [2]. She formulated an exact and intuitively transpar-
ent semantics for syllogistic language with n types of propositions
varying in quality along with the adequate axiomatization.

The system IL can be in a natural way extended to syllogistics
ILn with arbitrary number of propositions with different qualities.

There are n syllogistic constants for singular (J1,J2, . . . ,Jn),
universal (A1,A2, . . . ,An) and indefinite particular (I1, I2, . . . , In)
propositions of different quality. Let JivP means that an individual
v stands in i -th qualitative relation to P, A1SP — every object
from S stands in i -th qualitative relation to P, I1SP — some object
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from S stands in i -th qualitative relation to P. When i = 1 we have
a form of affirmative proposition with corresponding quantity. It is
convenient to suppose the formulas with i = n to be the forms of
negative propositions.

ILn-model is a structure < D, φ, ψ1, ψ2, . . . , ψn >, where D ̸= ∅,
φ(v) ∈ D, ψi(P ) ⊆ D, ψ1(P ) ̸= ∅, ψi(P ) ∩ ψj(P ) = ∅, where
1 ≤ i, j ≤ n and i ̸= j; ψ1(P ) ∪ ψ2(P ) ∪ . . . ∪ ψn(P ) = D. In
this semantical framework each universal term is connected with n
extensional characteristics.

The truth definitions for atomic formulas are the following:
| JivP |= 1 iff φ(v) ∈ ψi(P ),
| AiSP |= 1 iff ψ1(S) ⊆ ψi(P ),
| IiSP |= 1 iff ψ1(S) ∩ ψi(P ) ̸= ∅.

Truth definitions for complex formulas are usual.
A formula A is true in a model < D, φ, ψ1, ψ2, . . . , ψn >

iff | A |= 1 in this model. A formula A is valid iff it is true
in every model.

The set of ILn-valid formulas is axiomatized by the calculus ILn

with initial syllogistic constants J1,J2, . . . ,Jn, I1, I2, . . . , In. Uni-
versal propositions can be defined as follows:
AiSP 
 &j̸=i¬IjSP .

There are the following deductive postulates in ILn:
A0. Propositional tautologies,
A1. ¬(JivP & JjvP ), where i ̸= j,
A2. J1vP ∨ J2vP ∨ . . . ∨ JnvP ,
A3. (JivP & J1vS) ⊃ IiSP ,
A4. I1SS,

R1.
A ⊃ B,A

B
,

R2.
(J1vS & JivP ) ⊃ A

IiSP ⊃ A
(v does not occur in А).

The semantical adequacy for ILn was proved by T. Kostyuk [2].
System IL turned to be three-dimensional case of many-

dimensional logic, while a two-dimensional case is presented by the
system of traditional syllogistic with singular terms [6] that is the
extension of well-known  Lukasiewicz’ syllogistic.
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It should be mentioned that the appearance of a proposition of
a new quality does not support by itself the revision of principle of
two-valuedness. Vasiliev did not consider the possibility of the third
value seriously. He preferred to operate with classical valuations
‘true’ and ‘false’.

In what follows we consider the issue of connection between
Vasiliev’s logical legacy and many-valuedness in a different man-
ner — as a problem of metalogical relationship between logic of n
dimensions and many-valued logic.

In [5] we proposed an intuitively clear and simple adequate trans-
lation of Imaginary logic (IL calculus) into the quantified three-
valued logic and proved that this translation is an embedding.

This result was generalized to an arbitrary logic of n dimensions
by Igor Alexeev in his graduation thesis ‘Vasiliev’s logic of n dimen-
sions and many-valued predicate logic’, prepared at the Department
of Logic, Lomonosov Moscow State University in 2009.

He has showed that axiomatic calculus ILn, formalizing logic of
n dimensions, is embedded into monadic n-valued predicate logic
with the following properties:

(1) j-operators are expressible for any possible value;

(2) standard propositional connectives take the same values for
classical arguments (1, 0) as in classical logic;

(3) formulas of the type ∀αA take the value 1 iff for arbitrary
value of α, the value of A is 1, and take the value 0 iff for
some value of α, A takes the value 0;

(4) formulas of the type ∃αA take the value 1 iff for some value of
α, A takes the value 1, and take the value 0 iff for arbitrary
value of α, the value of A is 0.

An obvious example of such a system is quantified n-valued
 Lukasiewicz’ logic  Ln.

 Ln-model is a structure < D, φ, ψ1, ψ2, . . . , ψn >, where D ̸= ∅,
φ(v) ∈ D, ψ1, ψ2, . . . , ψn are the functions which put in correspon-
dence every predicate symbol P with a subset of D and satisfy the
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following conditions: ψi(P )∩ψj(P ) = ∅, for any i ̸= j from 1 up to
n; ψ1(P ) ∪ ψ2(P ) ∪ . . . ∪ ψn(P ) = D.

Let g be an assignment for variables: g(α) ∈ D for arbitrary
variable α.

The set of possible values for formulas is {1, n−2
n−1 , . . . ,

1
n−1 ,0}.

Valuation for terms and formulas is defined as follows:

Vg(α) = g(α), Vg(v) = φ(v),

Vg(Pt) = n−i
n−1 iff Vg(t) ∈ ψi(P ),

Vg(¬A) = 1 − Vg(A),
Vg(A&B) = min(Vg(A),Vg(B)),
Vg(A ∨B) = max(Vg(A),Vg(B)),
Vg(A ⊃ B) = min(1,1 − Vg(A) + Vg(B)),

Vg(∀αA) = n−i
n−1 iff Vg′(A) = n−i

n−1 for some g′ =α g, and there
is no g′ =α g such that Vg′(A) < n−i

n−1 ,

Vg(∃αA) = n−i
n−1 iff Vg′(A) = n−i

n−1 for some g′ =α g, and there
is no g′ =α g such that Vg′(A) > n−i

n−1

(g′ =α g means the following: g′ differs from g at most in assign-
ment for α).

j-operators are expressible in  Ln by the following interpretation:

Vg(jiA) = 1, if Vg(A) = n−i
n−1 , otherwise – Vg(jiA) = 0.

Formula A is valid in  Ln-model iff Vg(A) = 1, for any assignment
g. Formula A is valid iff A is valid in any  Ln-model.

The embedding operation from logic of n dimensions ILn into
quantified n-valued logic  Ln is defined in two stages.

First define the mapping ⋆ of the set of ILn-formulas into the set
of formulas of quantified n-valued  Lukasiewicz’ logic:

(JivP )⋆ = jiPv,
(IiSP )⋆ = ∃x(j1Sx & jiPx),
(¬A)⋆ = ¬A⋆,
(A⊗B)⋆ = A⋆ ⊗B⋆, where ⊗ is any binary connective.

Further on the basis of ⋆ define the embedding operation Θ:

Θ(A) = (∃xj1S1x & ∃xj1S2x & . . . & ∃xj1Smx) ⊃ A⋆,
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where A is an arbitrary formula of ILn language, and S1, S2, . . . , Sm
is the list of all universal terms in A.

This result shows the existence of a natural interpretation of any
Vasiliev’s n-dimensional logic (including his Imaginary logic) in a
quantified many-valued logic’s framework.

3 Imaginary logic as intensional logic

In the final part of the paper ‘Imaginary (non-Aristotelian) logic’
Vasiliev made an attempt to formulate intensional semantics for the
propositions of his logical system ‘Every S is P ’, ‘Every S is not P ’,
‘Every S is and is not P ’.

Vasiliev compares Imaginary logic with non-Euclidian geometry
and poses a question about possible interpretation of Imaginary
logic in terms of our terrestrial world:

‘We can propose a real interpretation of Non-Euclidian
geometry, we can find in our Euclidian space the essences
with non-Euclidean geometry. . . A real interpretation
of Lobachevsky’s geometry is a geometry of surface
with constant negative curvature, of so called pseudo-
sphere. . . In exactly the same way it is possible to find
in our world the essences with the logic analogous to
imaginary logic’ [1, p. 81].

Vasiliev proposed three ‘terrestrial’ interpretations of Imaginary
logic. The core idea of the most interesting interpretation is to
associate with each term of a categorical statement not a set of
individuals but a concept considered as a set of characters and to
treat syllogistic constants as denoting intensional relations between
concepts. According to this approach, ‘Every S is P ’ means that S
contains all characters from P. ‘Every S is not P ’ means that, for
an arbitrary character from P, the concept S contains contradictory
one, ‘Every S is and is not P ’ means that S contains some characters
from P as well as characters which contradict to some others.

Vasiliev emphasized that the logic of concepts based on such se-
mantics differs from the main version of Imaginary logic as well as
from the standard syllogistic. For example, some first figure syllo-
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gisms with minor negative premise are valid: ‘Every M is P. Every
S is not M. Hence, every S is not P ’.

Vasiliev’s ideas, related to this fragment of his paper, were expli-
cated semantically by V. Markin and D. Zaitsev [8].

Let L be a set of literals — positive and negative characters —
{p1,∼ p1, p2,∼ p2, . . .}.

Then a concept is an arbitrary non-empty and consistent subset
of L, i.e. a set α ⊆ L, which satisfies the following conditions:

(i) α ̸= ∅; (ii) there is no pi: pi ∈ α and ∼ pi ∈ α.

Let M be the set of all concepts. We define an operation ∗ on М,
which assigns to every concept α a contrary concept α∗:

pi ∈ α∗ iff ∼ pi ∈ α and ∼ pi ∈ α∗ iff pi ∈ α.

Vasiliev himself used the same operation:

‘If the concept A consists of characters p, q, r, s, . . . then
the concept non-A must consist of characters non-p, non-
q, non-r, non-s, and so on’ [1, p. 88].

Vasiliev proposed semantical definitions only for universal state-
ments. As before, let A1SP be the form of universal affirmative
statements ‘Every S is P ’, A2SP — the form of universal negative
statements ‘Every S is not P ’, and A3SP — the form of universal
indifferent statements ‘Every S is and is not P ’.

Let d be a function assigning arbitrary concepts to terms:
d(P ) ∈ M. Define a valuation associated with d:
| A1SP |d= 1 iff d(P ) ⊆ d(S),
| A2SP |d= 1 iff d(P )∗ ⊆ d(S),
| A3SP |d= 1 iff d(P ) ∩ d(S) ̸= ∅ and d(P )∗ ∩ d(S) ̸= ∅.

However to formulate complete system of Imaginary logic one
needs more then just universal statements. In the main version of
this logic Vasiliev uses as well particular statements: ‘Some S are
P ’ (I1SP ), ‘Some S are not P ’ (I2SP ) and ‘Some S are and are not
P ’ (I3SP ). V. Markin and D. Zaitsev [8] offer the following truth
definitions for the particular propositions:
| I1SP |d= 1 iff d(P )∗ ∩ d(S) = ∅,
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| I2SP |d= 1 iff d(P ) ∩ d(S) = ∅,
| I3SP |d= 1 iff d(P ) \ d(S) ̸= ∅ and d(P )∗ \ d(S) ̸= ∅,
and usual truth definitions for complex formulas.

A formula is valid in this ‘intensional’ semantics iff it takes value
‘1’ under any assignment d.

The set of valid formulas is axiomatized by the calculus IL2 con-
taining propositional tautologies and axiom schemes:

A1. (A1MP&A1SM) ⊃ A1SP , A10. ¬(A1SP & I2SP ),
A2. (A1MP&A2SM) ⊃ A2SP , A11. ¬(A2SP & I1SP ),
A3. (A2MP&A1SM) ⊃ A2SP , A12. I1SP ⊃ I1PS,
A4. (A2MP&A2SM) ⊃ A1SP , A13. I2SP ⊃ I2PS,
A5. (A1MP&I1SM) ⊃ I1SP , A14. A1SP ⊃ I1SP ,
A6. (A1MP&I2SM) ⊃ I2SP , A15. A2SP ⊃ I2SP ,
A7. (A2MP&I1SM) ⊃ I2SP , A16. A3SP ≡ ¬I1SP&¬I2SP ,
A8. (A2MP&I2SM) ⊃ I1SP , A17. I3SP ≡ ¬A1SP&¬A2SP .
A9. A1SS,

The only rule is modus ponens.
Thus, Vasiliev has developed a sketch of the alternative version

of Imaginary logic based on intensional interpretation of its propo-
sitions. He showed the manifold of non-classical logical systems,
which are formulated in the same language and differ from each
other in sets of laws.

4 Some ideas of modal and temporal logics
In his first paper ‘On particular statements, the triangle of opposi-
tions, the law of excluded forth’ Vasiliev proposed to treat singular
statements as temporal i.e. containing either temporal parameter
or temporal characteristic. Vasiliev differentiates two kinds of sin-
gular statements: ‘statements on the fact’ and ‘statements on the
concept’.

Singular statements on the fact refer to an individual in the cer-
tain moment in time, to definite state of the individual in the history
of its existence:

‘The copula of such statements presumes the exact des-
ignation of temporal moment, for the subjects of such
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singular statements — perceptions and mental represen-
tations — always refer to the certain moment of time’ [1,
p. 51].

Vasiliev gives the following examples of the statements on the fact:
‘Ivan Ivanovich is drunk now’, ‘NN passed away at 5 a.m. yester-
day’, ‘NN is sick today’.

The subject of the statements on the concept represents the set
of all possible states of an individual over the time of its existence:

‘The subject of singular statement Caesar, Goethe etc.
can be a concept, and then it symbolizes all terrestrial
life of Caesar and Goethe, it subordinates the set of
certain moments of Caesar’s and Goethe’s life to the
unity of the concept’ [1, p. 51];

‘All these certain moments in Caesar’s life: Caesar with
the robbers, Caesar as the conqueror of Vercingetorix,
Caesar as the monarch, Caesar as the lover of Cleopa-
tra, Caesar killed with conspirators’ dagger, –– all of
them are symbolized in the united concept ‘Caesar’ in
the same way as Caesar, Pompeius and Gaius are sym-
bolized in the united concept of human being’ [1, p. 50].

Then there are three kinds of the statements on the concept:
(1) an individual always has a property, (2) an individual never
has a property, (3) an individual sometimes has a property, and
sometimes has not:

‘Indeed, the predicate of humanity is appropriable to
Caesar in every moment of his existence, the predicate of
triangularity is not appropriable at all, and the predicate
of sickness is appropriable to some moments, and is not
appropriable to others’ [1, p. 50].

Vasiliev stresses that singular statements on the fact and singular
statements on the concept obey different logical laws. The law of
excluded middle is valid for the statements on the fact. For example,
only one of two statements ‘Ivan Ivanovich is drunk now’ and ‘Ivan
Ivanovich is not drunk now’ is true. Statements on the concept
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obey another law –– the law of excluded forth. For example, one
of three statements ‘Vega always shines’, ‘Vega never shines’, ‘Vega
sometimes shines, and sometimes does not’ is true, and these three
propositions are pairwise incompatible.

Vasiliev also supposes any singular statement on the concept to
express the certain rule:

‘They describe time series as a rule, and the basic law
for rules, the law of excluded forth acts for them’ [1,
p. 51].

Thereby, Vasiliev in fact treats these statements as modal.
Vasiliev also considers the modal treatment of the propositions in

his main paper ‘Imaginary (non-Aristotelian) logic’. Here he studies
statements with universal, but not singular subjects.

In this paper Vasiliev proposed not only intensional but also
modal interpretation of categorical statements containing in Imag-
inary logic:

‘If we take a concept as a subject of a statement, then
any predicate refers to it either as 1) this predicate is
necessary for the concept. . . , and we express this fact
in affirmative statement about the concept. . . , or as 2)
this predicate is impossible for the concept. . . , and we
express this fact in negative statement about the con-
cept. . . , or as 3) this predicate is compatible with the
concept. . . The third case should be expressed in special
accidental statement about the concept. . . This state-
ment has its special copula different from the copulae
of affirmative and negative statements’ [1, pp. 81–82].

The character of this copula is clear from another fragment where
Vasiliev specifies the form of the accidental statements: ‘S possibly
is and possibly is not P ’ [1, p. 125].

Obviously, these modalities used by Vasiliev describe the type of
predication, the mode of connection between the subject and the
predicate, i.e. they are de re modalities.

Affirmative propositions are treated as containing modality of
necessary inherence of a property to an individual, negative as con-
taining modality of necessary lack (or impossibility for an individual
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to have a property), and indifferent as containing modality of con-
tingency.

The formal explication of modal interpretation of Imaginary logic
by means of special logic with de re modalities was proposed by
V. Markin in [4]. The translation of formulas of the system IL
into the language of logic for de re modalities was presented. It
was demonstrated that the translations of all IL theorems are valid
in this modal logic, while the translations of all theses rejected by
Vasiliev are not valid here. Therefore, this modal interpretation is
reasonable just for the main version of Imaginary logic. In contrast
to ‘intensional interpretation’ it is not required to revise the set of
its laws.
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The laws of reason and logic in Nikolai
Vasiliev’s system1

Ivan B. Mikirtumov

abstract. The ideas of Russian logician Nikolai Vasiliev con-
cerning the status of the law of contradiction are discussed in
this article. The arguments presented in his article ‘Logic and
meta-logic’ are deeply explored bringing to light the weakness of
his philosophical theory. His ‘imaginary’ logic is a system that
describes not the system of the laws of reason, but relations in
which objects of some ontology stand to each other. Comparing
the fundamental idea of Vasiliev to the classical concepts of reason
brings us to a better understanding of the fact that philosophical
intention of Vasiliev has been left unfulfilled.

Keywords: laws of reason, laws of logic, Nikolai Vasiliev’s logic

The issue of the correlation between traditional logic and mod-
ern one is one of those which retain their controversial nature for
many years. It is not surprising, because, as long as logic stays
a philosophical science, it keeps asking itself about its origin and
its subject. In this article, the issue of correlation of the laws of
logic and those of reason is discussed being put within the con-
text of ideas of a well-known Russian logician, Nikolay Vasiliev. In
Vasiliev’s works the investigation of the nature of logical laws acts
as a foundation for building the systems of non-classical logic. The
intrinsic connection between solving a philosophical problem of the
nature of logical laws and the possibility of building a new logic
seemes obvious to Vasiliev. Although it does not seem that obvi-
ous to us anymore, Vasiliev’s theories keep attracting vivid interest
whenever the nature of the logical is discussed.

1The investigation is supported by Russian Foundation for Humanities, grant
№ 11-03-00601а.
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My interest in Vasiliev’s logical theory has been aroused by the
fact that some of my colleges have recently developed a deep interest
in his theories and seem to have found in his writings a range of
fascinating logical ideas. The fact of these ideas being fertile does
not cause any doubts. Though, it seems to me, that it is not so
much the ideas themselves that are fertile but the ingenious and
enthusiastic incentives given to them by Vasiliev.

In this article I am going to focus on his work Logic and meta-
logic, where he provides a foundation for a statement which is both
crucial and fundamental for his ‘Imaginary logic’. According to this
statement: ‘Thinking may change, but it is not everything there
that is changeable’ and also ‘there are some absolute logical truths
but it is not all the truths of logic that are absolute’ [1, p. 331(96)].

This statement is grounded by Vasiliev with several, partly in-
terconnected arguments, which I intend to analyze critically. Let’s
briefly recreate the way of his argumentation.

The first argument points out the existence of analytical and syn-
thetic truths, whereof the first are necessary while the second are
not. Do all the laws of logic have analytical character? This is the
question which Vasiliev raises drawing on the similarity of the laws
of logic and those of geometry. Vasiliev keeps stressing the paral-
lelism existing between his imaginary logic and the imaginary logic
of Lobachevsky.

The second argument is based on this similarity. Vasiliev argues
that, if the 5th postulate of Euclid is independent from the oth-
ers and so maybe substituted by some other argument without any
contradiction arising, then the similar condition should lead to the
similar consequence for the law of contradiction. In other words,
having got rid of the law of contradiction, that is allowed contra-
diction as logically possible, we, in case that it is not dependant on
other logical laws, should not have any non-contradictory results.
The assumption seems paradoxical because, while, on the one hand,
a contradiction is allowed, on the other hand, we expect it not to
lead to a contradiction, that is, to this very thing which has just
been allowed. In fact, Vasiliev, in his own, indistinct way, presup-
poses both inside and outside ways of considering logical reasoning.
These ways today we would call the levels of meta-language and
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object-language. Allowing a contradiction as possible, in Vasiliev’s
theory, means that predication may turn out both true and false
at the same time, but the fact itself either takes place or does not.
The further developing of this idea leads Vasiliev to two kinds of
negation, whereas the logicians following him this way have been
brought to constructing many-valued and paraconsistent systems.

The third argument is an ontological one. Vasiliev points at the
world of fulfilled contradiction created in the systems of Nicolaus
Cusanus and Hegel. ‘When they were thinking contradiction as ex-
istent and actual, were not they thinking logically?’, Vasiliev asks.
Being carried away, as it were, by this argument, he speaks further
on about the Earthly logic of the law of contradiction setting it
against the logic of some remote corner of our Universe, where con-
tradictory things may exist. In that remote place, he argues, reason
would become accustomed to the triple division of propositions into
the true, the false, and those having the third meaning, and would
act accordingly. It should be mentioned again that the assessments
of such a reason would stay double-semantic, that is, noticing, or
grasping a contradiction as existing, such a reason would not be
able to assert the existence of a contradiction along with its ab-
sence. Hence, Vasiliev derives the dependence of some logical laws
on the conditions of experience, e.g. he tries to provide a foundation
for their empirical nature. Changing of empirical sphere leads then
to changing of their laws. In this he follows Kant, who divided logic
into the general (pure) one and the applied, although, according
to Kant, the latter is the sphere where the laws of pure logic are
applied to specific experience.

Empirical nature of some logical laws is founded by two following
lines of argumentation.

Lets’ follow the first one. A criterion of any law’s empirical char-
acter consists in its ability to be eliminated. It means that a law
may be substituted by another so as to retain its non-contradictory
nature. It should also be said that Vasiliev considers the empirical
as a criterion for being beyond logic and rationality. The empirical
character of the law of contradiction is provided with grounds by
the very fact that imaginary logic does exist — the logic where con-



The laws of reason and logic in Nikolai Vasiliev’s system 139

tradictory predicating is just one of the ways to predicate, although
the logic of propositions is still the classical one.

The second proof of the empirical character of the law of contra-
diction is based on Kant’s formula of this law. According to this
formula ‘There is no object which predicate can be contradictory
to the object itself’. Vasiliev founds his law of contradiction on
incompatibility of objects’ qualities, i.e. on it being impossible to
predicate more than one quality simultaneously, which, according
to Vasiliev, creates a basis for negation. Incompatibility of qualities,
argues Vasiliev, is an empirical condition.

The forth argument brought forward by Vasiliev actually is the
developing of the third. Empirical logic is claimed to be something
which is created in the process of ‘life and struggle’ and serves as
‘a live organism, a means of struggle, and a reflection of both envi-
ronment and a man’.

If we forget for a while who Vasiliev is, and make an attempt at
an objective investigation of his arguments, then we can’t but admit
that they are hopeless.

His referring to the imaginary logic of Lobachevsky is hardly suit-
able. As it is well known, Lobachevsky first tried to prove the
5th postulate of Euclid expecting that the supposition of it being
negated would lead to a contradiction. After he had found that it
hadn’t been the case, and having discovered a new geometry, he
tried to find a model for this new science. Later on, Beltramy man-
aged to do this. As for the law of contradiction, as Vasiliev sees it,
the case is completely different. When he speaks about predication,
he postulates its triple character straight away, at the same time,
strongly emphasizing the retaining of classical laws on meta-level.
Thus not only the system of postulates, but the very principle of
the theory functioning is being changed. While with negation of the
fifth postulate of Euclid nothing has happened either to the ways
of constructing conclusions, or to the character of semantically as-
sessing geometrical statements, negation of the law of contradiction
by Vasiliev turns out to belong to an ‘inner’ sphere of some phe-
nomena, namely, to the phenomena of predication, but not to logic
itself. Predication, in its turn, may be three-valued. Vasiliev does
not examine whether this triple character is compatible with other
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principles of classical logic. The result of such an examination is
easily predictable, but Vasiliev does not comment on changing the
meaning of the thesis he defends.

Just as far from Vasiliev’s theoretical efforts stays intuitionism,
which, as we remember, rejects the law of the excluded third as a
result of having adopted semantic attitudes different from those of
classical logic. Here, we may see a clear case of applying a method of
investigation correlated with that of Lobachevsky. Vasiliev’s point-
ing out the synthetic character of the statement ‘The sum of a tri-
angle’s angles equals two square angles’ corresponds with Kant’s
views, but it has nothing to do with the laws of logic. Moreover, if
we add to this formula a concretization ‘on the surface with a zero
curve’, then we’ll have a still synthetic proposition, but of an apo-
dictic character, which would reflect, according to Kant, a result
of pure contemplation. It is rather risky to refer to a distinction
between analytical and synthetic in Kant’s theory for the sake of
purely logical investigation. In his Critique of Pure Reason, syn-
thetic character is asserted for elementary arithmetical equations,
while general laws, such as commutativeness of adding, are claimed
to be analytical. To criticize Kant’s concepts of analytical and syn-
thetic is a common place thing. In fact, according to Kant, when
we are thinking the sum 5 + 7, we are not thinking the number ‘12’.
But are we thinking ‘2’ anyhow differently from the sum ‘1 + 1’? If,
when thinking a+b, we, according to Kant, are thinking b+a, does it
mean then, that when thinking (a+b)(c+d), we actually are think-
ing ac+ad+bd+bc as well? Concepts of analytical and synthetic are
interpreted by modern logic rather along Leibniz’s way of drawing
a distinction between truths of reason and truths of fact. Then, de-
duction of a logical law from a system of postulates of any concrete
logical system becomes a regulative of analytics of judgment. Kant
understands logic as a science of ‘necessary laws of understanding
and of reason in general, or what is one and the same, of the mere
form of thought as such’ [2, p. 528(320)]. He agrees with Leibniz
in this, and it shows also in his rejecting any possible psychological
roots of logic. Kant especially emphasizes, that logic is a rule for any
application of either the reason or understanding. Moreover, it is
such a rule, which is uncovered in the process of investigating of how
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understanding carries out its cognitive activities. Thus, to question
the thing, which is defined as a law of logic, would mean, according
to Kant, to deprive both reason and understanding of their capa-
bility to act. In the case of Vasiliev’s idea, and following Kant’s
way of thinking, we would have to bring forward a hypothesis, that
thinking is possible without the law of contradiction, that is, that
such a law is not logical. In this case, a difficulty arises: we should
decide whether it is with using the law of contradiction or without
it that we should discuss the results of accepting such hypothesis.
The example of Lobachevsky here cannot serve us a guiding point
because of the difference in the subject of investigation, which has
been already pointed out.

Ontological arguments demonstrated by Vasiliev are the weak-
est and most unconvincing. The concept ‘contradiction’ has many
meanings so that it is not advisable to mix up the meaning usu-
ally assigned to the term in logic with the meaning it acquires in
philosophical theory, where contradiction may be understood as the
presence of opposing tendencies in an object or a phenomenon. His
explaining the origin of the law of contradiction through referring
to ‘life and struggle’ just adds some not very sophisticated phy-
chologism to this terminological confusion. To say something in his
defense, we can remember here a lot of authors who exploit the con-
cept of contradiction as a metaphor not caring or caring too little
about either logical, or philosophical precision.2

Finally, the proofs of empirical nature of some logic laws fall
apart. The first one makes a logical circle as it explains the em-
pirical character of the law of contradiction through postulating the
possibility to build a logic without this law altogether. But, the
first step towards building of such a logic consists in claiming the
law of contradiction as not functioning in predicating. And there
are no attempts made, as we’ve seen, to consider whether the law
is compatible with other principles or not.

The second proof is based on the actually wrong understanding
by Vasiliev of Kant’s formula and on his changing the thesis, as it
were. Vasiliev takes no notice of Kant’s example ‘No uneducated

2Alen Badiou gives a good example of how simply logical interpretations of
the law of contradiction may be used for producing a postmodern text. See: [3].
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person is educated’ where we actually deal with contradictory pred-
icates. He keeps saying that ‘white’ and ‘black’ are incompatible
instead of talking about ‘black’ and ‘not-black’. Thus, instead of
considering the impossibility to negate actually a predicate an ob-
ject possesses, Vasiliev is considering the predicates which are not
logically related in this way. The law of contradiction is under-
stood by Kant as a general formal condition of knowledge agreeing
with itself, as condition sine qua non, which comes before the ques-
tion of truth is raised [2, pp. 558—559(358)]. Moreover, formality
here means independence from any content, and so much so, that
counter-posing of ‘black’ and ‘white’ contradicts Kant’s interpreta-
tion, where it is only for logical counter-position of ‘A’ and ‘not-A’
that the place is found. Kant thinks that understanding and reason
never deviate from conforming to necessary for them logical laws,
whereas all the mistakes and false concepts come from the actions of
sensual cognition: we confuse our subjective foundations for judg-
ments with objective ones, truth — with its appearance. The cause
and origin of all mistakes and false ideas, as Kant put it, lies in the
precipitation and rashness with which we use our understanding [2,
pp. 560–561(361)]. This remark by Kant is interesting in that it
does not allow of any alternatives to the existent logical laws. Rea-
son and understanding of a madman or of a primitive person act
in accordance with the same laws, which control and organize the
most perfect mind in the world.

That is why Vasiliev tries to avoid polemics with the tradition
of classical rationalism. Also, it is hardly suitable to mention Leib-
niz in this context because the latter, when describing the law of
contradiction, talks about the impossibility to simultaneously pred-
icate something to an object and to negate this predication; and
also, he explains the impossibility for a statement to be true and
to be negated at the same time: ‘. . . any proposition (be it either
an affirmative or a negative statement) may be either true, or false;
where, if a statement is true, then its negation is false; if a negation
is true, then it is the affirmation that is false. If the truth of some-
thing is negated, then (obviously) this something is false; whereas,
if something is negated as false, then it is true’ [4, pp. 299(138)]. In
his Theodicy Leibniz puts it this way: ‘of two contradictory propo-
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sitions one is necessary true, and the other is false’ [5, §44]. In his
Monadology Leibniz calls the law of contradiction a ‘great principle’,
due to which we ‘think as false that, which in itself contains a con-
tradiction’ [6, §31]. For Leibniz, as well as for Descartes, the laws of
logic belong to those which are absolutely necessary and indispens-
able for reason, to the eternal truths, that are uncovered by reason
without any other experience, but the experience of thinking itself,
and are innate to thinking. Certainly, as Leibniz observes, it is not
anyone that can uncover the truths innate to one’s consciousness.
This requires certain efforts, but if these efforts done, the result is
achieved which is apodictic [7, Book 1, Ch. 2, §12]. Here Leibniz is
more cautious than in the passages cited above. Uncovering of some
absolute truths requires, certainly, not any data of experience, but
carrying out intensive thinking activity in connection with experi-
ence. We can trace here the influence of Plato’s theory of knowl-
edge as remembering, which is related in his dialogue Menon. This
theory is interesting in its drawing a line between obvious truths,
which are easy to grasp and the truths, which can be uncovered
and understood only with the combined efforts of both a teacher
and a student. In epistemological logic such a division corresponds
to actual and potential knowledge. To the latter the knowledge of
truth of arithmetical equation belongs, in which two serious poly-
nomials are on the left and the right side: to get an assuredness in
an equation being true it is necessary to do the required calcula-
tions correctly. Plato, as well as Leibniz, would not place the law of
contradiction among truths of this kind, because its application is
a necessary condition for all thinking operations. This means that
the law of contradiction belongs to ever actual knowledge.

All in all, Vasiliev follows Mill’s interpretation of the law of con-
tradiction without escaping Mill’s lapse in argumentation pointed
out by E. Husserl in his Logical Investigations. As we know, Mill
claims the law to be empirical when there are no grounds for it to
be so. In other words, instead of scientific empiricism, the results
of which are not to be ignored, we are faced with the simple argu-
ments of common sense, which, in their turn, disguise the metaphys-
ical premises, that hold experience as the only source of cognitive
forms.
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So, as it happens, the whole article Logic and metalogic should
be considered as a failure. The intuition underlying this work is of
a more serious nature though.

To correctly assess possibilities of applications for Vasiliev’s ideas
it is worthwhile to remember the classical concept of the laws of
reason.

We cannot consider as trivial the statement which claims that
the laws of logic are the laws of reason as such. It is so not because
today we have a number of various ‘logics’, which someone may
consider to be alternatives to each other; and also, not because
Vasiliev apparently was the first to open the door for these logics to
emerge.

Classical concept of laws of reason goes down to Aristotle and
Leibniz. Hegel is undoubtedly among its supporters. I’m going
to present here some crucial points of this concept along with the
criticism aimed at them.

First of all, Leibniz holds the laws of logic to be those of rea-
son as well because they are discovered by reason itself as being
self-evident. Certainly, under scathing attacks of modern criticism
aimed at the theory of cognition the self-evidence of Leibniz and
Descartes may be shattered. Both these philosophers were helped
and supported by the natural light of reason given to men by God
and in its light showing the self-evident. Yet, our intuition is simi-
lar to that natural light only in that its effect is perceived by us as
something not dependant on our empirical self, but rather as a result
of functioning of transcendental grounds of our thinking. To some
extent, we may pass it by without paying much attention. What
intuition deals with is not as important as the way it functions. In
other words, the laws of reason are still obvious for us, though only
to that degree which is available for us.

Secondly, this degree of evidence (obviousness) is certainly much
weaker than the one Leibniz talks about. Leibniz’s obviousness was
issuing directly from God, who had given us this ability to investi-
gate truth, while ours is pre-determined empirically. This is caused
by the fact that, although these transcendental grounds of obvious-
ness have been formed out of the sphere of our conscious activity,
still it has occurred in the process of our forming as psychologically
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wholesome entities. It is here that the theoretical foundation lies for
claiming the laws of logic not the laws of a universal reason, but the
laws of a concrete, specific reason — the reason of a specific person,
specific period and so on.

Thirdly, Leibniz had given quite a successful development to
Plato’s and Aristotle’s teaching of ideas. Leibniz claims that God
can neither destroy nor reject an essence, though all the essences
had been contained in God’s reason before even the universe was
created. God of Leibniz as super-reason appears to be over laden
with all its creations — both essences and laws. If the hypothesis
of God is to be excluded, then there are nor essences neither laws.
There are only concepts left created by our concrete reason in the
process of reasoning. These concepts are chosen by us quite arbitrar-
ily according to the order and way which are at our disposal here
and now. That is why, hypothetically, any other way of creating
concepts and working with them is legal, as it were.

To what extent may the alternatives to actually existent reason
be represented by this reason itself? This is the question raised by
Vasiliev, and he gives the only possible answer — to no extent and
under no conditions. But, why is this so?

Independently from its source and from its either empirical or
historical state, reason always creates its laws. Reason does not have
this possibility to pick up laws while considering different options,
but it is always pre-determined by its transcendental ground. Not
having a possibility to act differently than it does, reason is deprived
of any possibility to contemplate an alternative model for itself. If
we want to present any way of reason’s functioning as a way possible
for it to realize, then actually existing reason just won’t be able to
assess this new way because it won’t be able to see itself acting along
the presented new scheme. This means that there is only one actual
logic which expresses reason’s laws, and everything deviating from
it just can not be logic because doesn’t come up to the requirements
set up by its definition. This is the way it all looks as seen in the
perspective of the classical teaching.

Yet, Vasiliev, when talking about meta-logic, has in mind exactly
logic, because, as he turns to empirical logics, by which he means
some ‘imaginary’ logics, he uncovers a sphere of formal description
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of arbitrary objects, which, just because being imaginary, can not be
logical. Vasiliev’s intuition is directed at a play with the axiomatic
of an arbitrary theory, which, due to some misunderstanding, has
happened to be applied to the sphere completely unsuitable for it, —
the sphere of logic. The value of Vasiliev’s approach for modern logic
lies in the fact that it chooses the logic as a universal instrument
for analyzing any system of relations. Yet, we should not forget
that such an application of logic is tied up not on its nature, but
on the fact that the form of logic makes it easier to grasp and
understand the very principle of systematic organization of arbitrary
objects relations. Logic as a canon of reason appears to be very
attractive for this role of an instrument of investigation of arbitrary
relations. Thus, Vasiliev’s approach fulfills those intentions of the
19th century’s philosophical tradition which considered logic as an
organon and tools of investigation and was expecting quite a lot
from logic’s merge with empirical sciences.

The questions remains open, whether any system of many-value
assignment is expressible by means of any meta-language. As it has
been already mentioned, Vasiliev retains meta-language as classical
so that, having agreed with the presented interpretation of his ideas,
we obtain either paraconsistent, or three-value logic, which is to be
interpreted in two-value meta-language. Thereby, all the philosoph-
ical pathos of building a foundation for an ‘imaginary logic’, as well
as all the efforts to eliminate the law of contradiction, just vanish,
or turn out as vain: it turns out that we classically argue about a
local non-classical application of reason, which may be interpreted
in plenty of other ways, which would inevitably bring us back to
classical reason. And why, we may ask, should we not try to realize
fully Vasiliev’s idea, that is to reason non-classically in meta-level?
For if, according to Vasiliev, the law of contradiction is not an em-
pirical one, then there is only one ground for using it in meta-level:
it is not an ‘imaginary’ reality, but an actual one which constitutes
the experience that makes us follow this law. It is clear why the
reasoning about real world, as well as this reasoning’s descriptions
in meta-language, should be regulated by the law of contradiction.
But turning to ‘imaginary’ world, where the law of contradiction
does not function, we, obviously, leave the sphere of actual, so that
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using the law of contradiction in meta-level lose any grounds or jus-
tifications. In fact, turning up, as it were, in an ‘imaginary’ world
we should have conformed to its reality, and rejected the law of con-
tradiction in meta-level as well. Although we physically stay in the
real world, when creating an ‘imaginary’ logic, we get transferred to
its world in our thoughts, and classical meta-language remains just
a means of correlating of the two worlds. The proper realisation of
Vasiliev’s ‘imaginary’ logic requires that it is built and interpreted
by means of ‘imaginary’ meta-logic.
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Technical systems in logic: questions
of formalization and automatic
verification
Antonina N. Nepeivoda

abstract. In the paper technical systems with counters are
considered as logical models. The questions of formalization in
temporal logic and automatic analysis via computational tree
transformations are discussed.

Keywords: temporal logic, verification, formalization, proof con-
structing

1 Introduction
Some classes of modal logic such as CTL (computational tree logic)
and LTL (linear temporal logic) are now rather widely used in com-
puter science for the task of verifying finite automata [2]. To be veri-
fied, an automaton must be rewritten in terms of the corresponding
logic, and then some of proof-constructing techniques, automatic
or interactive, are applied to find whether the automaton performs
actions it is supposed to perform (and no other). If the formaliza-
tion is sound this procedure must reveal all the possible errors that
can appear in the automaton. The techniques of formalization and
analysis of finite automata and automaton programs via temporal
logic are widely known as model checking approach. But the sense
of temporal logics isn’t restricted by only automata or program sys-
tems: they can describe any lasting-in-time process, every moment
of which can be described by the classical logic. Though some of
these processes are very hard to be described (e.g. due to possibility
of infinite branching), others have very simple structure, so tempo-
ral logics can be implemented to them even easier than to program
systems. In particular, it is possible to expand field of applications
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of the classes of logic to parametrized electromechanical technical
systems. The linear temporal logic was successfully used to perform
an analysis of new reagent-dozing mechanism [11]. Despite the fact
that results of the analysis were confirmed by an experiment, some
problems were discovered in this approach. The hardest one was to
find proper proof-constructing instruments.

The matter is that electromechanical systems like the reagent-
dozing mechanism are parametrized and their features to be checked
essentially depend on these parameters. So in the most general case
induction scheme must be included to make the analysis possible
(and it was used to perform the analysis in [11]). Moreover, even
one-counter automata representation in modal logics can lead to
undecidability [3]. But in every specific case we need only very
restricted version of the induction. So neither model checking in-
struments nor interactive provers fit the task perfectly: the former
are too weak in some aspects (no induction) and too complex in oth-
ers (allowing very complicated automaton structures); the latter are
too strong and therefore demand human decisions. Our suggestion
was to try a universal technique of program transformation on this
problem, and the first results of this approach have been received.

The technique is called supercompilation and was developed
since seventies of the last century (starting with the works of
V.F. Turchin) [15]. Its essence is unfolding a computational tree
of a partly specialized program together with folding it back to
a program graph. The term ‘partly specialized’ means that some
input parameters of a program can be known (and some can re-
main unknown). The process of unfolding resembles the one that is
performed in model checking on automata. In general, supercom-
pilers have no domain-specific transformations to optimize complex
finite structures so they cannot compete with corresponding model-
checkers but the technique of supercompilation was successfully ap-
plied to verify simple parametrized protocols [9, 1] and in some of
these applications showed itself even more powerful than the corre-
sponding domain-specific programs. Despite the supercompilation
wasn’t presented as a proof-transforming technique, it has very deep
interconnections with logic, and its applications to the temporal log-
ics CTL and LTL lead to some appealing effects.
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Therefore we try to construct a ‘double permutation’ of applying
modal logic to technical systems and computer science to modal
logic. The results show that all these domains have very much in
common, but still a lot of work remain on this way.

2 Infinite state technical system in LTL
2.1 General features
Suppose that a standard circuitry is enriched by some parametrized
elements, such as switching boards, and the system is not only to
satisfy some qualitative features but has some quantitative ones.
Then it may happen that in states of the system never repeat them-
selves in time. For example, if we have a reagent-dozing system that
spreads a reagent of a volume Vr after a volume K ∗ Vw of water
passes through a pipe, then in most moments of time the concentra-
tion of the reagent in the water reservoir is unique (it is expressed as
a formula Vr

Vw
∗ T

T∗K+R , where T is the total number of full cycles of
the mechanism work and R is the number of water volumes Vw that
passed through the pipe after the last reagent spread (R < K)). In
such cases it is reasonable to examine only changes of system quan-
titative features but not the features themselves. Because of the
discrete nature of the parametrized elements that are included in
the scheme, these quantitative requirements can be approximated
by rational numbers. Because of finiteness of the scheme the satisfi-
able requirements of state change must belong to some finite (though
maybe very large) set. Since parameters of the parametrized ele-
ments can also change, the set of the requirements, though remains
finite, becomes even larger.

So the following features of the system are guaranteed:

1. Non-constant finite number of elements;

2. Finite set of different states (without considering quantitative
aspects);

3. Finite set of changes of quantitative characteristics of the sys-
tem on a fixed state.

And the following features are to be checked:
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1. Uniqueness of successor state. When human intrusion is for-
bidden, it is essential to know that the system works without
any unpredictable indeterminacy.

2. Existence of successor state. If some reachable state never
changes, the system will halt.

3. Repeatability of all significant actions.

4. Return to initial state.

These features make us sure that the system infinitely repeats the
loop between two initial states.

The whole description of the system somehow resembles the one
of the modular arithmetic. The similarity becomes even greater in
practice because of the round construction of switching boards that
allows a stepping mechanism to move only forward (and the last
switch is followed by the first).

In the logical model of the system we describe two classes of ax-
ioms: axioms of stability (forbidding actions to be done without a
trigger) and axioms of change (describing possible one-step changes
of conditions). For every action possible in the system at least two
axioms appear, and one more axiom must be included to describe
initial conditions. If the system of axioms is full, the feature of
linearity (the uniqueness of successors) can be checked by checking
the fact that antecedents in every two axioms of change are dis-
joint. To prove the features of existence and repeatability it might
be useful to find additional invariants of the system. After that
the last feature can be checked constructively by building a single
iteration starting and ending by the initial state. In every specific
case, when all parameters of the scheme are known, it can be done
in straightforward way.

2.2 LTL formalization

We will use the full language of LTL with the modalities X, G, F,
U. Though in the first formalization the modality U was used in
the model axiomatization, now we try to avoid it to make the model
better from the point of view of computer science.
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As an example of technical system let us consider a simple dozing
mechanism which consists of the single stepping switch, the single
pump and the single flow indicator. Every time the flow indicator
turns the stepping switch does one step. One of the contacts of the
switching network (which can be chosen arbitrarily while mounting
the scheme) is connected with the pump. When the stepping switch
reaches the contact (let us call it K) the pump does one move and
closes the chain that returns the stepping switch to the first posi-
tion. This sequence of actions repeats itself potentially forever. It
is less complex than the scheme in [11]: now we have only one step-
ping switch instead of the two — but the analogue of our simplified
scheme is also used in practice [16]. So in fact we need to verify some
special kind of one-counter (not necessarily determined) automaton
in LTL — the problem that is known to be PSPACE-hard in general
and that becomes undecidable after adding one more counter [3].

The scheme is parametrized with the two parameters: the di-
mension of switching network N and the number of the contact K
that activates the pump. So we need to use not only single proposi-
tional variables but also the array of switch states on the switching
network, and not only single axioms but also axiom schemes cor-
responding to different states of stepping switch. More natural ap-
proach is to consider not only boolean variables but also a variable
of the type ZN , and this approach is valid due to the two features
of stepping switch construction:

1. The stepping switch is always connected to one contact on the
switching network;

2. This contact is unique.

The normal work of the mechanism assumes these two features. But
if we want to study disruptions then we must use the model with
array of booleans since we assume short circuits to happen on the
switching network. We now consider most generic case, and turn to
the usage of arithmetic in the program model.

The model variables are the following.

1. R is the state of the indicator switch;
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2. C is the state of the switch returning the stepping switch to
the initial state;

3. P is the state of pump switch;

4. T is the state of additional switch controlling the pump;

5. Wi is the state of the stepping switch (N is the total number
of contacts, so i ≤ N).

The model axioms are separated in two sets. The first is called
axioms of change and describes how a current state can affect its
successor. Construction of these axioms can be done straightly from
the description of the mechanism work.

1. R ∧Wi ⇒ X(¬R ∧ ¬Wi ∧Wi+1) (the axiom scheme for all i,
i ≥ 1 ∧ i < N).

2. R ∧WN ⇒ X(¬R ∧ ¬WN ∧W1)

3. ¬R∧T∧¬WK ⇒ XR. This axiom, when implemented, means
that the volume of water Vw have passed through the pipe.

4. P ⇒ X(¬P ∧ ¬T )

5. ¬P ∧WK ∧T ⇒ XP . This axiom, when implemented, means
that the volume of reagent Vr have been spread into the pipe.

6. ¬T ∧W1 ∧ C ⇒ X(¬C)

7. ¬C ∧Wi ⇒ X(C ∧ ¬Wi ∧Wi+1) (the axiom scheme for all i,
i ≥ 1 ∧ i < N)

8. ¬C ∧WN ∧ ¬T ⇒ X(C ∧ T ∧ ¬WN ∧W1)

The second set of axioms is called axioms of stability and forbids
switches to change their conditions arbitrarily. In general it is not
obvious how to construct these axioms because they are hidden in-
side a scheme and not presented explicitly in its description. This
fact may lead to mistakes in a scheme (for example, in the mech-
anism tested in [11] some uncertainty appeared exactly because of
the absence of the axiom that forbids the indicator switch to change
state during the work of pump).
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1. Wi ⇒ (C ∧ ¬R ⇒ XWi) (the axiom scheme for all i, i ≥
1 ∧ i ≤ N)

2. ¬Wi ⇒ (¬Wi−1 ∨C ∧ ¬R⇒ X(¬Wi)) (the axiom scheme for
all i, i > 1 ∧ i < N)

3. ¬W1 ⇒ (¬WN ∨ C ∧ ¬R⇒ X(¬W1))

4. T ⇒ (¬P ⇒ XT )

5. ¬T ⇒ (C ∨ ¬WN ⇒ X(¬T ))

6. ¬P ⇒ (¬T ∨ ¬WK ⇒ X(¬P ))

7. ¬R⇒ (¬T ∨WK ⇒ X(¬R))

8. C ⇒ (T ∨W1 ⇒ XC)

All these axioms describe the dependence of variables’ values in
a successor state on their values in the current one. And the last
axiom remains to be introduced — the axiom of initial state: W1 ∧
¬R ∧ ¬P ∧ T ∧ C ∧ ∀i(i > 1 ⇒ ¬Wi).

Now we must formalize the conditions to be checked.

1. Uniqueness of successor state. Only one axiom of change can
be implemented at every moment of time.

2. Existence of successor state. At least one of the axioms of
change can be implemented at every moment.

3. Repeatability of all significant actions.

∀i(R ∧Wi ⇒ XF(R ∧Wi)

...

∀i(¬C ∧Wi ⇒ XF(¬C ∧Wi)

4. Return to initial state.

W1 ∧¬R∧¬P ∧ T ∧C ∧ ∀i(i > 1 ⇒ ¬Wi) ⇒ XF(W1 ∧¬R∧
¬P ∧ T ∧ C ∧ ∀i(i > 1 ⇒ ¬Wi)).
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The only task is now to present a fast and efficient method of dis-
covering the features of the formalized system. In [11] it was done by
hand though there are some techniques in program transformation
that can be (and have been) successfully implemented to perform
this work. One of these techniques is the supercompilation which
is typically used in optimization and analysis of functional and im-
perative programs [4, 7], but last years it was also implemented to
verification tasks [9, 1]. It was noticed that this technique works
well on simple parametrized systems of various natures [8].

3 Proving in LTL via supercompilation
The definition of supercompilation can be found in [14]. Saying
informally, it consists of the following techniques:

1. Unfolding a computational tree.

2. Folding some branches of the computational tree by means of
generalization.

3. Extracting a residual program from the folded graph.

The first technique unfolds computational tree of a program, by
step-by-step driving: implementing its rules on computational states
until any functional calls disappear. It is exactly the same technique
that is used in model checking while unfolding infinite graph of
states of an automaton. This resemblance implied the idea that
supercompilation may be used for modal logics.

The second technique belongs to the supercompilation itself and
is the heart of the method. Some computational branches can be
infinite so it is necessary to stop driving them without reaching a
final state. For this need the following technique is developed: if
some computational branch is considered to be ‘dangerous’ then
driving on it halts. The notion of being ‘dangerous’ can vary in
different supercompilers (e.g. it may mean ‘to be too long’ or ‘to
repeat itself’). After discovery of a dangerous state a supercompiler
folds the computational branch into a loop using generalization.
Generalization unifies a latter computational state of the branch
with some former state on it that most resembles the latter state (the
notion of ‘resemblance’ can also vary in different supercompilers).
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After all computational branches of a program are computed into
final states or folded, a residual program is constructed from this
folded graph. This step isn’t discussed in this paper because it is
very dependent from a programming language of a target program.

Let us illustrate the process of supercompilation on a simple ex-
ample from Peano arithmetic.

Example 1.
There is a recursive definition of addition.
a(Z,y)=y;

a(S(x),y)=S(a(x,y));

Let us supercompile the call a(x, a(S(S(Z)),y)).

a(x,a(S(S(Z)),y))
x=S(x′)

**UUU
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uullll
llll

llll
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a(S(S(Z)),y)

��

S(a(x’,a(S(S(Z)),y)))
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S(a(S(Z),y))
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a(x’,a(S(S(Z)),y))

J
J
J
J
J
J
J
J
J
J
J
J

S(S(a(Z,y)))

��

S(S(y))

Every step is an application of a definition or case analysis. The
supercompilation lasts until there are no functional calls in a node
or the node repeats its predecessor modulo renaming.

Thus, the residual recursive definition corresponding to the call
a(x, a(S(S(Z)),y)) looks as
f(Z,y)=S(S(y));

f(S(x),y)=S(f(x,y)).

The second addition is already evaluated by the supercompiler so
it disappears in the residual program.

In the terms of logic, supercompilation technique rewrites an ini-
tial proof for some special case of a theorem (in the example the
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theorem was an existence of the sum of every two naturals) and
then does some obvious logical transformations to receive the proof
that isn’t more complex than the initial one (it is desirable to make
it less complex) but is equivalent to it by means of the set of realiza-
tions. There are some restrictions of input proofs: positive super-
compilation allows no ¬ in disjunctions; perfect supercompilation
allows introducing constraints, so it permits ¬ in case analysis.

The set of the allowed logical transformations of a proof is very
limited and depends on supercompilation technique. For example,
the rule A ∧ A ⇔ A is equivalent to so-called msg (most specific
generalization) sharing mechanism and is used in positive super-
compilers [13]; the rule A ∨ A ⇔ A is used in the supercompiler
SCP4 [10]. The last uses even more ‘unsafe’ transformations such
as ¬¬A⇒ A that allow to highly optimize very complex programs
but in some cases changes their semantics (e.g. transform infinite
proofs to finite ones).

Example 2. Consider a recursive function on natural numbers:
g(Z)=Z;

g(S(x))=g(h(x,Z));

h(Z,y)=y;

h(S(x),y)=h(x,2y);

g(x) is non-terminating for x > 1 but in an unsafe supercompiler
the observation that all the computations cannot end by the term
other than Z (so ∀x(¬¬(g(x) = Z))) may lead to semantics-changing
optimization replacing the definition of g by a constant zero.

The supercompilation technique doesn’t fit well for every task on
automatic analysis and has some subtle points such as semantic-
changing transformations. But it was successfully used for verifica-
tion of cash-coherent protocols [9] and communication protocols [1]
in cryptography. We decided to try it also on verifying the model
of a simple dozer that is described in the previous section.

As input language we chose Refal which is close by semantics to
Markov algorithms on strings. It was done because Refal is the in-
put language of the general-purpose supercompiler SCP4 [10]. The
convenience of this supercompiler is that it presents perfect informa-
tion propagation in conditions (allows ¬) so it is possible to use not
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only boolean variables (for which perfect information propagation
coincides with positive), but also naturals. SCP4 is not semantics-
preserving in case of non-terminating target programs, but if the
target program always terminates, this supercompiler preserves its
semantics, so the problem is insignificant.

Representation of the model variables repeats the one in the pre-
vious section, but we chose unary natural number to represent the
state of stepping switch. Representation of the model axioms in
programming language was straightforward: we divided data visi-
ble by the program on two parts, a current state and a next state.
The initial state is completely determined. All the axioms describe
the influence of the former to the latter. If after implementing all
the axioms some uncertainty remains in the next state, then this
uncertainty is represented as free variables which can be replaced
by any value. The axioms of change that correspond to changing
the state of system (counting water flow or pumping the reagent)
increase corresponding variables: one of them, e.R, is the number of
volumes Vw that passed through a pipe; another, e.P, is the num-
ber of volumes Vr that were added to the water flow. The aim is to
prove that with any values of free variables the program returns to
the initial state and computes the certain pair, e.R, e.P, and then
to compare e.P

e.R
to the technical requirements (it must be equal to

1
K−1). The supercompilation does this task for any constant N and
K. If K ̸= 1 and K ≤ N , then the target program is optimized to
’FF’ (that means that ¬(e.R ̸= K − 1) ∧ ¬(e.P ̸= 1)). If K > N ,
then no optimization is performed, so the program has indetermi-
nacy and represents the erroneous work of the mechanism. This
situation simply means that there is no contact on the switching
network that is connected with the pump. The most interesting
fact is that for K = 1 program isn’t optimized to constants, so in-
determinacy appears and the system becomes inconsistent. This is
an analogue of the error that was found in [11] (and, as was shown
experimentally, really can occur in the system). By changing one
or another class of axioms we can also see how the system behaves
when some physical disruption happens.

But to check all practical cases by SCP4, it is necessary to write
simple auxiliary program that lists all of them in the input SCP4
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file. This inconvenience appears because modern supercompilers are
very careful in transforming programs (or proofs) not to change their
semantics (or admit very slight changes) and permit only very few
logical transformations. It is supposed that strengthened techniques
like distillation [5] can do more complicated transformations like
merging several induction proofs in a one so can be able to avoid
these restrictions.

4 Conclusion

Our consideration of mechanical models together with logic and
computer science led to revealing a deep connection between all
these domains. First, mechanical models are easily described via
temporal logic with counters, through introducing two classes of
axioms that permit and forbid to change condition of an element.
Second, the axioms of temporal logic with counters can be easily
rewritten as functions in a programming language strong enough to
express negation. Due to the features of quantitative restrictions
that can appear in such systems it is possible to represent the con-
ditions of consistency of the scheme as well. And third, it is possible
to implement non-domain-specific program transformers to do the
automatic analysis of the model. The essence of the last fact is that
we must only formulate model axioms and the conditions of cor-
rectness and incorrectness of the scheme, and then it is possible to
use not proof-constructing, but only proof-transforming technique
to verify every special case of the scheme.

This may be the small step to observing the pure theoretical re-
sults of reverse mathematics in practice. It is known that folding
computational trees only along their branches in supercompilation
leads only to linear speedups of residual program [6] (so only I∆0-
formulas may be eliminated). But embeddings of tree embeddings
lead to some non-linear program speedups very close to ones per-
formed by induction [6]. The fact is not surprising from the point
of view of logic, but remains very subtle and obscure from the point
of view of practical program transformations. Establishing under-
standing between these two points of view seems to be very fruitful,
yet unexplored, domain.
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Appendix. Refal representation of the model

$ENTRY GO {s.1 s.2 s.3 s.4 (e.1) = <Launch (s.1 s.2 s.3

s.4)(e.1) (<I ’III’>) (<I ’II’>) (()()(’I’)’F’ ’F’ ’T’

’T’)>;}

Launch *checking the consistency condition and applying all
axioms

{(s.1 s.2 s.3 s.4)(e.1)(’I’ e.N)(’I’e.K)

((’I’e.KK)(’I’e.X)(’I’) ’F’ ’F’ ’T’ ’T’) = <Neq

(e.K)’I’e.KK> <Neq (’I’e.X)’I’>;

(s.1 s.2 s.3 s.4)(e.1)(e.N)(e.K)((e.R)(e.P)(e.W) s.R

s.P s.C s.T)=<Launch (s.1 s.2 s.3 s.4)(e.1) <Next <AxiMW

<AxiMP <AxiMR <AxiMC <AxiSC <AxiMT <AxiWStab <AxiTStab

<AxiPStab <AxiRStab <AxiCStab (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.R)(e.P)(e.1) s.1 s.2 s.3

s.4>>>>>>>>>>>>>;
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}

Next *transition to the next moment of time

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT =(e.N)(e.K)

((e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT);

}

AxiMW *axiom of moving the stepping switch after rotating
the flow indicator

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’T’,

<IncR (e.W)e.N>:e.WW = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R

s.P s.C s.T) (’I’e.XR)(e.XP)(e.WW) ’F’ s.XP s.XC s.XT;

e.1 = e.1;}

AxiMT *axiom of the pump doing back move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT,

s.P:’T’= (e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(’I’e.XP)(e.XW) s.XR ’F’ s.XC ’F’;

e.1 = e.1;}

AxiMP *axiom of the pump doing work move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’,

s.T:’T’, <Neq (e.W)e.K>:’F’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T)(e.XR)(e.XP)(e.XW) s.XR ’T’ s.XC s.XT;

e.1 = e.1;}

AxiMR *axiom of making the flow indicator move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’,

s.T:’T’, <Neq (e.W)e.K>:’T’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.XR)(e.XP (e.XW) ’T’ s.XP s.XC s.XT;
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e.1 = e.1;}

AxiMC *axiom of unlocking the switch C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.T:’F’, <Neq (e.W)’I’>:’T’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP ’F’ s.XT;

e.1 = e.1;}

AxiSC *axiom of moving the stepping switch due to C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’F’, <Neq

(e.W)e.N>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W)s.R s.P s.C

s.T) (e.XR)(e.XP)(’I’) s.XR s.XP ’T’ ’T’;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’F’, <IncR

(e.W)e.N>:e.WW = (e.N)(e.K) ((e.R)(e.P)(e.W)s.R s.P s.C

s.T) (e.XR)(e.XP)(e.WW) s.XR s.XP ’T’ s.XT;

e.1 = e.1;}

AxiWStab *axiom of stability of the stepping switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.R:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.W) s.XR s.XP s.XC s.XT;

e.1 = e.1;}

AxiTStab *axiom of stability of the auxiliary switch T
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’T’,

s.P:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’T’;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’F’,

s.C:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’F’;
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(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’F’, <Neq

(e.W)e.N>:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’F’;

e.1 = e.1;}

AxiPStab *axiom of stability of the pump switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’, <Neq

(e.W)e.K>:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.P s.XC s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’,

s.T:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.P s.XC s.XT;

e.1 = e.1;}

AxiRStab *axiom of stability of the indicator switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’,

s.T:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.R s.XP s.XC s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’, <Neq

(e.W)e.K>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.R s.XP s.XC s.XT;

e.1 = e.1;}

AxiCStab *axiom of stability of the switch C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’, <Neq

(e.W)’I’>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP s.C s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.T:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.C s.XT;
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e.1 = e.1;}

I *formatting a string to unary natural number
{=;

s.1 e.1 = ’I’<I e.1>;}

Neq *checking unequality of two natural numbers
{() = ’F’;

(s.1 e.0)s.1 e.1 = <Neq (e.0)e.1>;

(e.1)e.2 = ’T’;}

IncR *increasing a natural number e.0 modulo e.1, plus 1
{(e.0) e.1, <Neq (e.0)e.1>:’T’ = ’I’e.0;

(e.0) e.1 = ’I’;}



Abstract Chaitin’s theorem and its
methodological consequences
Nikolay N. Nepeivoda

abstract. Abstract forms of Kolmogoroff’s complexity,
Chaitin and Gödel’s theorems are stated. They are used to an-
alyze numerous methodological issues: Kant’s Third antinomy,
Parkinson’s law of committee, cooperative creative activity, multi-
language programming, benevolence to other’s views, dilemma of
deism–atheism.

Keywords: Kolmogoroff complexity, Chaitin theorem, Gödel the-
orem, Kant antinomy, Parkinson law

Chaitin’s theorem of unknowledgeable and Gödel’s theorem of
incompleteness are of great importance for philosophy of science.
Numerous works around them are based on supposition that func-
tions considered are algorithmic and objects are constructive (more
specifically natural numbers). First of all we make some kind of
reverse analysis to extend them into abstract domains and for wide
class of theories. In essence we show that there are very weak as-
sumptions on derivability of true formulas but somewhat stronger
for underivability of false formulas.

1 Abstract computations
Definition 1. Let there is a finite set of letters A. Lists of signa-
ture A are defined inductively:

1. Empty list () is denoted NIL.

2. Each letter is an atom.

3. If a1, . . . , an are lists or atom then (a1 . . . an) is a list.
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A natural number n is represented by the list (NIL . . . NIL) (n
members). Thus 0 is NIL, 1 is (NIL) 2, is (NIL NIL) and so on.

Definition 2. Functional signature is a finite set of atoms,
including cons, car, cdr, lh, members, id, concat, quote, arity,
expand, join, perm, comp, const.

Interpreter functional signature contains in addition to the above
turing, ifnil, ifatom, iflist, iffunction, equal. Turing one
contains also eval, full Turing one adds search. All these atoms
are elementary functions. Lists in a functional signature are called
expressions.

We interpret as a function the last member of a list.
Comment. It is for we consider Turing-incomplete languages

where we cannot define a function to add an element to the tail of
a list.

Some lists are functional ones. Some non-functional lists are con-
vertible and can be computed.

Definition 3. Let F is a functional list, E is any list. We can add
integer indices which are written in the same string.

Elementary functions are functionals. Lists (E F expand), (E1
E2 F join), (F1 E F2 comp), (E const), (E1 E2 turing), (F1

F2 E ifnil), (F1 F2 E ifatom), (F1 F2 E iflist), (F1 F2 E

iffunction), (E E1 eval), (F F1 search) are functionals.

Now a computational semantic of functions is defined. arity is
applied to a functional and gives a number of arguments of a result-
ing function.
(arity arity) = 1.
(E1 E2 cons) computes both arguments and makes a list with the
head E1 and the remaining part E2.
(E car) computes E and extracts its first element.
(E cdr) computes E and removes its first member.
(E lh) gives the number of symbols in the value of E. Each atom
and each bracket is a single symbol.
(E members) gives the number of elements in the value of E.
(E id) gives a value of E.
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(E1 E2 concat) joins two lists together.
(E quote) don’t computes E and updates it as is.
(F expand) adds a fictive argument to the tail of arguments of F.
(E1 E2 F join) computes E1, E2 and if their values are numbers
in 1 6 Ei 6 (F arity) diminishes number of arguments of F by 1
glueing arguments with those numbers. E1 is remaining in the list
of arguments.
(E1 E2 F perm) is analogous permutating two arguments.
(E F1 F2 comp) substitutes F1 for argument of F2 with number E.
1 6 E 6 (F2 arity). ((E F1 F2 comp) arity) = (F1 arity) +
(F2 arity)− 1.
(E const) is a function of arity 1 always giving value of E.
(E1 E2 E3 turing) computes E2, which is to be a functional, and
then performs E3 steps of its application to E1 (E3 is to have a num-
ber value) and gives a list (E4 E5), where E4 = 0, if computation
had been finished on or before step E3, and 1 else. E5 gives a result of
(partial) computation. We accept that (E1 0 E3 turing)=(1 E1).
(E F1 F2 if[property]) computes E and if its result has a desired
property gives F1, else F2. Arity of two functionals are to be equal.
(E1 E2 equal) gives 0, if results are literally the same, 1 else.
(E1 E2 eval) computes its arguments, second one is to be a func-
tional, then applies this function to the value of the first argument.
(F F1 search) finds such tuple of values of arguments for F, for
which F is equal to 0, and applies F1 to a found values. Arities of
functions are to be equal.

A list is convertible, if there is a subexpression which is not func-
tional of the form (E1 ... En F), where (F arity) = n.

There can be any number of extra elementary functions in our
system. The only condition is that each function have a well de-
fined computational semantics (not necessary algorithmic). Thus
we defined a kernel language for different kinds of algorithmic and
non-algorithmic computations (e. g. hyperarithmetic or computa-
tions on an algebraic structure).

Proposition 1. (limited λ-abstraction) Let us enrich our language
by variables x1, . . . , xn. Then for any list E[x1,...,xn] can be
constructed a functional FT s.t. (E1 ... En FT)=E[E1,...,En].
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Proof is purely technical. 2

Proposition 2. There holds a fixed point theorem in each Turing
system: for each functional F there is such E, that for all E1

(E1 E F) = (E1 E eval).

Proof.

LUR = (1 (eval const) (2 (NIL const) cons comp) comp)

XXU = ( 1 2 (1 (1 LUR cons comp) cons comp) join);
LXF = (1 (XXU const) F comp)

YF = (1 LXF XXU comp).

YF is a fixed point.
2

Proposition 3. (Turing completeness) Turing systems allow to
express any partial recursive function.

Proof. By fixed point and conditionals we can construct McCarthy
recursive schemes.

Note now that eval is definable through turing and search.
eval is called a universal function, turing is an interpreter, search
is a search operator. No other dependencies hold for these three
operators. Primitive recursive functions have an interpreter without
search and universal function. Recursive schemata on real numbers
and their lists with a signature {0.0, 1.0,=, >,+, ∗} have universal
function and interpreter but no search. Hyperarithmetical functions
on real numbers have no search and no interpreter, only a universal
function. Adding search we get no interpreter. Adding search to
initial elementary functions gives no interpreter and no universal
function. 2

2 Generalization of Kolmogoroff complexity
Definition 4. Complexity of an object relatively to a computa-
tional system is a minimal length of an expression which evaluates
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to our object. If a system is turing one, complexity is called kol-
mogoroff one. Complexity of an object x in a system Σ is denoted
(x KΣ).

If system is defined by a context it is omitted.

Definition 5. Let there are two computational systems Σ1 and
Σ2. Coding CODE[a] of language of one system inside language of
other is regular, if

(CODE[a] lh) 6 k · (a lh) + C1

C1 — is a constant, k is a coding factor.
Σ1 is interpreted in Σ2, if there is a regular coding and a function
Int such that

∃n (CODE[E] Int turing2) = (0 CODE[a]) ⇐⇒ E = a.

Σ1 is translated into Σ2, if there is a regular coding and a function
Trans such that

(CODE[E] Trans eval2) = CODE[a] ⇐⇒ E = a.

Theorem 1 (Kolmogoroff’s theorem). If Σ1 is interpreted
or translated into Σ2 and k is a coding factor, then k · (a K1) 6
(CODE[a] K2) + C.

Proof is obvious. 2

This theorem generalizes up to wide class of systems and cod-
ings (including Turing-incomplete and non-algorithmic) a theorem
of Kolmogoroff on invariancy of complexity up to additive constant.

3 Generalization of Chaitin theorem
Let there is a theory Th, with definable predicates ‘To be a natural
number’, = and < for natural numbers, constants 0, 1 and functions
+, ∗, ↑, the last one is a power function. Elementary arithmetical
formulas are relations of two expressions in this vocabulary. Then
we say that this theory contains natural numbers.

Let there is a full turing system Σ with functionals to test whether
this list is a proof of a given formula in some regular coding, to
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extract a proved theorem from a proof code and to substitute an
object of Σ (not necessarily a number) for a free variable of a formula
and to compare two formulas textually.

Definition 6. A theory is chaitin-correct w.r.t. Σ, if are express-
ible: a notion (E E1 eval)=a, a function (a lh), all true formulas
(a lh) = n are provable, all closed true elementary arithmetical
formulas are provable, and any closed false formula of the form
¬(E E1 eval)=a is not provable.

Each chaitin-correct theory is consistent. A simplest such theory
Ar0 is given by the following axioms:

∀x (x+ 0 = x) ∀x, y (x+ (y + 1) = (x+ y) + 1
∀x (x ∗ 0 = 0) ∀x, y (x ∗ (y + 1) = (x ∗ y) + x
∀x (x ↑ 0 = 1) ∀x, y (x ↑ (y + 1) = (x ↑ y) ∗ x.

Theorem 2. There is a number C in any chaitin-correct theory
such that (a K) > C is not provable for any a.

Proof. A formula expressing (E E1 eval)=a is denoted R(p, x, a).
Then a statement (a K) > C can be formulated as follows:

∀x∀p (((x p) lh) < C + 1 ⊃ ¬R(p, x, a)).

If (a K) < C + 1 holds, then this formula is not provable in-
side Th, because elsewhere it would be provable a false statement
((x0 p0) lh) < C + 1 & ¬R(p0, x0, a)) and thus a false formula
¬R(p0, x0, a)) for some ((x0 p0) lh) < C + 1. Let show this and
by the way construct a Chaitin’s constant.

Let a functional K finds for each C searches a proof of a for-
mula (a K) > C by brute force and if such proof is found gives a.
Let a length of code for this functional is k. Let the quantity of
different atoms in our system is m. Then there is such C0, that
mC0 > k ∗ C0. This C0 can be taken as a Caitin’s constant. Let
(a K) > C0 were provable. Then K would find such a0. But really
(a0 K) 6 C0 and thus ((x0 p0) lh) < C0 + 1 & ¬R(p0, x0, a0) is
not provable for some p0, x0. But ∀x∀p (((x p) lh) < (C0 + 1) ⊃
¬R(p, x, a0)) implies ((x0 p0) lh) < (C0 + 1) ⊃ ¬R(p0, x0, a0).
((x0 p0) lh) < (C0 + 1) is provable by correctness, therefore is
provable ¬R(p0, x0, a0). Contradiction. 2
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This form of Chaitin’s theorem does not demand computability
of a system complexity is defined w.r.t. It uses search function
essentially. It can be applied also for systems with infinite basic data
type but with finite base of explicitly given atoms. Then complexity
of some objects can be infinite (e.g. π in a system for algebraic
operations on real numbers).

4 A generalized Gödel incompleteness theorem
Now we consider and generalize the Gödel incompleteness theorem
in the form of Rosser [2]. Let we give some auxiliary definitions.

Definition 7. Restricted quantifiers are formulas of the form

∀x ((x lh) < n ⊃ A(x)), ∃x ((x lh) < n & A(x)).

A formula P (x)) is limitedly correct in the theory Th, if from prov-
ability of ∃x ((x lh) < n & P (x)) ∨ B follows provability of P (a)
for some (a lh) < n or provability of B itself.

Definition 8. A theory is Gödel-correct if a predicate < is ex-
pressible for natural numbers; all closed true formulas of the form
(a lh) < n are provable; there is some coding for formulas; there is
a formula expressing ‘p is a proof of A(a)’ Proof(p,CODE[A], a);
there is a functional to compute code of negation of a formula by its
code Neg; if A(a) is provable, then Proof(p,CODE[A], a) is prov-
able for some p; a weak Gödel rule

(1)
Proof(p,CODE[A], a)

A(a)

is admissible and Proof(p,CODE[A], a) is limitedly correct for all
A, a.

Theorem 3. If a theory is Gödel-correct it is incomplete.

Proof. Consider a formula

(2)

∀x ((Proof(x, z, z) ⊃
∃y ((y lh) < (x lh)&Proof(y, (z Neg), z))))&

∃x ((Proof(x, (z Neg), z)
&¬∃y ((y lh) < (x lh)&Proof(y, z, z))))
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Substitute in it its code R. Then if the formula

(3)

∀x ((Proof(x,R,R) ⊃
∃y ((y lh) < (x lh) & Proof(y, (R Neg), R)))) &

∃x ((Proof(x, (R Neg), R) &
¬∃y ((y lh) < (x lh) & Proof(y,R,R))))

is provable, we take a0 with provable Proof(a0, R,R). Due to lim-
itedly correctness of Proof and by the first conjunctive subformula
there is such (a1 lh) < (a0 lh), that Proof(a1, (R Neg), R) is
provable. Then by a rule (1) is provable a negation of (3) and our
theory is inconsistent and proves everything. So it is not Gödel-
correct.

If a negation of (3)

(4)

∃x ((Proof(x,R,R) &
¬∃y ((y lh) < (x lh) & Proof(y, (R Neg), R))))∨

∀x ((Proof(x, (R Neg), R) ⊃
∃y ((y lh) < (x lh) & Proof(y,R,R)))),

is provable then there is such b0 for which Proof(b0, (R Neg), R) is
provable. From first disjunctive part follows

∃x ((x lh) < b0 + 1&(Proof(x,R,R)) .

Applying limitedly correctness we get provability whether (3), which
is contradictory, or the second disjunctive part. Then we get a
contradiction analogously to the first part of proof. 2

5 Philosophical consequences
Kant’s Third Antinomy (of Freedom) can be substantiated precisely
if complexity of a human is lower than complexity of the Universe.
Parkinson’s law of committee (decision of committee is more mo-
ronic than decision proposed of its stupidest member) can be proved
precisely. One of paradoxes arising while applying precise Computer
Science to real Informatics can be solved. It is known that Kolmogo-
roff’s complexity is invariant up to ADDITIVE constant L. Using
Chaitin’s limit we can prove that the fixed constant L can substan-
tially decrease the actual possibilities of programmer. Interrelation
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of Chaitin and Orevkov theorems yields that high level person can
make things which cannot be understood by plain thinkers but to
implement his/her insights plain thinking is often necessary. Some
peculiarities of Chaitin’s limit if person’s mind is not Turing com-
plete are considered.

6 Algorithmic randomness and Kant’s Third
Antinomy

So any formalism has limits such that upper them it cannot state a
complexity of an object and thus cannot correctly comprehend and
understand it. So an argumentation with complexity upper than
Chaitin’s limit for a person is understood by completely chaotic
and illogical. But this is not the worst case. If such person tries
to comprehend the arguments by cutting out all which cannot be
placed in his/her head he/she gets an illusion of understanding to-
gether with completely wrong image of percept.

Chaitin [3] noted out that now existence of unknowledgeable is
well substantiated and even proved. Each position based on sup-
position that human mind is omnipotent in principle is not even
an opinion now. Our generalization of Chaitin theorem shows how
weak premisses are sufficient for Chaitin’s limit is existent. We do
not need here to claim that human is a finite system which had been
used in earlier demonstrations. This together with an observed har-
mony of the world substantiated theism in very high degree [4]. At
the same time this shows that it is impossible to prove or to refute
existence of God.

For finer methodological consequences it is reasonable to accept
finiteness of a human (as for example in [7]). Thus because com-
plexity of the Universe is much higher than one of a human and of
the humanity (even in supposition that joining humans join only
knowledge but not their ignorance). But incognizable can some-
times be partially appreciated. It is known that objects with big
Kolmogoroff complexity are comprehended as random.

Kolmogoroff studied algorithmic randomness for infinite se-
quences (complexity of initial segment of a sequence will be same
as its length up to additive constant). We are to define randomness
of a finite object from the point of view of Chaitin’s limit and his
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considerations in [4, 5]. This is randomness relative to a concrete
object or subject processing information.

An object is random for a processor if its complexity is larger than
processor’s Chaitin’s limit.

Now we’ll prove a proposition equivalent to Kant Third Antinomy
[8] and even more strong, expressing it in the language of current
science.

Human cannot state whether our Universe is deterministic or there
is a necessary randomness in it.

Let the Universe be deterministic. Then a complexity of the al-
gorithm initialized during world’s creation is higher than Chaitin’s
limit of humanity. Thus humanity cannot comprehend a Word’s
idea as a whole and complete entity. Deterministic world is under-
stood as random one.

Note!!! We are not creationists here. World creation would be
a natural process for example as a garbage of a super-civilization
during re-creation or transformation of its own World (S. Lem: From
Einsteinian to Testan Universe. In Polish).

Let our World be indeterministic. If we were proved this we were
proved that complexity of our World is higher than Chaitin’s limit
of our civilization. This is a contradiction.

Thus problem whether our Universe is deterministic is a pseudo-
problem from the point of view of pure exact knowledge. We are free
to choose a theory which in the moment is a best fit for ‘practice’
and is a better representation of objects in view.

Therefore it is inacceptable to advertise results of our science as
‘scientific truth’. They are to be re-verified by an alternative theory.
This is a strong opposition for postmodernistic ‘tyranny of truth’.
We cannot lay our responsibility on arms of Science or God.

7 Parkinson’s law
Let there is a committee which is to work out a decision under-
standable for all its members for each could meaningfully vote ‘yea’
or ‘nay’. In this case Chaitin’s limits of committee members are to



176 Nikolay N. Nepeivoda

be reduced to minimal one because else some of members cannot
understand a proposal. So a weak Parkinson’s principle is substan-
tiated:

Weak Parkinson’s law:

Decision of a committee is no more adequate that one which could
make the least competent of its members himself.

But the reality is more crude. Each committee member has dif-
ferent competentions in different domains. So we need to introduce
a matrix of limits. If two limits of persons are Ci and Cj , com-
plexities of translations from one system of notions into an other
are Kij and Kji, then maximal complexity of a decision of each of
them understandable by both is Cij = min {Ci −Kji, Cj −Kij}: a
limit of i-th person for understanding of j-th. Thus even not taking
into account non-uniformity of knowledge inside a Chaitin limit we
get the following upper bound: mini,j Cij . We substantiated the
following

Strong Parkinson’s law:

Decision of a committee is more moronic that a decision which could
make the most moronic of its members himself.

In Venice and Rome important decisions were delegated to a
truthful person which had been made fully responsible for its re-
alization and consequences. . .

8 Chaitin limit and paradox of inventor (Orevkov
theorem)

There is at least one more quality of mind orthogonal to brute force
which can lead to relatively large Chaitin’s limit. This is ability to
master complex notions.

Orevkov theorem (1968): Indirect proof in logic can be in the
tower of exponents times shorter than direct one.

Orevkov’s theorem is a precise partial case of a general paradox
of inventor formulated by Gy. Polya:

To prove a simple statement we are often to use complex inter-
mediate notions. To prove a weaker and ‘simpler’ statement can
be much more harder than to prove more strong and complex one.
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Gy. Polya pointed out and partially explained this paradox w.r.t.
inductive proofs. Orevkov substantiated that it is a fundamental
property of thinking.

Using high order notions we can jump far away behind Chaitin’s
limit of crawling persons. This substantiates a genial insight of
D. Hilbert that ideal notions are necessary to obtain non-trivial
practical (real) results.

American scientist M. Furman wrote (private communication dis-
cussing my preliminary notes on Chaitin’s limit): ‘Non-equivalence
(not considering purely theoretical notion of Kolmogorov complex-
ity, but from the point of view of real application) is defined by
resources: size of memory and execution time.

Theoretically we have two binary properties: is memory finite or
is time finite. But seeing one step deeper we understand that there
is a uniform restriction for some class of examples’.

These arguments do not disturb our basic considerations and only
show that real situation is even more fine and interesting. It is
known that primary resource of human defines his/her logic (lin-
ear logic is logic of money< intuitionistic one is logic of knowledge,
nilpotent one is logic of time and so on). Of course it can restrict
Chaitin’s horizon even more substantially than Kolmogoroff com-
plexity.

M. Furman also proposed an example showing interconnections of
Chaitin’s limit with inventor’s paradox. If a person mastered a high-
level method he can say something like to Furman’s objection: ‘It is
very easy to construct a translator having the precise definition of a
language’. But method of formal semantics itself cannot be treated
as a simple one. And it is known how hard is to write out a formal
definition of a semantic.

Evgeny Kochurov pointed out (private communication) that usu-
ally those who cannot comprehend complex notions but have a big
operative memory can build long and relatively complex first-order
compositions. Those who excellently appreciate methods can find
excellent critical points but poorly analyses a crawling process how
to go from one critical point to next one. So those two are comple-
mentary and can excellently assist one another if each person is used
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according to his/her strong sides. So we transferred to a problem
how to avoid Parkinson’s law.

9 Consequences for organisation of creative work:
How to avoid Parkinson’s law?

There is an interesting example which seems to be a strong coun-
terexample to Parkinson’s law. Each bee, termite or ant acts like
finite automaton with a fixed program and low memory. Neverthe-
less a general behaviour of nest become very complex and adaptive.
Moreover ants for example demonstrate more complex forms of in-
tegration and system behaviour. Remember ant empires joining in
the single net thousands of nests which have intensive exchange of
information, people and genetic material (trade points and exchange
of nymphs).

We apply here an analogy from logic. Von Neumann’s theory
of self-reproducing automata shows how to compose an upcoming
system from uniform units with extremely simple behaviour. Thus
a good organization of morons which cannot understand even loops
can generate recursions and high level constructions.

How is it possible? It is because cooperation itself is performed
by strict simple automata rules. This analogy is used in neuron
nets in such domains as pattern recognition in cases when there are
no precise algorithms. Well trained neuron net mistakes sometimes
but rarely. And nobody knows why.

Ideology of crowdsourcing tries to transfer this experience into
human society. But as for neuron nets here we get no creativity1.
How to introduce it?

As usually direct and obvious decision — to make automata sto-
chastic or indeterministic — fails here. Such approach to creation
process is fantastically ineffective.

So we come to a tough consequence for human collectivities.
Committee consisting from equal and free creative persons is im-

1In Russian there are two words for English ‘creativity’. Креативность
(creativity) means invention of something new only to be new without real
values and goals. Творчество means creation of new and useful things. This
is why ‘creative class’ is appreciated by Russians as class of uppity, spiritually
and really impotent egocentric persons.
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potent. Potent can be at least two-level structure. Interactions
are strictly formalized on first level and for connections between
first and second level. In contrary interactions on second level are
bounded by clear and ruthless rituals but never formalized. They
are diminished to a reasonable minimum. Upper level is responsi-
ble for creative decisions and lower for their realization. It is often
possible to implement an idea inside a rigid structure but never is
possible to get a new idea here.

We have here another ‘counterexample’: freesofters. This seems
to be a conglomerate of free creative individuals which interact very
informally. But this is not the case. They curse and laud one
another very informally but their interactions in coding, bug pro-
cessing, documentation and so on follow strict rules. So I cannot
say that they are ‘free persons’ in vulgar sense of this word. They
are free individuals having real goals and values and voluntarily
sacrificing some ‘freedoms’ for those high valuables. They can be
an embryo of a structure which can save humanity and some real
achievements of current ill civilization after its inevitable death.

And now in a cold water. A community of freesofters can be so
effective because almost all of them are involved into really non-
creative problems of coding according to existing algorithms and
architects, debugging and developing earlier projects. But this com-
munity has also an ecological niche for really creative persons.

Warning. A society based on freesofters-like libertarian princi-
ples will ruthlessly apply ‘measures of humanitarian defence’ (see
e.g. A. A. Rosoff ‘Confederation Meganesia’) and suppress minori-
ties which wish to claim their rights in manner restricting other
people’s rights and common values. It may be necessary to survive
against mindless hordes of ‘free vultures’.

Furthermore collective intellect of best algebraists allowed to solve
a problem of classification of finite groups [9]. But interaction of
professional pure mathematicians is so deeply ritualized2 that this
example is a verifying example for us.

These examples allow us to make principle of committee more
precise. Committee must elaborate a decision. Such decision will
inevitably be a compromise e.g. a mixture of unpleasant and useless.

2And not formalized, in contrary to common prejudice.
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Creative persons try to find a solution. They do not try to cut it
according to lower level of their understanding. In contrary, people
develop an other’s people nice idea even they do not appreciate it
as a whole and often find new aspects of it. So a good organized
creative storming can lead to a valuable results. High level people
know how useful is a discussion of equal in spirit and mind persons
(but not those nominated by an institution).

Collective creative work is development and transformation of
new ideas without ‘full comprehension’.

How to increase effectivity of this storming?

1. Sacrifice sacred cows.

2. Make hidden conceptual contradictions visible.

3. Don’t pronounce ‘universal and indisputable truths’ (BLA-
GOGLUPOSTI (in Russian) I don’t know an analogy in En-
glish).

All these three points contradict to politcorrectness and other liberal
taboos.

10 Chaitin limit and programming languages
Formally complexity of programs in different PL is equivalent up
to additive constant (Kolmogoroff theorem). Practice shows the
opposite: program written by adequate tools can be 50 times shorter
than in ‘universal’ Java or C# Why?

Kolmogoroff’s theorem (1) states that k·(a K1) 6 (CODE[a] K2)+
C where k is equal to 1 if we consider standard programming codes.
Constant C is a length of a translator program for the second lan-
guage written in the first language. To write it eats almost all
Chaitin’s limit of a programmer.

Therefore we have an excellent and precise demagogic answer on
a moronic and demagogic question very often posed to ones who did
something by ‘exotic’ language: ‘Is it possible to write the same in
C# or Java?’:

— Of course. It is possible to write all in the language of Turing
machines, if you prefer.
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Thus theoretical equivalence sometimes means practical incom-
parability.

This analogy works in other domains also. If we do not master
a language of a concrete domain we can in principle to understand
constructions and arguments but it is necessary to build in our mind
a ‘translator’ into our paradigm. Its complexity can be so high that
it leaves almost no resources to analyze the argumentation.

Another warning. If you know many languages but have no back-
ground fundamental knowledge in your head you work worse that
blind coder. Multi-tool method is effective only when a person mas-
ters a meta-knowledge, meta-method and a basis of notions.

So fundamental knowledge is that which forms a system in a
brain. Foundation of a system must be stable. It consists of a ba-
sis of relatively simple notions (keystones) amalgamated by a lot of
relation and properties which show their interrelations gains, short-
comings and restrictions. It is ideal if in result a person sees restric-
tions of his/her system as a whole.

And there is one more bad side. Many people simply cannot
appreciate complex (algorithmic) constructions such as recursions
and even loops. They have no universal algorithm in their head.
Here Chaitin’s limit is 0 and this person simply can see nothing.

Final remark

It is false that clever one works faster than more stupid one. A stupid
person never can understand what does a clever one and never can
make the same work.

11 Benevolence to other’s views
A problem of co-existence of different views is madly contaminated
by ‘tolerance’ originated in the fundamental mistake of J. S. Mill: he
declared freedom of opinions instead of freedom of argumentation.
He simply could not imagine that every irresponsible and moronic
cry will demand rights and honors because it is an ‘opinion of a free
person’.

This goes deeper to BLAGOGLUPOST of Voltaire’s ‘I hate your
opinions, but I would die to defend your right to express them’. We
see that there are too much people who accept no counter-arguments
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against their opinions but are ready to kill each who criticizes them.
We see that there are too much people and institutions which sub-
stantiate their opinions not by argumentation but by direct lie and
manipulations (e.g. neo-liberals, neo-cons, fundamentalists, juvenile
justice . . . ).

Principle of benevolence to other’s views.

Remember that The Truth is inaccessible to you and to any other
human. Thus say confronting other views.

I do not agree with your views but you argue in their favor hon-
estly and earnestly. Thus I will defend your right to proclaim them,
to substantiate them and to distribute them. In the same time
I declare full and unrestricted right of me and any other person
to criticize them, to find weak points in your argumentations and
maybe lie and manipulations.

This obligation is ended when your sights become refuted or you
are catched on lie or manipulations (sophistic or psychologic).

In the first case you remain an honest person for me and I will
defend you against any attempts to punish you for error itself (but
not for its consequences). If you will be so brave to recognize you
have been mistaken I will help you to correct it and its consequences
and you will become greater in my eyes.

If you will be catched on dishonored tricks all my responsibility
will end. I will support the toughest of possible legal punishments
for you because spiritual poison is more mortal than material.

12 Methodological argument for deism
Chaitin’s theorem showed that Kant was right stating that our in-
tellect cannot solve a problem of God’s existence. So we have the
following consequences.

1. Existence of God is a pseudoproblem from scientific point of
view and you must take your own decision here.

2. It is unacceptable to cry that science rejects God (and equally
that science proves God’s existence).
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3. It is inadmissible to make any scientific consequences from
existence or non-existence of God.

4. It is acceptable to analyze this problem methodologically.

So the problem of deism or atheism is a methodological problem.
Stating a rational definition of God as The Truth, as the unified
highest law of both nature and spirit which is beyond all worlds and
all times we are inspired to find unity in difference, high level uni-
fying notions and principles for realizations which seem to be not
connected for plain thinking, or even contradictory though both ex-
isting. It inspires us to develop ourselves both intellectually and
spiritually and to keep these different sides and our material being
in harmony.

In contrary atheism demotivates us to idolize and adore our im-
perfect plain reasoning and our restricted knowledge.
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Successful science without miracles
Ilkka Niiniluoto

abstract. Science is highly successful in making empirical
predictions and guiding our practical actions. This paper defends
the so-called ‘ultimate argument for scientific realism’ by claim-
ing that this empirical and pragmatic success of scientific theories
would be a miracle unless they are true or truthlike. This ar-
gument is abductive in Charles Peirce’s sense, as it appeals to
inference to the best explanation.

Keywords: abduction, explanation, fallibilism, inference to the
best explanation, scientific realism, truthlikeness

It is generally agreed that science is highly successful in mak-
ing empirical predictions and guiding our practical actions. The
so-called ‘ultimate argument for scientific realism’ claims that this
empirical and pragmatic success of scientific theories would be a
miracle unless they are true. This argument is abductive in Peirce’s
sense, as it appeals to inference to the best explanation. This paper
considers the idea that abductive inference can be reformulated by
taking its conclusion to concern the truthlikeness of a hypothetical
theory on the basis of its success in explanation and prediction. The
strength of such a fallible argument is measured by the estimated
verisimilitude of its conclusion given the premises.

1 Critical Scientific Realism
Scientific realism as a philosophical view has (i) ontological, (ii)
semantical, (iii) epistemological, (iv) theoretical, and (v) method-
ological aspects (see [16], [29]). It holds that (i) at least part of
reality is ontologically independent of human mind and culture. It
takes (ii) truth to involve a non-epistemic relation between language
and reality. It claims that (iii) knowledge about mind-independent
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(as well as mind-dependent) reality is possible, and that (iv) the
best and deepest part of such knowledge is provided by empirically
testable scientific theories. An important aim of science is (v) to
find true and informative theories which postulate non-observable
entities to explain observable phenomena.

Critical scientific realism can be distinguished from metaphysical
or naive forms of realism by the principle of fallibilism: all factual
human knowledge is uncertain or corrigible. Even the best results
of science may be false, but still they may be probable, truthlike or
approximately true.

Critical scientific realists have argued — following Charles
S. Peirce [27], pace opponents like W.V.O. Quine and Larry Laudan
(see [10]) — that it indeed makes sense to say that one hypothetical
(even false) theory is ‘closer to the truth’ than another theory. By
the same token, it is meaningful to state that a sequence of theories
‘approaches to the truth’, even when the final limit is not reached.
Since 1974, after Karl Popper’s 1960 attempt to define verisimilitude
turned out to fail, the notion of similarity between states of affairs
has been employed to give a precise definition of truthlikeness for
scientific statements (see [15], [8]). The degree of truthlikeness Tr(H,
C*) of a theory H is defined relative to a chosen target C*, where
C* is the complete truth expressible in a given conceptual frame-
work. Tr(H,C*) has its maximum value 1 when H is identical with
C*. Such objective but usually unknown degrees of truthlikeness
can be estimated by the expected degree of truthlikeness ver(H/E)
of H given available evidence E (see [15, p. 269]). This measure is
an epistemic indicator of objective truthlikeness in the same sense
as posterior probability P(H/E) of H given E is an empirical in-
dicator of the truth of H. For a logical truth H, we have P(H/E)
= 1 but ver(H/E) < 1, since H is not informative. On the other
hand, ver(H/E) may be non-zero, and even high, when P(H/E) =
0. Thus, while ver involves epistemic probabilities, it is not iden-
tical with posterior probability. Given ideal conditions about the
correctness and completeness of evidence E, it can be shown that
ver(H/E) approaches the real degree of truthlikeness Tr(H,C*) of H
(see [21], [25]).
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The notion of truthlikeness does not replace the objective concept
of truth, but rather presupposes the correspondence theory of truth
as explicated in Tarski’s model-theoretic definition (see [16]). By
combining the goals of truth and information, it helps the scientific
realist to define scientific progress as theory-change with increasing
truthlikeness (see [14]).

Laudan’s ([10]) ‘pessimistic meta-induction’ is based on the
premise that many theories in the history of science have been non-
referring and false but yet to some extent empirically successful. By
induction, one might infer that this is the fate of our current and
future theories as well. However, instead of simply concluding that
future theories are false, the realist can argue that in typical cases
the successor theory is more truthlike than its predecessor. For ex-
ample, even though many scientific theories contain idealizations,
which are known to be false, the powerful method of ‘concretiza-
tion’ helps to remove such assumptions and thereby lead us toward
the truth (see [8], [20]). This comparative and dynamic picture of
progressive science evades the pessimistic conclusion that all present
and future theories are far from the truth.

2 Abduction and the No Miracle Argument
In his fallibilist analysis of inference, Peirce argued that science uses,
besides deduction, also two ampliative forms of reasoning: induction
and abduction. Abduction is reasoning from effects to causes, or
from observational data to hypothetical explanatory theories:

(1) The surprising fact E is observed;
But if H were true, E would be a matter of course.
Hence, there is reason to suspect that H is true.

[27, 5.189]. Against Comte’s positivism, Peirce claimed that abduc-
tion frequently supposes ‘something which it would be impossible
for us to observe directly’ [27, 2.640].

Peirce insisted that abduction or ‘inference to an explanation’
has a significant role in science. Often this role has been inter-
preted as the heuristic function of the discovery of new theories
(N.R. Hanson), or alternatively as the motive for suggesting or pur-
suing testworthy hypotheses. Peirce further pointed out that in sci-
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ence the abductive step is followed by severe observational and em-
pirical tests of the deductive or probable consequences the hypoth-
esis [27, 2.634]. The examples of abduction range from compelling
everyday observations to the adoption of theoretical hypotheses in
science by virtue of their explanatory and predictive power. In these
cases, it appears that sometimes abductive arguments can serve in
providing a fallible justification of a hypothesis. Along these lines,
Peirce’s schema (1) has been interpreted by Gilbert Harman as in-
ference to the best explanation (IBE).

For a critical realist, it is interesting to study the idea that ab-
ductive inference (1) can be reformulated by taking its conclusion to
concern the truthlikeness of a hypothetical theory on the basis of its
success in explanation and prediction (see [7], [18], [19]). This mod-
ification of abduction is also relevant to what Alan Musgrave [13]
calls the ‘ultimate argument for scientific realism’. After the 1950s,
when scientific realism became a tenable position after the domi-
nance of empiricism and instrumentalism, several philosophers of
science (among them Jack Smart, Hilary Putnam, Grower Maxwell,
and Richard Boyd) have defended realism as the best hypothesis
which explains the practical (empirical and pragmatic) success of
science. The ability of scientific theories to explain surprising phe-
nomena and to yield correct empirical predictions and effective rules
of action would be a ‘cosmic coincidence’ or a ‘miracle’ unless they
refer to real things and are true or at least approximately true or
truthlike (see [29], [30]). It is clear that the form of this ‘no miracle
argument for scientific realism’ (NMA) is abductive (see [14, p. 51]).

In his well-known ‘confutation of scientific realism’, Laudan [10]
demanded the realists to show that there is an ‘upward path’, or
an epistemic warrant, from the empirical success of science to the
approximate truth of theories — and then a ‘downward path’ from
approximate truth to empirical success. In this paper, I restrict
my remarks to the upward path (cf. [14, Ch.7]). For the downward
explanation of the empirical success of science by the truth or truth-
likeness of theories, and for arguments against alternative putative
explanations (cf. [6], [33]), see [16, pp. 192–198]. Theo Kuipers [8]
also gives a reply to Laudan by his ‘downward’ Success Theorem
and ‘upward’ Rule of Success.
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Both Laudan’s challenge and the no miracle argument as a reply
to this challenge presuppose a minimal realist framework where it
makes sense to assign truth values to scientific statements (includ-
ing theoretical postulates and laws). Besides semantic realists, this
framework is accepted by such methodological and epistemological
anti-realists who think that the truth of theories is an irrelevant [33]
or ‘utopian’ aim [10] which ‘exceeds our grasp’ [32]. If successful,
the no miracle argument is also relevant to those semantic anti-
realists and instrumentalists whose inclination to treat theories as
schemata without truth values is motivated by their belief about
the inaccessibility of theoretical truth.

3 The Justification of Abduction
The idea about the justification of abduction has been understood
in three different senses.The first is Peirce’s own account of truth-
frequency, later followed by many frequentist theories of probability
and statistics in the 20th century (cf. [3]). The second approach is
the qualitative theory of confirmation (cf. [31]). The third approach
is the Bayesian theory of inference in terms of epistemic probabilities
(see [17]).

Assume that an epistemic probability measure P is available for
the scientific language, and define confirmation by the Positive Rel-
evance criterion: E confirms H if and only if P(H/E) > P(H). Then,
by Bayes’s Theorem,

(2) If H logically entails E, and if P(H) > 0 and P(E) < 1,
then P(H/E) > P(H).

This result is the basic principle of the hypothetico-deductive (HD)
method in science. More generally, as positive relevance is a sym-
metric relation, it is sufficient for the confirmation of H by E that
H is positively relevant to E. If inductive explanation is defined by
the positive relevance condition, i.e., by requiring that P(E/H) >
P(E) (see [26], [5]), then we have the general result:

(3) If H deductively or inductively explains E, then E confirms H.

The same principle holds for empirical predictions as well, so
that (2) can be generalized to the hypothetico-inductive (HI) or
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hypothetico-probabilistic (HP) method ([26], [9]). Hence, by (2) and
(3), empirical success confirms the truth of a hypothesis.

It is important that in (3) H may be a theory expressed in theoret-
ical terms beyond the observational language. If degrees of confir-
mation are measured by the difference between posterior and prior
probability, i.e., P(H/E) − P(H), then evidence E gives strongest
support to the minimal explanation H that is needed to account for
E without irrelevant additions (see [19],[21]). Theoretical postulates
are typically needed for such a minimal explanation, as theoretical
terms can be logically indispensable for inductive systematization
of observation statements (see [26]).

The notion of confirmation is still weak in the sense that the
same evidence may confirm many alternative rival hypotheses. It
is clear that for given evidence E one can always conceive many
false premises from which E is derivable. A good theoretical expla-
nation should be initially plausible relative other accepted theories,
and it should not only account ‘locally’ for the given E, but it also
should be independently testable by new kind of evidence. Indeed,
it can be shown that the confirmation of a theory H increases if it
is able to explain in a unified way many independent phenomena
(see [23]). But a confirmed hypothesis need not yet be rationally
and tentatively acceptable on evidence. A stronger notion of infer-
ence is obtained if one of the rival hypotheses is the best explanation
of the facts. The strongest justification is obtained if the hypothesis
is the only available explanation of the known facts. The Bayesian
approach immediately shows that P(H/E) may be close to 1 and
P(∼H/E) close to 0, when H is the only explanation of E. This sug-
gests that abduction, or Inference to the Best Explanation, might
be formulated as a rule of acceptance:

(IBE) A hypothesis H may be inferred from evidence E when H is
a better explanation of E than any other rival hypothesis.

Comparison with Peirce’s schema (1) suggests the following version
of IBE:

(IBE′) If hypothesis H is the best explanation of evidence E, then
conclude for the time being that H is true.
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In analyzing IBE′, it is useful to follow Peirce in distinguishing
between deductive and inductive-probabilistic explanations (cf. (3))
(see [17]). But one should also allow approximate explanations: H
approximately explains E when it is possible to derive from hy-
pothesis H something E′ which is close to E. Indeed, the empirical
success of scientific theories in explanation and prediction is often
approximate in this sense. For example, Newton’s theory explains
approximately the laws of Kepler and Galileo. However, here the
evidence may still indicate that the best hypothesis is truthlike. This
principle might be called inference to the best approximate explana-
tion:

(IBAE) If the best available explanation H of evidence E is approx-
imate, conclude for the time being that H is truthlike.

If degrees of truthlikeness are introduced, then there is a natural
addition to IBAE: the greater the fit between H and E, the larger
the degree of truthlikeness of H in the conclusion. (This gives an
answer to P. Kyle Stanford’s criticism of Jarrett Leplin’s account of
partial truth in [32, p. 158].)

By combining the ideas in IBE′ and IBAE, inference to the best
theory can be formulated by the rule

(IBT) If theory H is the best explanation of evidence E, conclude
for the time being that H is truthlike.

Here the acceptance of H is understood in the fallibilist sense that
H is taken to be an informative theory close to the truth. In a
comparative formulation,

(IBTc) If H′ is a better explanation of evidence E than H, conclude
that H′ is more truthlike than H.

(See also [7, 8].)
Many attempts to defend scientific realism by the no miracle ar-

gument NMA appeal to forms of abduction which conclude that
successful scientific theories are approximately true, without mak-
ing the notion of approximate truth precise (e.g., Putnam, Psillos).
In a general form this argument looks like the following:
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(NMA) Many theories in science are empirically successful.
The truth or truthlikeness of scientific theories is the best
explanation of their empirical success.
Hence, conclude that such successful theories are truthlike.

The same argument can be applied to particular scientific theories.
The first premise about the success of science is accepted both by
realist and anti-realists, even though in particular cases the attribu-
tion of success to a specific theory may be non-trivial (e.g., it may
be a matter of controversy whether a medicine, treatment or ther-
apy is really causally effective in producing the desired results). As
a whole, the argument NMA involves something like the principle
IBT, and the conclusion supports the position of critical scientific
realism.

A comparative version of NMA can be given as follows:

(NMAc) Theory H′ is empirically more successful than its rival H.
That H′ is more successful than H can be explained by the
assumption that H′ is more truthlike than H.
Hence, conclude that H′ is more truthlike than H.

To save the no miracle argument NMA against the charges of
circularity ([10], [6]) and incoherence ([33]), one needs to defend
abduction in the form of IBT or IBTc.

4 Upward Inference and Expected Truthlikeness
The probabilistic account of IBE, given by the results (2) and (3),
establishes a probabilistic link between explanatory power and truth:
posterior probability P(H/E) is the rational degree of belief in the
truth of H on the basis of E, and thereby confirmation, i.e., increase
of probability by new evidence, means that we rationally become
more certain of the truth of H than before. But a rule of the form
IBAE needs a link between approximate explanation and truthlike-
ness. The notion of probability (at least alone) does not help us,
since the approximate explanation of E by H allows that H is in-
consistent with E, so that P(E/H) and P(H/E) are zero. Also for
the treatment of IBT, we need a method for assessing the truth-
likeness of a theory given empirical evidence. Here the notion of



192 Ilkka Niiniluoto

expected truthlikeness ver(H/E) can be used as an empirical indi-
cator of truthlikeness.

Expected verisimilitude helps to define a notion of ver-
confirmation in analogy with positive relevance: ver(H/E) > ver(H)
([5], [21]). Then we have, for example, the following result:

(4) If H entails E but ∼H does not entail E, then E ver-confirms
H.

This conclusion is still weak. It does not exclude the possibility that
the ‘catch-all’ hypothesis ∼H includes ‘unconceived alternatives’ to
H which also explain E (see [32]; cf. [30]). However, in cases of ‘un-
derdetermination’ between rival explanations H and H′, which seem
to account for the available evidence E equally well, the scientific
strategy is to expand the evidence E with new observations, instru-
ments, and active experiments, so that eventually a difference in the
empirical success of H and H′ is revealed. A powerful mathemat-
ical theorem, proved by Johann Radon already in 1917 and today
applied in various kinds of abductive ‘inverse problems’, shows un-
der what conditions evidence guarantees the existence of a unique
‘backward solution’ (see [24]).

Another application of ver is to use expected verisimilitude as a
criterion of acceptance. This is in harmony with the suggestion that
the strength of IBT is assessed in terms of the expected verisimil-
itude of its conclusion given the premises. Thus, in order to reply
to Laudan’s ‘upward’ challenge, we should investigate whether the
following kinds of principles are valid:

(5) If H′ is a better approximate explanation of E than H, then
ver(H′/E) > ver(H/E).

(6) If H approximately explains E, then ver(H/E) is high.

(7) If H is the best available explanation of E, then ver(H/E) is
high.

(Cf. [22].) These results, which can be proved at least in special
cases (see [19]), show that explanatory success gives us a rational
warrant for making claims about truthlikeness. Thereby the notion
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of expected truthlikeness, explicated by the function ver, provides a
fallible link from the empirical success of a theory to its truthlikeness.

Under ideal conditions, where a high value of ver(H/E) guaran-
tees that the objective degree of truthlikeness Tr(H,C*) is also high,
results (5)–(7) show that the method of accepting theories with max-
imal estimated verisimilitude is ‘functional for truth approximation’
in the sense of Kuipers [8, 9] (cf. [25]).

It is important to emphasize the fallible nature of results like
(2), (3), and (5)–(7). The notions of confirmation and expected
verisimilitude are historical, relative to the rival theories and evi-
dence available at a given time. Some philosophers have continued
Laudan’s pessimistic argument, in many cases against formulations
of Stathis Psillos [29], by giving historical examples of past theories
which had some empirical success, including novel successes in re-
lation to their predecessors, but still are non-referring and false by
present lights. Against the claims of ‘preservative’ or ‘localized’ real-
ism, such successes may have been based upon theoretical postulates
that are discredited today (see [2], [4], [12], [32]). However, critical
realists may acknowledge that, for example, relative to the historical
situation the caloric theory of heat was well supported by the avail-
able evidence. By NMAc, such theories were progressive in relation
to their predecessors. (For the case of phlogiston theory, see [16,
pp. 191–192]; for old quantum theory, see [8, pp. 278–288].) The
fact that such theories have been replaced by better theories is not
a ‘Pyrrhic victory’ for scientific realism (see [32]), since it supports
the realist picture of scientific progress as increasing truthlikeness.

In fact, the measure of expected verisimilitude can be used also
for retrospective comparisons, if the evidence E is taken to include
our currently accepted theory T, i.e., the truthlikeness of a past
theory H is estimated by ver(H/E&T) (see [14, p. 171]). In a
similar way, Jeffrey Barrett [1] has proposed that — assuming that
science makes progress toward the truth through the elimination of
descriptive error — the ‘probable approximate truth’ of Newtonian
gravitation can be warranted by its ‘nesting relations’ to the general
theory of relativity.
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5 Conclusion
Non-scientific explanations of the success of science — e.g. appeal
to miracles or God’s will — are not satisfactory. Therefore, we
may conclude that scientific realism is the only explanation of the
empirical success of science. This strong form of IBE justifies the
no miracle argument NMA, and thereby gives us the best defence
of scientific realism.
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[28] PihlstrÖm, S., Raatikainen, P., and Sintonen, M. (eds.), Ap-
proaching Truth: Essays in Honor of Ilkka Niiniluoto, London: College
Publications, 2007.

[29] Psillos, S., Scientific Realism: How Science Tracks Truth, London:
Routledge, 1999.

[30] Psillos, S., Knowing the Structure of Nature: Essays on Realism and
Explanation, Houndmills: Palgrave Macmillan, 2009.

[31] Smokler, H., Conflicting Conceptions of Confirmation, The Journal
of Philosophy 65:300–312, 1968.

[32] Stanford, P. K., Exceeding Our Grasp: Science, History, and the
Problem of Unconceived Alternatives, Oxford: Oxford University Press,
2006.

[33] van Fraassen, B., Laws and Symmetry, Oxford: Oxford University
Press, 1989.



Between Int<ω,ω> and intuitionistic
propositional logic1

Vladimir M. Popov

abstract. This short paper presents a new domain of logical
investigations.

Keywords: paralogic, paracomplete logic, paraconsistent logic,
paranormal logic, intuitionistic propositional logic

The language L of each logic in the paper is a standard
propositional language whose alphabet is as follows: {&,∨,
⊃,¬, (, ), p1, p2, p3, . . . }. As it is expected, &, ∨, ⊃ are binary logi-
cal connectives in L, ¬ is a unary logical connective in L, brackets
(, ) are technical symbols in L and p1, p2, p3, . . . are propositional
variables in L. A definition of L-formula is as usual. Below, we
say ‘formula’ instead of ‘L-formula’ only and adopt the convention
on omitting brackets. A formula is said to be quasi-elemental iff
no logical connective in L other than ¬ occurs in it. A length of a
formula A is, traditionally, said to be the number of all occurrences
of the logical connectives in L in A. A logic is said to be a non-
empty set of formulas closed under the rule of modus ponens in L
and the rule of substitution of a formula into a formula instead of
a propositional variable in L.

Let us agree that α and β are arbitrary elements in
{0, 1, 2, 3, . . . ω}. We define calculus HInt<α,β>. This calculus is
a Hilbert-type calculus, the language of HInt<α,β> is L. HInt<α,β>

has the rule of modus ponens in L as the only rule of inference. The
notion of a proof in HInt<α,β> and the notion of a formula provable

1The paper is supported by Russian Foundation for Humanities, projects
№ 10-03-00570a and № 13-03-00088a.
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in this calculus are defined as usual. Now we only need to define
the set of axioms of HInt<α,β>.

A formula belongs to the set of axioms of calculus HInt<α,β> iff
it is one of the following forms (A, B, C denote formulas):

(I) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)), (II) A ⊃ (A ∨ B), (III)
B ⊃ (A ∨ B), (IV) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)), (V)
(A&B) ⊃ A, (VI) (A&B) ⊃ B, (VII) (C ⊃ A) ⊃ ((C ⊃ B) ⊃
(C ⊃ (A&B))), (VIII) (A ⊃ (B ⊃ C)) ⊃ ((A&B) ⊃ C), (IX)
((A&B) ⊃ C) ⊃ (A ⊃ (B ⊃ C)), (X, α) ¬D ⊃ (D ⊃ A), where
D is formula which is not a quasi-elemental formula of a length less
than α, (XI, β) (E ⊃ ¬(B ⊃ B)) ⊃ ¬E, where E is formula which
is not a quasi-elemental formula of a length less than β.

Let us agree that, for any j and k in {0, 1, 2, 3, . . . ω}, Int<j,k> is
the set of formulas provable in HInt<j,k>. It is clear that, for any
j and k in {0, 1, 2, 3, . . . ω}, a set Int<j,k> is a logic. It is proved
that Int<0,0> is the set of intuitionistic tautologies in L (that is, the
intuitionistic propositional logic in L). By S we denote the set of all
logics which include logic Int<ω,ω> and are included in Int<0,0> and
by ParaInt we denote S \ {Int<0,0>}. Note logic Int<ω,ω> is the in-
tersection of all logics, other than itself, in ParaInt. The set ParaInt
is of interest for scholars who study paralogics (paraconsistent or
paracomplete logics). The set ParaInt contains (1) a continuous
set of paraconsistent, but non-paracomplete logics, (2) a continuous
set of paracomplete, but non-paraconsistent logics, (3) a continuous
set of paranormal logics. We have some results concerning both
logics from ParaInt and classes of such logics. In particular, we
have methods to construct axiomatisations (sequent calculus and
analytic-tableaux calculus) and semantics (in the sense of Kripke)
for any logic Int<j,k>, where j and k in {0, 1, 2, 3, . . . ω}.
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Dynamic logic versus GTS: A case
study1

Gabriel Sandu

abstract. In this paper I will compare several solutions to a
well known puzzle: Monty Hall. This will enable us to illustrate
varitous styles of logical reasoning, and in particular to compare
dynamic logic with game-theoretical approaches.

Keywords: game-theoretical semantics, IF logic, Monty Hall, dy-
namic epistemic logic, conditional probabilities

1 Monty Hall: Formulation of the problem
There are two formulations of the puzzles. The first one is more
general:

Monty Hall shows the contestant C three closed doors:
behind one of them there is a prize, the other two are
empty. C chooses a door. Monty Hall opens any of the
other doors, which is empty. Then she asks C whether
he would like to switch the doors, and choose the re-
maining one which is closed. Is it in C’s interest to do
it? (Richard Isaac, The Pleasures of Probability 1995, 3)

The second formulation mentions a particular door chosen by the
contestant:

Monty Hall (MH) hides a prize behind one of three
doors, door 1, door 2, and door 3. The Contestant (C)
has to guess it. Suppose his guess is door 1. Monty Hall,
who knows the location of the prize and will not open

1I am indebted to Antonina Nepejvoda for the supercompilation of the Monty
Hall.
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that door, opens door 3 and reveals that there is no prize
behind it. She then asks C whether he wishes to change
from his initial guess to Door 2. Will changing to door
2 improve C’s chances of winning the prize? (Grinstead
and Snell, Introduction to Probabilities, 1998)

The second formulation of the problem ‘asks for the conditional
probability that C wins if she switches doors, given that she has
chosen door 1 and that Monty Hall has chosen door 3’ (Grinsteas
and Snell). On the other side, the first formulation is about the com-
parative probabilities of two kinds of strategies for C, the ‘switch’
strategy and the ‘stay’ strategy:

We say that C is using the ‘stay’ strategy if she picks
a door, and, if offered a chance to switch to another
door, declines to do so (i.e., he stays with his original
choice). Similarly, we say that C is using the ‘switch’
strategy if he picks a door, and, if offered a chance to
switch to another door, takes the offer. Now suppose
that C decides in advance to play the ‘stay’ strategy.
Her only action in this case is to pick a door (and decline
an invitation to switch, if one is offered). What is the
probability that she wins a car? The same question can
be asked about the ‘switch’ strategy. (Grinstead and
Snell, Introduction to Probabilities, p. 137)

It should come as no surprize that the second formulation lends
itself naturally to a solution in terms of conditional probabilities and
updates in dynamic epistemic logic (DEL). The first formulation, on
the other side, suggests a game-theoretical solution. I will give one.

2 The conditional probabilities account
We consider the second variant of the puzzle. We start with some
abbreviations: Di is going to abbreviate ‘The prize is behind Door
i’; B will be an abbreviation for ‘Monty Hall opens door 3’. We
make the initial assumption that there is an equal probability that
the prize is between each of the three doors. Hence

P (D1) = P (D2) = P (D3) = 1/3.
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The second assumption is that when she has a choice, Monty Hall
opens at random one of the two doors. In our particular situation
in which C chose door 1, Monty Hall opens at random door 2 or
door 3. Hence P (B) = 1/2.

The other probabilities are calculated as follows.

• When D1, Monty Hall is free to open door 2 or door 3:
P (B/D1) = 1/2,

• When D2, Monty Hall has to open door 3: P (B/D2) = 1

• When D3, Monty Hall has to open door 2: P (B/D3) = 0.

In order to solve the puzzle, we have to calculate three conditional
probabilities:

a) P (D1/B): the probability that the prize is behind door
1, given that Monty Hall opened door 3

b) P (D2/B): the probability that the prize is behind door
2, given that Monty Hall opened door 3

c) P (D3/B): the probability that the prize is behind door
3, given that Monty Hall opened door 3.

Using Bayes’ theorem

P (A/B) = (P (B/A) × P (A))/(P (B))

we obtain

P (D1/B) =
P (B/D1) × P (D1)

P (B)
= 1/3

P (D2/B) =
P (B/D2) × P (D2)

P (B)
= 2/3

P (D3/B) =
P (B/D3) × P (D3)

P (B)
= 0

Thus the answer to the initial question is: Yes, C should switch
to door 2.
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3 Conditional probabilities: trees
In order to facilitate comparison, we shall present the same solu-
tion given above using trees. (This is also the solution in Grinstead
and Snell 1998.) The tree will consist of 12 branches which corre-
sponds extensionally to all the possible choices of Monty Hall and
the Contestant. Each maximal branch has the form (x, y, z), where:

• x stands for the door with the prize,

• y stands for the door chosen be C, and

• z stands for the door opened by Monty Hall.

In addition we have the following restrictions:

• If x = y, then z takes two possible values; and

• If x ̸= y, then z can take only one value.

Thus the sequence (1, 2, 3) represents the history:

1. MH hides the prize behind door 1; C chooses door 1; MH
opens door 3.

It is customary in this setting to represent events as sets of branches
of the tree. For instance, the event C1 of C’s choosing door 1 cor-
responds to

C1 = {(1, 1, 2), (1, 1, 3), (2, 1, 3), (3, 1, 2)},

the event B of Monty Hall’s opening door 3 corresponds to

B = {(1, 1, 3), (1, 2, 3), (2, 1, 3)},

and the event C1∩B of C’s choosing door 1 and Monty Hall opening
door 3 corresponds to

C1 ∩B = {(2, 1, 3), (1, 1, 3)}.

Next, we endow the tree with a probability structure. First, we
make the same assumptions as earlier:
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• The events of the car being hidden behind door 1, door 2, and
door 3 are equiprobable

• The events of C’s choosing door 1, door 2, and door 3 are
equiprobable.

• Whenever Monty Hall has a choice to open one of two doors,
she chooses at random; and when she can open only one door,
the probability is 1.

We can now calculate the probabilities of the events which interest
us.

• The probability of the event C1 ∩B = {(2, 1, 3), (1, 1, 3)} :

P ({(2, 1, 3), (1, 1, 3)}) =

P (2, 1, 3) + P (1, 1, 3) =

(1/3 × 1/3 × 1) + (1/3 × 1/3 × 1/2) = 1/6

• The probability of the event D1 ∩ C1 ∩B = {(1, 1, 3)}:

P (D1 ∩ C1 ∩B) = 1/3 × 1/3 × 1/2 = 1/18 = 1/18

• The probability of the event D2 ∩ C1 ∩B = {(2, 1, 3)}:

P (D2 ∩ C1 ∩B) = 1/3 × 1/3 × 1 = 1/9 = 1/9

Finally, we apply Bayes’ law to compute the probability that the
car is behind door 1 given that C chose door 1and Monty Hall opend
door 3, P (D1/C1 ∩ B), and the probability that the car is behind
door 2 given that C chose door 1and Monty Hall opend door 3,
P (D2/C1 ∩B) . We have

P (D1/C1 ∩B) =

P (D1 ∩ C1 ∩B)/P (C1 ∩B) = 1/18/1/6 = 1/3

and

P (D2/C1 ∩B) =

P (D2 ∩ C1 ∩B)/P (C1 ∩B) = 1/9/1/6 = 2/3.

We have obtained the same solution that above.
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4 Dynamic (Update) logic
4.1 Product updates
We consider the formulation to Monty Hall in which C chooses door
1. This carves out a subtree from the big tree above which consists
of four maximal branches:

O1 = (1, 1, 2)
O2 = (1, 1, 3)
O3 = (2, 1, 3)
O4 = (3, 1, 2)

In update logic this tree is seen as generated in three stages.

1. First MH put the prize behind one of the three doors. This
generates an epistemic model M1 which corresponds to the
first layer in the tree.

2. M1 is then updated with C ′s action a1: C chooses door 1.
The result is the product model M2 which corresponds to the
second layer.

3. Finally MH (publicly) opens some door. This updates M2

with two possible actions, a2(= she opens door 2), and a3(=
she opens door 3). The result is the product model M3which
corresponds to the third layer of the tree.

Each action is associated with a set of preconditions which specify
in which circumstances (possible worlds) it may be performed. C’s
and Monty Hall’s actions are governed by the following principles
which determine their preconditions:

a) C may choose any of the three doors

b) Monty Hall can open only a door thatC did not choose,
and where the car is not hidden.

Now some of the details.
The epistemic model M1 has the form

M1 = (W1, R
1
C , R

1
MH)

where
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• W1 = {w1, w2, w3}, (w1 represents the world where the car is
behind door 1, etc)

• R1
MH = {(w,w) : w ∈ W1} (Monty Hall’s actions are accessi-

ble to herself)

• RC = W1×W1 (Monty Hall’s actions are not accessible to the
contestant C).

At stage (2), M1 is updated with the action model A1 = (V1, Q
1
C ,

Q1
MH), where V1 = {a1}. Given that a1is a public action, both

accessibility relations Q1
C and Q1

MH are V1×V1. From (a) we know
that Pre(a1) = W1. Hence

M2 = M1 ×A1 = (W2, R
2
C , R

2
MH)

where

• W2 = W1 × V1.

• R2
C = W2×W2 (all the worlds in W2 remain indistinguishable

to C)

• R2
MH = {(w, a1), (w, a1) : w ∈ W1} (Monty Hall knows ex-

actly where she is).

Let us abbreviate the possible worlds in W2 by:

v1 = (w1, a1)
v2 = (w2, a1)
v3 = (w3, a1)

Finally, the product model M2 is updated with the action model

A2 = (V2, Q
2
C , Q

2
MH)

where

• V2 = {a2, a3}, (a2= Monty Hall opens door 2, etc).

• Q2
C = Q2

MH = {(a2, a2), (a3, a3)}.
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From (b) we know that Pre(a2) = {v1,v3} and Pre(a3) = {v1, v2}.
The result of the update is the product model

M3 = M2 ×A2 = (W3, R
3
C , R

3
MH)

where W3 = W2 × A2 and the accessibility relations R3
C and R3

MH

inherit the uncertainities from M2.
Let us abbreviate the possible worlds of W3 by:

x = (w1, a1, a2)
y = (w1, a1, a3)
z = (w2, a1, a3)
u = (w3, a1, a2)

In order to give a solution to the puzzle, we need to establish what
C knows at this stage, i.e. R3

C . Given that a2 and a3 are public
actions, C knows, after a2 is performed, that she could be either in
x or in u, i.e. R3

Cxu and R3
Cux (plus the corresponding reflexivity

conditions). And after a3 is performed, she knows she can be ei-
ther in y or in z, that is, R3

Cyz and R3
Czy (plus the corresponding

reflexivity conditions). Graphically:

w1 · · · · · · w2 · · · w3

↓ ↓ ↓
a1 · · · · · · a1 · · · a1

↙ ↘ ↓ ↓
a2 a3 · · · a3 a2
x y z u

4.2 Product updates with probabilities
Earlier on, we endowed trees with a probability structure. We now
do the same for product update models. I follow very closely van
Benthem (2003).

For epistemic models M , we consider, for each agent i, the equiv-
alence classes Di,s = {t : Rist}. Probability functions Pi,s are de-
fined over the probability space Di,s. For simplicity, we take these
functions to be uniform: all the worlds in the set Di,s are equiprob-
able. Following van Benthem, we simplify matters even more in
finite models and assume that the functions Pi,s assign probabilities
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Pi,s(w) to single worlds w. We can then use sums of these values
to assign probabilities to propositions, viewed as the set of worlds
where they are true. Then we can interpret Pi,s(φ) as assigning a
probabilistic value assigned to φ by the agent i in the possible world
s. In case this value is 1, this will correspond to the assertion Kiφ.

Next, we assign probabilities to actions in the universe of the
action models A. This is done relatively to a state s. The basic
notion is Pi,s(a): the probability that the agent i assigns to action
a in the world s. In our example we assume that all this has been
settled in some way or another, giving us agents’ probabilities for
worlds, and also for actions at worlds.

Finally we are ready to handle the puzzle. We are interested in
the last update. Given that Monty Hall’s action of opening a door
is a public one, reference to the agent i does not matter, and we
shall be concerned with probabilities functions of the form Ps(a).
We are interested in computing the relevant probabilities in

M3 = M2 ×A2 = (W3, R
3
C , R

3
MH).

More specifically, we are interested in the probabilities the agents
assign to the possible worlds in W3. As mentioned, these worlds
have the form v = (w1, a1), etc.

The central notion is Pc,(v,a)(v
′, b): the probability agent C as-

signs to the world (v′, b) in the world (v, a). In order to compute it,
we need to know the probability Pi,v(v′) that C assigns to the world
v′ in v, and the probability Pv′(b) assigned to the action b in the
world v′. But this is not enough, for the action b could have been
performed from any other world u indistinguishable (for agent C)
from v. So we also need the probabilities PC,v(u) for every u such
that RCvu together with the probabilities Pu(b). Then we use the
formula:

PC,(v,a)(v
′, b) =

PC,v(v′) × Pv′(b)∑
RCvu PC,v(u) × Pu(b)

Thus in our case we need to compute the value of

PC,v1(v1) = Pc,(w1,a1)(w1, a1)
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and that of
PC,v1(v2) = Pc,(w1,a1)(w2, a1).

We have

Pc,(w1,a1)(w1, a1) =
PC,w1

(w1)×Pw1
(a1)

PC,w1(w1)×Pw1(a1)+PC,w1(w2)×Pw2(a1) + PC,w1(w3)×Pw3(a1)
=

1

3
× 1

1

3
× 1 +

1

3
× 1 +

1

3
× 1

=
1

3
.

A similar computation yields

PC,v1(v2) = PC,(w1,a1)(w2, a1) =
1

3

Finally we are interested in

PC,x(y) = PC,(v1,a3)(v1, a3)

and
Pc,x(z) = Pc,(v1,a3)(v2, a3).

The first one represents the probability that C assigns in the (actual)
world (v1, a3) (the prize is behind door 1, C chooses door 1, Monty
Hall opens door 3) to the very same world; the second one represents
the probability that C assigns in the world (v1, a3) to the world
(v2, a3) which is identical to the actual world, except for the prize
being behind door 2.

We have

PC,(v1,a3)(v1, a3) =
PC,v1(v1) × Pv1(a3)

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3)
=

1

3
× 1

2
1

3
× 1

2
+

1

3
× 1

=
1

3
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Similarly

PC,(v1,a3)(v2, a3) =
PC,v1(v2) × Pv2(a3)

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3)
=

1

3
× 1

1

3
× 1

2
+

1

3
× 1

=
2

3

We recover the same result as earlier: it is rational for C to switch
to door 2.

5 Game-theoretical solutions
We consider the second formulation of the puzzle. To my knowledge,
there is no full-fledged game-theoretical solution in the literature.

I will first describe a solution, due to Isaac (1995), which comes
close to a game-theoretical one.

5.1 Isaac’ solution
Isaac represents the puzzle as consisting abstractly of the succession
of three actions:

a) C chooses one of the three doors

b) Monty Hall opens one of the two remaining doors, the
one without a prize

c) C switches doors

followed by an a label W or L which shows whether C won or lost.
The door where the prize is hidden is denoted by 1, the other two
by 2 and 3.

Thus the sequence (1, 2, 3, L) should be read:

C chooses the door where the prize is; MH opens the
other door 2; C switches to door 3; C looses.

Notice that the stage in the puzzle which indicates where Monty
Hall has hidden the prize, is not explicitly represented. On the
other side, there is one an extra-layer which represents C’s action
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of switching doors and another extra-layer which specifies who lost
or won. Notice also that the labels 1, 2 and 3 are not rigid, they do
not designate any concrete door.

When we think of C’s action of switching doors, 4 possible situ-
ations can occur:

• (C chose the door where the prize is; Monty Hall opens the
other door, 2; C switches doors; C looses): (1, 2, 3, L)

• Identical with the previous one, except that the last two
choices are reversed: (1, 3, 2, L)

• (C chose one of the doors without the prize, say 2; Monty Hall
opens the other door without the prize, 3; C switches to 1; C
wins): (2, 3, 1,W )

• Identical with the previous one, except that the first two
choices are reversed: (3, 2, 1,W )

We now have to endow the space

{(1, 2, 3, L), (1, 3, 2, L), (2, 3, 1,W ), (3, 2, 1,W )}

with probabilities.
It is reasonable to assume that the probability that C chose the

door where the prize is equals the probability that he chooses the
door 2 (without the prize), and the probability that he chooses door
3. The event corresponds to

{(1, 2, 3, L), (1, 3, 2, L)}

and the last two ones to {(2, 3, 1,W )} and {(3, 2, 1,W )}. So we
assume that

P ({(1, 2, 3, L), (1, 3, 2, L)}) = 1/3

P ({(2, 3, 1,W )}) = 1/3

P ({3, 2, 1,W )} = 1/3

We do not know the probabilities P (1, 2, 3, L) and P (1, 3, 2, L) but
we shall not need them. What we are interested in is the event ‘C
wins’ which corresponds to

{(2, 3, 1,W ), (3, 2, 1,W )}
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and the event ‘C looses’ which actually turns out to be the same
event as ‘C chose the door where the prize is’. Obviously

P ({(2, 3, 1,W ), (3, 2, 1,W )}) =

P ({(2, 3, 1,W )}) + P ({(3, 2, 1,W )}) = 2/3

We now have an answer to our initial puzzle. Using the ‘switching’
strategies C will win with probability 2/3 and loose with probability
1/3.

A similar argument will represent the ‘stick to the same door’
strategy by

{(1, 2, 1,W ), (1, 3, 1,W ), (2, 3, 2, L), (3, 2, 3, L)}

By an argument similar to the previous one, we see that the
probability that C wins (= {(1, 2, 1,W ), (1, 3, 1,W )})) is 1/3 whereas
the probability that C looses is 2/3.

Isaac’s conclusion is: switching doors gives C a probability of 2/3
to win the car, whereas sticking to his initial choice will give him a
probability of 1/3 to win the car.

Notice that:

• The solution is general, it concerns the first variant of Monty
Hall puzzle.

• The solution does not appeal to conditional probabilities.

• There is a layer in the representation which makes explicit C’s
second guess.

We shall incorporate these elements in our game-theoretical solu-
tion.

5.2 A game-theoretical solution
We shall formulate Monty Hall as an extensive, finite win-loss game
of imperfect information played by two players: the contestant C
tries to identify the door with the prize whereas his opponent Monty
Hall tries to deceive him. The game tree will extend the tree we in-
troduced in connection with the conditional probabilities approach.
Maximal branches will have now the form (x, y, z, t) with an extra
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term t to stand for the final choice of C. In this setting the maximal
sequence (1, 1, 2, 1) represents the possible play of the game:

MH hides the prize behind door 1; C chooses door 1;
MH opens door 2; C chooses door 1.

This play is a win for C if the last element of the sequence is the
same as the first: in his second choice C chooses the door where the
prize is. Note that in each play (x, y, z, t), x and z are choices made
by Monty Hall, whereas y and t are choices made by C.

To specify the information of the players, notice that

C1 Any histories (x) and (x′) are equivalent (indistinguish-
able) for player C

C2 Any histories (x, y, z) and (x′, y′, z′) such that y = y′

and z = z′ are equivalent for player C.

(C1) tells us that C does not know the door where the prize is,
when making his first choice. (C2) expresses the fact that C does
not know the door where the prize is, when he makes his second
choice.

Next we specify the strategies of the players.
We shall take the strategies of C to consist of pairs (fy, ft) of

functions: fywill give her a choice for y and ft achoice for t. Given
the requirement (C1), fy will have to be a constant function, i.e.
fy(x) = fy(x′) for any doors x, x′ where Monty Hall hides the price.
This amounts to fy being an individual i (a door). Similar comments
apply to ft : given the requirement (C2), we can assume that ft is
a function h of two arguments, y and z. All in all we shall take C’s
strategies to consist of pairs (i, hi), where i stands for a door and
hi for a function of two arguments (y, z).

A strategy (i, hi) is winning if C wins every play where she follows
it. The notion of ‘following a strategy’ is standard in game theory
and we shall not give a formal definition.

We focuse on two kinds of strategies for player C (all the others
are weakly dominated by them).

• The ‘stay’ strategy, SStay
C : choose a door, then stick to the

initial choice no matter what Monty Hall does.
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It is encoded by three strategy pairs, i.e.,

SStay
C = {(i, hi) : i = 1, 2, 3},

where hi(y, z) = i, for every y and z.
Each such strategy (i, hi) is followed in every play

(x, i, z, hi(i, z))

for any x and z. As mentioned earlier, it is winning whenever C’s
initial guess is correct, i.e., i = x = hi(y, z), and loosing otherwise.
Obviously none of the ‘stay’ strategies is winning simpliciter.

• The ‘switch’ strategy, SSwitch
C : choose a door, and then after

Monty Hall opens a door, switch doors.

This strategy is encoded by three strategy pairs

SSwitch
C = {(1, f1), (2, f2), (3, f3)}

where
f1(1, 2) = 3 f1(1, 3) = 2
f2(2, 3) = 1 f2(2, 1) = 3
f3(3, 2) = 1 f3(3, 1) = 2

Each of the three strategies wins in two cases: when the initial
choice is incorrect, i ̸= x; and it looses in one case, when the initial
choice is correct.

Monty Hall’s strategies consist of pairs (j, g): j is a value for x;
and the function g associates to each argument (x, y) a value for z.

The only strategy available for Monty Hall (given the rules of the
game) is: ‘hide the prize behind a door, and after C chooses a door,
open any other door’. Thus her set of strategies, SMH , contains the
following strategy pairs:

(1, g1) : g1(1, 1) = 2 g1(1, 2) = 3 g1(1, 3) = 2

(1, g
′
1) : g

′
1(1, 1) = 3 g

′
1(1, 2) = 3 g

′
1(1, 3) = 2

(2, g2) : g2(2, 1) = 3 g2(2, 2) = 1 g2(2, 3) = 1

(2, g
′
2) : g

′
2(2, 1) = 3 g

′
2(2, 2) = 3 g

′
2(2, 3) = 1

(3, g3) : g3(3, 1) = 2 g3(3, 2) = 1 g3(3, 3) = 1

(3, g
′
3) : g

′
3(3, 1) = 2 g

′
3(3, 2) = 1 g

′
3(3, 3) = 2
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Each of the strategy pair (j, gj) is followed in every play of the
form (j, y, gj(j, y), t), for any y and t. It is winning whenever j ̸= t
and loosing otherwise. None of these strategies is winning sim-
pliciter.

Monty Hall formulated as an extensive game of imperfect informa-
tion is indeterminate: neither Monty Hall nor Eloise has a winning
strategy.

To overcome indeterminacy we move to mixed strategies. Before,
we need few definitions and results from classical game theory.

5.2.1 Strategic games: equilibria in pure strategies
A finite two player strategic game has the form Γ = (SI , SII , uI , uII)
where:

1. SI is the set of strategies of the first player

2. SII is the set of strategies of the second player

3. uI and uII are the payoff functions of the players. That is,
for every σ ∈ SI and τ ∈ SII , uI(σ, τ) gives player I a payoff,
which is a real number; and the same for uII .

Fix a 2 player strategic game Γ = (SI , SII , uI , uII). When σ∗ ∈ SI
and τ∗ ∈ SII , the pair (σ∗, τ∗) is an equilibrium in Γ iff the following
two conditions are jointly satisfied:

(i) uI(σ∗, τ∗) ≥ uI(σ, τ∗) for every strategy σ in SI . In other words

uI(σ∗, τ∗) = maxσuI(σ, τ∗)

(ii) uII(σ∗, τ∗) ≥ uII(σ∗, τ) for every strategy τ in SII . In other
words

uII(σ∗, τ∗) = maxτ uII(σ∗, τ)

When SI and SII are finite, there is a simple algorithm for identi-
fying the equilibria:

• In each column, circle the maximum payoffs of player I (if the
maximum payoff occurs more than once, circle every occur-
rence)
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• In each row, circle the maximum payoffs of player II

• A pair of strategies (σ∗, τ∗) is an equilibrium in Γ iff both
uI(σ∗, τ∗) and uII(σ∗, τ∗) are circled.

It is straightforward to transform the extensive Monty Hall game
into a finite 2 player win-lose strategic game.

We shall take the two players to be Monty Hall and C.
We have already specified the set of strategies of Monty Hall,

SMH , and the set of strategies of the Contestant, SC . Notice that
whenever Monty Hall follows one of her strategies in SMH , and C
follows one of his strategies in SC , a play of the extensive game is
generated which is a win for either one of the players. For instance,
when Monty Hall follows (3, g3) and C follows (1, h1), the result is
the play (3, 1, 2, 1) which is a win for Monty Hall. This will fix the
payoff functions uMH and uC . Here is the matrix representation of
the strategic Monty Hall game:

(1, g1) (1, g
′
1) (2, g2) (2, g

′
2) (3, g3) (3, g

′
3)

(1, h1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)

(2, h2) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (0, 1)

(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0)

(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)

(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)

(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

The rows represent the strategies of the Contestant and the colums
those of Monty Hall. The reader may convince himself, by applying
the algorithm described above, that there is no equilibrium in the
game. This is, obviously, nothing else than the counterpart of the
indeterminacy of the extensive game of imperfect information.

5.2.2 Strategic games: mixed strategy equilibria
Let Γ = (SI , SII , uI , uII) be a two player finite strategic game.

• A mixed strategy ν for player p is a probability distribu-
tion over Sp, that is, a function ν : Sp → [0, 1] such that∑

τ∈Sp
ν(τ) = 1.



Dynamic logic versus GTS: A case study 217

• ν is uniform over S′
i ⊆ Si if it assigns equal probability to all

strategies in S′
i and zero probability to all the strategies in

Si − S′
i.

Let ∆(Sp) be the set of mixed strategies over Sp. If µ ∈ ∆(SI) and
ν ∈ ∆(SII), the expected utility for player p is given by:

Up(µ, ν) =
∑
σ∈SI

∑
τ∈SII

µ(σ)ν(τ)up(σ, τ).

We can identify a pure strategy σ ∈ SI with a ‘degenerate’ mixed
strategy which assigns to σ probability 1 and 0 to all the other
strategies in SI . That is, when σ ∈ SI and ν ∈ ∆(SII), we let

Up(σ, ν) =
∑
τ∈SII

ν(τ)up(σ, τ).

Similarly, when τ ∈ SII and µ ∈ ∆(SI), we let

Up(µ, τ) =
∑
σ∈SI

µ(σ)up(σ, τ).

Let Γ = (SI , SII , uI , uII) be a two player finite strategic game which
is also a win-lose game (the only payoffs are 0 and 1). For µ∗ ∈
∆(SI) and ν∗ ∈ ∆(SII), the definition of (µ∗, ν∗) being a mixed
strategy equilibrium in Γ is completely analogue to the earlier one.

The following results are well known.

Theorem 1 (von Neuman’s Minimax Theorem). Every finite,
two-person, win-lose game has an equilibrium in mixed strategies.

Corollary 1. Let (µ, ν) and (µ′, ν ′) be two mixed strategy equlib-
ria in a win-lose game. Then Up(µ, ν) = Up(µ

′, ν ′).

The above results tell us that for two-player finite win-lose games
an equilibrium always exists (von Neumann’s theorem), and in ad-
dition, any two mixed strategy equilibria deliver the same expected
utility. We shall take the value of the game to be the expected
utility delivered by any of the mixed strategy equilibrium in the
game.

We give a simple algorithm for identifying mixed strategy equi-
libria:
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Proposition 1. In a finite, two player strategic game, the pair
(µ∗, ν∗) is an equilibrium if and only if the following conditions hold:

1. UI(µ∗, ν∗) = UI(σ, ν∗) for every σ ∈ SI in the support of µ∗

2. UII(µ∗, ν∗) = UII(µ∗, τ) for every τ ∈ SII in the support of ν∗

3. UI(µ∗, ν∗) ≥ UI(σ, ν∗) for every σ ∈ SI outside the support of µ∗

4. UII(µ∗, ν∗) ≥ UII(µ∗, τ) for every τ ∈ SII outside the support of
ν∗.

Here are few results from classical game theory which help us
to reduce a game to a smaller one, after which we can apply the
Proposition above.

Definition 1. Let Γ = (SI , SII , uI , uII) be a finite two player
strategic, win-lose game. For σ, σ′ ∈ SI , we say that σ′ weakly
dominates σ if the following two conditions hold:

(i) For every τ ∈ SI :
uI(σ′, τ) ≥ uI(σ, τ)

(ii) For some τ ∈ SII :

uI(σ′, τ) > uI(σ, τ).

A similar notion is defined for Abelard.
The following result enables us to eliminate weakly dominated

strategies.

Proposition 2. Let Γ = (SI , SII , uI , uII) be a finite 2 player,
win-lose game strategic game. Then Γ has an equilibrium in mixed
strategies (µI , µII) such that for each player p none of the strategies
in the support of σp is weakly dominated in Γ.

A proof of this fact may be found in Mann et al (Proposition
7.22).

Definition 2. Let Γ = (SI , SII , uI , uII) be a finite two player,
win-lose strategic game. For σ, σ′ ∈ SI , we say that σ′ is payoff
equivalent to σ if for every τ ∈ SII : uI(σ′, τ) = u∃I(σ, τ).
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A similar notion is defined for Abelard. The next Proposition
allows us to reduce the game to a smaller one by eliminating all the
payoff equivalent strategies, except one.

Proposition 3. Let Γ = (SI , SII , uI , uII) be a finite two player,
win-lose strategic game. Then Γ has an equilibrium in mixed strate-
gies (µI , µII) such that for each player p there are no strategies in
the support of σp which are payoff equivalent.

A proof of this fact may be found in Mann et al (Proposition
7.23).

We now return to the strategic Monty Hall game. We notice that
each strategy (i, hi) is weakly dominated by some strategy (j, fj).
For instance (1, h1) is weakly dominated by (2, f2). Hence by the
second proposition above we know that that game has the same
value as the game

(1, g1) (1, g
′
1) (2, g2) (2, g

′
2) (3, g3) (3, g

′
3)

(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)

(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)

(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

The next observation is that the strategies (i, g
′
i) and (i, gi) are

payoff equivalent for Abelard. Hence by the last proposition we
know that the value of the game is the same as that of the game:

(1, g1) (2, g2) (3, g3)

(1, f1) (0, 1) (1, 0) (1, 0)

(2, f2) (1, 0) (0, 1) (1, 0)

(3, f3) (1, 0) (1, 0) (0, 1)

Let µ be the uniform probability distribution, i.e. µ(1, fi) =
1

3
and

ν the uniform probability distribution ν(j, gj) =
1

3
. It is straight-

forward to check, using the first proposition above, that (µ, ν) is an
equilibrium. The expected utility of player C (i.e., the value of the
game) for this equilibrium is 2/3.
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Notice that C’s strategy µ assigns an equal probability to each
of the pure strategies which implement the ‘switch’ strategy. The
important thing is not that it returns to player C an expected util-
ity of 2/3 but rather that it weakly dominates the ‘stay’ strategy.
If we want to compute the expected utility returned to C by the
latter strategy, we should return to the bigger game where both the
‘switch’ and the ‘stay’ strategies are listed. We know that the value
of the game described there is the same as that delivered by the
equilibrium pair (µ, ν). In that game, let ν∗ be the same as ν, and

let µ∗ be the probability distribution such that: µ∗(i, fi) =
1

3
and

µ∗(i, hi) = 0. The pair (µ∗, ν∗) is an equilibrium in this larger game.
We compute UC((i, hi), ν

∗):

UC((i, hi), ν
∗) =

∑
t∈SMH

ν∗(τ)uC((i, hi), t) = 2 × 1

6
× 1 =

1

3

In other words, the ‘stay’ strategy returns an expected utility of
1

3
.

We have obtained the same result as in Isaac’s approach.

6 IF logic
IF logic (Independence-Friendly logic) is an extension of first-order
logic which contains quantifiers and connectives of the form

(∃x/W ), (∀x/W ), (∨/W ), (∧/W )

where the interpretation of e.g. (∃x/W ) is: ‘the choice of x is
independent of the values of the variables in W ’. When W = ∅, we
recover the standard quantifiers. For illustration, the sentence

• For every x and x′, there exists a y depending only on x and
a y′ depending only on x′ such that Q(x, x′, y, y′) is true

is rendered in the new symbolism by

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′).

IF sentences are interpreted by semantical games of imperfect
information (Mann et al). However, we prefer to give an interpre-
tation in terms of Skolem functions and Kreisel counterexamples.
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The skolemized form or skolemization of φ, with free variables in U,
SkU (φ), is given by the following clauses:

1. SkU (ψ) = ψ, for ψ a literal

2. SkU (ψ ◦ θ) = SkU (ψ) ◦ SkU (θ), for ◦ ∈ {∨,∧}

3. SkU ((∀x/W )ψ) = ∀xSkU∪{x}(ψ)

4. SkU ((∃xW )ψ) = Sub(SkU∪{x}(ψ), x, f(y1, ..., yn))

where y1, ..., yn are all the variables in U−W and f is a new function
symbol of appropriate arity. We abbreviate Sk∅(φ) by Sk(φ).

Skolemizing makes explicit the dependencies of variables. We
obtain an alternative definition of truth. For every IF formula φ,
model M, and assignment s which includes the free variables of φ
we let: M, s �+

Sk φ if and only if there exist functions g1, ..., gn of
appropriate arity in M to be the interpretations of the new function
symbols in SkU (φ) such that

M, g1, ..., gn, s � SkU (φ)

where U is the domain of s. The functions g1, ..., gn are called skolem
functions.

We now define the dual procedure of Skolemization. The Kreisel
form KrU (φ) of the IF formula φ in negation normal form with free
variables in U is defined by:

1. KrU (ψ) = ¬ψ, for ψ a literal

2. KrU (ψ ∨ θ) = KrU (ψ) ∧KrU (θ),

3. KrU (ψ ∧ θ) = KrU (ψ) ∨KrU (θ)

4. KrU ((∃x/W )ψ) = ∀xKrU∪{x}(ψ)

5. KrU ((∀x/W )ψ) =Sub(KrU∪{x}(ψ), x, g(y1, ..., ym))

where y1, ..., ym are all the variables in U −W .
We now obtain an alternative definition of falsity. For every IF

formula φ, model M, and assignment s which includes the free vari-
ables of φ we let: M, s �−

Sk φ if and only if there exist h1, ..., hm in
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M to be the interpretations of the new function symbols in Kr(φ)
such that

M, h1, ..., hm, s � KrU (φ)

where U is the domain of s. We call h1, ..., hm Kreisel counterex-
amples.

The Monty Hall game is expressed in IF logic by the sentence

∀x(∃y/{x})∀z[x ̸= z ∧ y ̸= z → (∃t/{x})x = t]

or equivalently by the sentence φMH

∀x(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})x = t].

We can think of the Contestant, C, as the existential quantifier
and disjunction, and of Monty Hall as the universal quantifier. We
do not want to push the formalization too far. The intuitive reading
of our sentence should be clear: For all Door x where the prize is
hidden by Monty Hall, for every door y guessed by C, for every door
z opened by Monty Hall, if z is distinct from x and from y, then
C has one more choice to identify the door where the prize is. The
Skolemized form of φMH is

∀x∀z[x = z ∨ c = z ∨ x = f(c, z)]

and its Kreisel form is

∀y[d = g(d, y) ∨ y = g(d, y) ∨ ∀t(g(d, y) = t)]

where c, d, f and g are new function symbols. The reader should
convince herself that on models M = {1, 2, 3} (corresponding to
the three doors) the possible values of (c, f) correspond to the set
of strategies of the Contestant; and the possible values of (d, g)
correspond to the set of strategies of Monty Hall.

Then we can identify the value of φMH in the model M = {1, 2, 3}
to be 2/3.
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7 Conclusion

The updated account gave the same solution to the Monty Hall
problem as the classical account based on conditional probabilities.
Both approaches conditionalize, the former on actions, the second
on propositions and yield two posterior probabilities: P (D1/B) =
1/3 and P (D2/B) = 2/3 in the latter; and Pc,(v1,a3)(v1, a3) and
Pc,(v1,a3)(v2, a3) in the former. I take both approaches to provide a
solution to a particular, local, decision theoretical problem, that of
explaining why a particular action is more rational than another in
certain particular circumstances.

Yet there are important differences between them. Van Benthem
points out that the conditional probabilities account describes what
would be the probability that the car is behind door 1 if B were to
happen (alternatively, if action a3 were to be performed). On the
other side, he takes P(w1,a1)(φ) (reference to the agent C has been
erased) to describe rather the probability of φ in the state (w1, a3)
reached now after action a3 has been performed. ‘The [latter] takes
place once arrived at one’s vacation destination, the [former] is like
reading a travel folder and musing about tropical islands. The two
points are related, but not identical’.
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Semiotic foundations of logic
Vladimir I. Shalack

abstract. The article offers a look at the combinatorial logic
as the logic of signs operating in the most general sense. For this
it is proposed slightly reformulate it in terms of introducing and
replacement of the definitions.

Keywords: combinatory logic, semiotics, definition, logic founda-
tions

1 Language selection
Let’s imagine for a moment what would be like the classical logic, if
we had not studied it in the language of negation, conjunction, dis-
junction and implication, but in the language of the Sheffer stroke.
I recall that it can be defined with help of negation and conjunction
as follows

A | B =Df ¬(A ∧B).

In turn, all connectives can be defined with help of the Sheffer
stroke in following manner

¬A =Df (A | A)
A ∧B =Df (A | B) | (A | B)
A ∨B =Df (A | A) | (B | B)
A ⊃ B =Df A | (B | B).

Modus ponens rule takes the following form

A, A | (B | B)

B
.
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We can go further and following the ideas of M. Schönfinkel to
define two-argument infix quantifier ‘|x’

A |x B =Df ∀x(A | B).

Now we can use it to define Sheffer stroke and quantifiers.

A | B =Df A |x B where the variable x is not free in the formulas
A and B;

∀xA =Df (A |y A) |x (A |y A) where the variable y is not free in
the formula A;

∃xA =Df (A |x A) |y (A |x A) where the variable y is not free in
the formula A.

The rule for the introduction of the universal quantifier takes the
form

⊢ A
⊢ (A |y A) |x (A |y A)

.

The language containing the only quantifier ‘|x’ is functionally
complete, and has the same expressive power as the language of the
classical predicate logic.

Imagine now that theorems of Principia Mathematica are formu-
lated and proved in this language, and that all the fundamental
theorems of logic, arithmetic and set theory are described in the
language.

We would have the same results as today, but it would be difficult
to convince other people that what we learn is really logic. In re-
sponse, we probably would have heard that we have created an
interesting mathematical tool, but it has little to do with logic.

2 Combinatory logic
Something similar has happened to the combinatory logic, which
was born December 7, 1920, when M. Schönfinkel has made his now
famous report to the Mathematical Society of Göttingen. In this
report Schönfinkel [4] has showed that not only logical connectives
but also quantifiers can be reduced to a single two-place operation.
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He also showed that under the assumption that functions themselves
can serve as arguments to other functions and to be their values,
we can get along one-argument functions, and two operations to
combine them, which can be summarized as follows

Kxy = x and Sxyz = xz(yz).

The role of K and S in the language is similar to that of the con-
nectives in the logic, but the fundamental difference is that they are
applicable to expressions that represent the objects of any nature (!)
rather than for solely sentences.

With these operations, which are called combinators, we can de-
fine any other operations with functions including quantifier ‘|x’. In
this sense, the set of K and S is complete. The theory of combina-
tors is called combinatory logic.

Alphabet

1. V ar — a set of variables;

2. K and S — constants;

3. ) , ( — brackets;

4. > — reduction character.

Terms

1. All x ∈ V ar are terms;

2. K and S are terms;

3. If X and Y are terms, then (XY ) is a term;

4. Nothing else is a term.

Reductions

1. If X and Y are terms, then X > Y is reduction;
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2. Nothing else is reduction.

Axioms

A.1 X > X

A.2 KXY > X

A.3 SXY Z > XZ(Y Z)

Rules

R.1 X > Y =⇒ XZ > Y Z

R.2 X > Y =⇒ ZX > ZY

R.3 X > Y, Y > Z =⇒ X > Z

We are not going to develop in detail the combinatory logic and
prove metatheorems related to it.

Unfortunately, due to the high degree of abstraction of the com-
binatory logic, it is not widespread, although many logicians have
heard of its existence. The combinatory logic is much more known
to specialists in computer science, which refer to it as a mathemat-
ical apparatus of functional programming. It is not considered as
a theory of correct reasoning. It seems unclear how to use it to
analyze usual reasoning. There were many attempts to synthesize
the combinatory logic with the logic in the traditional sense, but
as a result received either contradictory logical systems, or systems
that have not received wide acceptance and recognition.

3 The fundamental nature of the combinatory logic
The main obstacle to widespread use of the combinatory logic to
analyze the reasoning lies in the highly abstract nature of the basic
combinators, and hence the lack of understanding of how to make
their use in natural discourse. The situation is somewhat similar to
that if we developed a logic-based language with the single Sheffer
stroke.
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However, the combinatory logic is self-sufficient. There is no need
to go beyond it, to present it as the logic of constructing arguments.
It’s enough just to reformulate it a bit.

First of all it is necessary to give up some of the stereotypes. For a
long time it was a stereotype of logic as a theory about relationships
in the sphere of common terms. It was a characteristic of the Aristo-
telian approach, which has dominated for over two thousand years.
G. Frege has refused the stereotype and begun to examine the logic
as a theory of propositional functions. According to his words, the
logic is a theory of Truth Being.

This view turned out to be very fruitful, and we still are under
its influence. The theory of combinators does not fit neither Aris-
totlian, nor Fregean approach, since appeals to a more fundamental
entities than the common terms and propositions. It seems to me,
in this case we are dealing with the logic of signs operating in the
most general sense.

‘Combinatory logic is a branch of mathematical logic which con-
cerns itself with the ultimate foundations. Its purpose is the analysis
of certain notions of such basic character that they are ordinary
taken for granted ’ [3, p. 1].

The expressions of language, considered as signs, act as
representatives of the various objects of thought, which can be
things, properties, functions, relationships, etc. Assignment of
thought objects to the specific categories is possible, but it isn’t
a problem of logic, since it can happen only as a result of later cog-
nitive activity of the subject of cognition. The logic is a servant of
science, not trendsetter.

The power of language as an instrument of cognition is that it
allows us to manipulate objects of extralinguistic reality on the sign
level. This manipulation can be represented as a chain of transitions
from one signs to another. In the process of manipulating signs the
relationship between them and the objects of external reality should
not be lost. This is a necessary condition for the correctness of our
cognitive activity. Some transitions between signs can be justified by
the already known properties of the objects of thought correlated to
them. Other transitions are due to study the intrinsic properties of
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sign systems. In a sufficiently general form the consequence relation
between signs can be defined as follows:

U follows from the premisses Σ = {V1, . . . , Vn} , if and only if
there exists a rule R, which allows on the basis of the values of
premises Σ to determine the value of the expression U .

Formulated in this way the idea of reasoning does not need to clar-
ify what specific linguistic expressions are used, what is the nature
of the correspondence between these expressions and extralinguistic
reality, what exactly is this reality.

4 What is the rule R?

In the classical logic, where the premises and conclusion are senten-
ces, this rule is specified as ‘if the premises V1, . . . , Vn are true, then
the conclusion U is true’. Obviously, in this case, the rule R is a
partial function that is defined only when all the premises are true.
If at least one of the premises is false, we can not say with certainty
what will be the truth value of the conclusion. In this case the
problem is complicated by the fact that for sufficiently rich theory it
is fundamentally impossible to prove that the theory is consistent,
and to prove that there is at least one model that makes all the
premises true. The standard definition of the semantic consequence
stops working.

Our definition does not require that all the premises were true.
We can build a system of reasoning in which the sentence not-A
follows from the sentence A. Indeed, if we know the truth-value of
the proposition A, then there is no problem to find the truth-value of
proposition not-A. When you’re trying to explain it to professional
logician, you will often come across a misunderstanding and opposi-
tion, the reason of which are stereotypes inherited from the classical
logic approach.

Our definition does not demand that assumptions and conclusions
necessarily have been sentences. If you take the language of arithme-
tic, the formula t1 = t2 follows from two terms t1 and t2, because,
knowing the values of arithmetic terms t1 and t2, we can always
determine the truth value of the formula t1 = t2. Similarly, the
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term t2 follows from the terms t1 and t1 + t2. In the last example
we have the consequence relation between the terms, not sentences.

Inference rules of any system of logic, that we use during con-
struction of the syntactic metalanguage proofs, are also examples of
rule R from our definitions of consequence.

The rule R can be a computer program, that from the input
parameters (premisses) calculates the result (conclusion), which can
be a solution of the differential equation, a corrected word from a
text, an informative chart, a piece of music, characters that appear
on the screen depending on what keys are pressed, etc.

A student of Architectural Institute in defending diploma must
convince the commission of examiners that if you bring sand, water,
cement and bricks, and then follow the course of action to certain
rules and drawings of the project, the result will really skyscraper,
and not another wreck.

A person who is engaged in guesswork, also follows the rules
associated with some sign system. Astrologers, African shamans,
fortune-tellers on the cards use their sign systems and their own
rules relating assumptions and conclusions.

In natural language sentence ‘Mary loves Bob’ follows from the
words ‘Bob’, ‘Mary ’, ‘love’. This following takes place quite inde-
pendently of whether or not Mary loves Bob. It takes place because
of our knowledge of the rules of morphology, grammar and semantics
of English. Even if we are for the first time in our lives hear or read
this sentence, but if the values of the words ‘Bob’, ‘Mary ’ and ‘love’
are known to us, thanks to our knowledge of the rules of language,
we always can define the value of the sentence ‘Mary loves Bob’.

5 Formalism of signs
As can be seen from the above examples our definition covers a
fairly wide range of phenomena. It is not limited to sentences, but
is applicable to the signs of a different nature. In order to cover it
in one logical formalism, we must find a starting point to represent
the signs.

To do this, I recall the words of a well-known linguist Emile Ben-
veniste that ‘. . . language has a configuration in all its parts and as
a totality. It is in addition organised as an arrangement of distinct
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and distinguishing ‘signs’, capable themselves of being broken down
into inferior units or of being grouped into complex units. This
great structure, which includes substructures of several levels, gives
its form to content of thought. . . Linguistic form is not only the con-
dition for transmissibility, but first of all the condition for the re-
alization of thought. We do not grasp thought unless it has already
been adapted to the framework of language’ [1, pp. 55–56].

The basic idea is that from the syntactic point of view signs form
a hierarchy. Complex symbols are obtained by combining simpler
ones. To do this, we can use a number of different brackets.

For example, a pair of brackets ⟨ , , ⟩a may be three-argument
operation, which allows us to construct complex sign ⟨‘apple’, ‘is’,
‘red’⟩a from three words ‘apple’, ‘is’ and ‘red’. From signs ‘sky’,
‘is’ and ‘blue’ we can construct a new sign ⟨ ‘sky’, ‘is’, ‘blue’ ⟩a.
Other types of brackets will be needed to build such signs as ⟨‘+’,
‘3’, ‘2’ ⟩b and ⟨ ‘young’, ‘man’ ⟩c.

It is easy to show that in fact we need only one pair of brackets,
which is applicable only to pairs of signs. That’s how we do that,
because it is convenient for the demonstration of connection with
the combinatory logic, but application tasks may require different
sets of brackets [5].

Alphabet

1. V ar — a set of variables.

2. Const — possibly empty set of constants;

3. ), ( — brackets.

Terms

1. 1. All x ∈ V ar are terms;

2. All c ∈ Const are terms;

3. If U and V are terms, then (UV ) is term;

4. Nothing else is a term.
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For dropping brackets we accept an agreement about their asso-
ciation to the left.

From the algebraic point of view the models of this language are
groupoids, which can be represented as follows

M = ⟨D,O, I⟩

where D is nonempty set
O : D ×D → D — two-argument operation on D
I — a function for the interpretation of language constants.

Let V al = DV ar — the set of all functions assigning values to
variables. Then the value of the term U in the model M = ⟨D,O, I⟩
for the evaluation v ∈ V al is defined in the obvious way:

1. | x |v= v(x), if x ∈ V ar;

2. | c |v= I(c), if c ∈ Const;

3. | (UV ) |v= O(| U |v, | V |v).

Now we are ready to define rigorously the central concept of con-
sequence Σ ∥= U , where Σ is a finite set of terms, and U is a term.

Term U follows from the set of terms Σ = {V1, . . . , Vn} if and
only if for any model M there exists a function f , such that for
every valuation v ∈ V al holds | U |v= f(| V1 |v, . . . , | Vn |v).

{V1, . . . , Vn} ∥= U ⇐⇒ ∀M∃f∀v(| U |v= f(| V1 |v, . . . , | Vn |v)).

It is easy to verify that this consequence relation satisfies the
well-known conditions of Tarski:

1. If U ∈ Σ, then Σ ∥= U ;

2. If Σ ∥= U and Σ ⊆ ∆, then Σ ∥= U ;

3. If Σ ∥= V and Σ, V ∥= U , then Σ ∥= U .
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In addition, the defined relation is structural, i.e. e(Σ) ∥= e(U)
follows from Σ ∥= U , where e — is a substitution on set of terms
of the language. It means that the consequence relation defines the
logic in the sense of Tarski.

Let’s turn to the typology of signs of Peirce–Morris. There are
three groups of signs.

The first group — signs-indices, whose connection with the sig-
nified objects may be due to temporal, spatial and causal types
of relationships. Analysis of specific types of relationships is be-
yond the scope of logic. Distinguishing feature of signs-indices is
that they have no significant similarity with their objects, that they
refer to individual things, to individual objects, to single sets of ob-
jects and direct our attention to their objects by blind compulsion.
We can assume that in our formalism signs-indices are among initial
constants of language.

The second group of signs — iconic signs. They are linked to
the signified objects through the structural similarity. Charles S.
Peirce believed that any algebraic equation is an iconic sign because
it shows using algebraic symbols (which themselves are not iconic
signs) the relationships between it’s variables. Every formula of logic
and every term can also be regarded as iconic signs. It is thanks
to knowledge of their structure we have the ability to operate with
them on the basis of formal rules. The situational logics explicitly
use iconicity property of complex expressions of the language.

The third group of signs are signs-symbols, whose connection
with the signified objects is quite arbitrary, it exists only for the lan-
guage interpreter. By his request, he gives the role of some objects
to be representatives of other objects. In logic the operation of in-
troducing of signs-symbols is well-known and is called the operation
of definition. In our language we can represent it as follows.

Suppose that we have in our language a term T , all the variables
of which are contained among set of variables {x1, . . . , xn}. Then
we can add to our language a new constant D, taking the following
definition

Dx1 . . . xn =def T.
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By adopting a definition the interpreter is able at any moment to
take advantage of the inverse operation of substitution, or disclosure
definition, and make the transition from the term X {DZ1 . . . Zn},
in which there is occurrence of the term DZ1 . . . Zn, to the term
X {T [Z1/x1, . . . , Zn/xn]}, obtained as a result of replacement
DZ1 . . . Zn with simultaneous substitution of terms Z1, . . . , Zn in
the term T instead of the variables x1, . . . , xn. We can summarize
this as the next rule

Dx1 . . . xn =def T, X {DZ1 . . . Zn}
X {T [Z1/x1, . . . , Zn/xn]}

.

The reasoning in this logic can be defined as a sequence of terms
T1, . . . , Tn, each of which is either one of the premises, or obtained
from the previous terms of the sequence by the rule of disclosure of
definitions. We specially focus attention on the fact that the possible
values of terms occurring in the derivation can be any objects, and
not necessarily the truth values of sentences.

Basically, nothing new compared to existing combinatory logic
has been proposed. In the combinatory logic we accept reductions
KXY > X and SXY Z > XZ(Y Z) as initial, and in our pro-
posed formalism we can introduce definitions KXY =def X and
SXY Z =def XZ(Y Z) and get all the same. In this sense, the com-
binatory logic is embedded in the formalism we have constructed.

6 Comments
I. Prior to emergence of the science of logic, much attention was
paid to the special operation on linguistic expressions, which later
became known as the ‘operation of definition’. The idea of this
operation is transparent to the understanding and hardly anyone
would reject it. You may recall that science begins not so much
with theorem proving, as with search for definitions of the various
objects and phenomena of reality. Plato’s Socrates seeks definitions
of beautiful jug, a beautiful woman, beauty by itself, courage, and
many others. Thus he extended the language for the description
of the world, which allowed him a new way to classify phenomena,
to move to a higher level of abstraction and then to think in a
new system of concepts. Modern science is unthinkable without an
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abstract and ideal objects, introduced by different kinds of defini-
tions. Any system of axioms implicitly defines the terms imposed by
it. The combinatory logic can be rigorously represented as a system
of reasoning based on accepted definitions. In this case, its meaning
is extremely clear. It is interesting that the initial set of constants
Const may be empty, but it can not prevent a logical subject to start
using the operation of definition and thus start forming a system of
concepts, which are essentially a priori.

II. Initial Schönfinkel’s combinators K and S are of interest be-
cause they represent the complete set of combinators, through which
you can define any other combinators. But in the logic of reasoning
based on the principle of introducing definitions and their replace-
ment there is no need to declare some initial basic combinators.
Through definitions, depending on a specific problem to be solved,
you can introduce any desired combinators, not reduce them to a
mandatory basis. This significantly simplifies many of constructions
and reasoning, making them closer to the natural.

III. It is known that in the combinatorial logic it is provable
theorem that each combinator C has a fixed point, i.e. there exists
such a term T that CT = T is provable. Similarly, we can show
that fixed-point definitions are allowed in the proposed formalism.
That is, if there exists a term T , all the variables of which are
contained in set of variables {y, x1, . . . , xn}, then we can introduce
the fixed-point definition

Dx1 . . . xn =dfp T [D/y] .

These definitions give rise to a conservative extensions of the ex-
isting formalism, which at the same time are not inessential. This
means that the system of logic, based on the principle of intro-
ducing definitions and their replacement which is supplemented by
the fixed point definitions, has a greater expressive power than the
combinatory logic, since combinatory logic can be embedded into it,
but reverse isn’t true. It is appropriate to draw an analogy between
the constants, introduced by means of fixed point definitions, and
ε-terms in the classical logic.
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IV. It is known that all recursive functions can be represented
in combinatory logic. They are also obviously representable in the
proposed formalism. But the heart of this formalism is the logical
operation of definition. Hence it follows that nature of computable
functions is exclusively logical and does not depend on adoption
any assumptions about the world around us. Since the proposed
formalism has clear semiotic foundations and at the same time is
closely connected with computability, it can be regarded as the per-
fect language, which G. Chaitin dreamed of [2].
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An approach to the interpretation on
intensional contexts
Elena D. Smirnova1

abstract. The paper introduces a non-standard analysis of
intensional contexts on the ground of generalized approach to se-
mantics construction. The principles of building such kind seman-
tics are consider. As far as I can see it is an idea on domains and
anti-domains that lays in the ground a semantics of intensional
contexts. Intensional contexts differ from extensional by ascrip-
tion of specific values to intensional predicates (operators) and,
what is more important, by a way of their combination with ar-
guments. Thus constructing operations play the leading role in
proposed analysis. The peculiarities of IPL: any expression in-
cluding intensional predicates and operators has an intension as
well as an extension.

Keywords: generalized semantics, domains and anti-domains,
propositional concept, operation of abstraction

The paper introduces a non-standard analysis of intensional con-
texts on the ground of generalized approach to semantics construc-
tion. In so doing, an expressive power of the natural language
appropriate for the representation of intensional context’s logical
structure is considered.

A logical structure of an intensional context is determined by both
interpretation of intensional signs and accepting a specific applica-
tive operation of intensional operators (predicates) to terms. This
procedure defines an algorithm, which allows finding extensions and
intensions of corresponding contexts.

It is a set of laws, presuppositions and conventions Γ that being
accepted determines states of affairs in possible worlds semantics.

1This work is supported by Russian Foundation for Humanities, grant
№ 11-03-00143.
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When epistemic contexts such as Ba(p) considered, these principles
and conventions depend on a subject a, denoted as Γa. They may be
partially or completely agree with the laws of a theory, that is Γa ⊆
Γ or Γa ∩ Γ and so on (where Γa = Γ is the case of omniscience).
If Γa ̸= Γ, a subject can ‘break the laws’ of a theory, because they
are not included in Γa. To this extent the subjective worlds WР◦

may be imaginary, and give rise to contradictions and paradoxes.
This idea is to be taken into account when argumentation and the
process of conviction are considered.

A semantical analysis of epistemic contexts generate a bulk of
questions. What is possible interpretation of epistemic operators?
What are the truth-conditions for epistemic statements with such
operators? What is their logical structure? In what follows we will
focus on a method of interpretation of intensional signs (operators
and predicates) on the ground of a generalized approach to seman-
tics construction.

We consider that adequate semantics may be constructed without
using the concepts of contradictory or incomplete state descriptions.
In any case, these concepts are not taken as a background and no
assumptions are made in relation to the objects of discourse.

Instead partially defined predicates are accepted. We consider
that predicates of truth, falsity belong to this kind — they can be
partially defined. Second, we proceed from the idea of the symmetry
of concepts of truth and falsity (and this is very important). Falsity
is considered to be an independent notion and not as absence or
negation of the truth.

Let us consider the principles of building language semantics. I
shall construct my semantics using the notion of possible worlds.
Let W be a non-empty set of possible worlds, φ a function ascribing
a pair of sets ⟨H1, H2⟩ to propositional variables where H1 ⊆ W ,
H2 ⊆W .
φT (p) = H1 is the class of worlds in which p holds (the domain

of p).
φF (p) = H2 is the class of worlds in which p does not hold (the

anti-domain of p).
The function of ascribing values to propositional variables is given

in a generalized form: not the truth values in a given world, that is,
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not the objects t and f , are ascribed to propositional variables, but
special ‘intensional objects’ — classes of worlds φT (p) and φF (p).
It is this that gives the intensional character to the propositional
connectives, cf. [3, V].

We shall use a propositional language with the logical connectives
&, ∨, ⊃, ∼. Let us introduce conditions of ascribing truth values
to complex formulas as follows:

φT (A&B) = φT (A) ∩ φT (B), φF (A&B) = φF (A) ∪ φF (B),

φT (A ∨B) = φT (A) ∪ φT (B), φF (A ∨B) = φF (A) ∩ φF (B),

φT (∼A) = φF (A), φF (∼A) = φT (A).

When defining logical connectives, no limitations are imposed on
the relations between the classes φT (A) and φF (A). The indepen-
dence in ascribing domains and anti-domains to propositions allows
us to treat the operation of negation in a generalized way. As a re-
sult of the above mentioned principles we get semantics with truth
value gaps and with glut evaluations.

Dealing with such objects as the classes φT (A) and φF (A) it is
possible to establish different relations between them, to accept or
not to accept conditions (1) and (2). It is possible to accept one of
them and reject the other, for they are independent of one another.

The relation between the classes φT (A) and φF (A) may but need
not satisfy the following conditions:

(1) φT (A) ∩ φF (A) = ∅, (2) φT (A) ∪ φF (A) = W .
Accepting both (1) and (2) we get the standard semantics. Ac-

cepting (1) and rejecting (2) — shortly (1), (2) — semantics with
truth value gaps; accepting (2) and rejecting (1) — semantics with
glut evaluations (which permits of the overlap of truth and falsity);
rejecting both (1) and (2) we get relevant semantics.

If both conditions (1) and (2) are accepted, the class of tautolog-
ical formulas coincides with the class of irrefutable formulas and is
identical to the class of tautologies of classical logic.

One of the peculiarities of analysis of intensional contexts is con-
nected with an interpretation of intensional signs. This interpre-
tation presupposes introduction of very special objects and leads
to multiplication of abstract entities within semantical analysis. In
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other words this interpretation entails certain ‘intensional’ ontology.
Let us examine what are the entities introduced this way. As far as
I can see it is an idea of domains and anti-domains that lays in the
ground of the semantics of intensional contexts.

A reference of an expression in a certain world represents its ex-
tension. If, following Carnap, we interpret intension as those entities
that two L-equivalent statements A and B have in common, then
they appear to be their domains: φT (A) ≡ φF (A). An intension of
a statement is often called its proposition or propositional concept.

Let s means a domain of a proposition — φT (A), and s — its
anti-domain, where s ∈ 2W and s ⊆W .

Now we turn to a set h, whose elements are propositions —
h = {s1, . . . , sl}. Hence, the domains are represented by families
of propositions. Consider possible interpretations of modal opera-
tors and intensional predicates. Let their references be functions or
relations defined on domains of statements or on families of such
domains. Then the assignments are as follows.

Let M be intensional operator (for example 2p) of the type s//s,
then possible referents are:

I (2W )(2
W ), where 2W is a propositional concept (intension) — s,

i.e. φT (p);
II 2W×2W — a relation G; ⟨wi, si⟩ ∈ G.
If we want an intensional sign to have both intension and exten-

sion, then we chose
III (2(2

W ))W , that is f : W → 2(2
W ), i.e. wi → {s1, . . . , sn} is an

intension M, while its extension in a world wi is f(wi) = h, that is
a a set of propositional concepts, where wi ∈ si; si ∈ h; h ∈ 2(2

W ).
An interpretation I represents the approach of D. Scott, and an

interpretation II corresponds to R. Montague. The main advantage
of the IIId approach lies in possibility to assign not only intensions
or extensions but both of them as well.

An interpretation of intensional predicates is analogous [3, p. 246].
Now consider a structure of intensional contexts. This structure

is determined by an interpretation of intensional signs, and first of
all by the type of intensional entities assigned.

Logical aspect of analysis of intensional contexts is important for
us. A key to the puzzle of these contexts can be found just there not
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in behavior of proper names. The core idea of this approach is that
semantical analysis of intensional contexts presupposes, first of all,
identification of peculiarities of their logical structure. What is the
way in which components are linked in contexts that contain inten-
sional predicates and operators? Thus constructing operations play
the leading role in proposed analysis. Let us construct a semantics
for Intensional Predicate Logic (IPL).

The language of IPL is based on the theory of semantical cate-
gories but the notion of index of category is extended: (1) n and
s are indexes of categories (n is a category of singular terms; s is
a category of sentences); (2) if α and β are indexes of categories
then α/β and α//β are indexes of categories. All categories of the
type α/β are extensional and those of type α//β are intensional.
The method of interpretation for these two types of categories is
especially important.

Let a model structure be the construction ⟨W,N,U, I,Ψ⟩ where
W is a non-empty set of worlds, N is a set of normal worlds (N ⊆
W ), U is a non-empty scope of individuals, Ψ(H) is a non-empty
scope of the possible world and I is a function of interpretation.

1. If P is a predicate expression of the category s/n, then I(P )
is an object of the type (2U )W .

2. If Q is a predicate of the category s//n then I(Q) is an object
of the type (2(U

W ))W (similarly for n-placed predicates).
3. An object of the type (2(U

W ))W corresponds to an intensional
operator of the category s//s.

The essential point here is a new way of combination of inten-
sional functors with their arguments (another logical structure of
intensional contexts). Syntactically two ways of the combination
can be presented: P (a) if P is an extensional sign and Q[a] if Q is
an intensional functor. In these cases methods of calculation of ex-
tensions and intensions on semantical level are essentially different.
For extensional contexts we have:

(I) the way to determine an intension is (AB)W ⊗BW ⇒ AW ; so
for example (2U )W⊗UK ⇒ 2W is intension of P (a); (I’) (AB)⊗B ⇒
A — the way to determine extension.

The scheme for intensional contexts is different:
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(II) (ABW
)W ⊗BW ⇒ AW ; so (2U

W
)W ⊗UW ⇒ 2W is intension

of Q[a]; (II’) (ABW
)W ⊗ BW ⇒ AW is the way to determine an

extension. So the extension of a complex expression A[B] depends
on the intension of the argument expression B.

In accordance with two operations of application of functors to
their argument two operations of abstraction are used: λxA deter-
mines a class of individuals which satisfy the condition A, and δxA
determines a class of individual concepts. Accordingly, different
universal quantifiers are introduced [3, pp. 241–243].

By means of simultaneous induction we introduce the concepts
of intension of formula and intension of individual expression with
respect to function φ for evaluation of free individual variables —
Int(A,φ) and the concept of extension in the world — ExtH(A,φ).

1. Int(x, φ) = φ(x);

2. ExtH(x, φ) = φ(x)(H);

3. ExtH(R,φ) = IH(R);

4. ExtH(R(. . . , ⌊x⌋, . . . xj , . . .), φ) = t⇔
⟨. . . , φ(x), . . . φ(xj)(H) . . .⟩ ∈ ExtH(R,φ);

5. If A is a formula, then Int(A,φ) = {H | ExtH(A,φ) = t; } in
other form ExtH(A,φ) = t⇔ H ∈ Int(A,φ);

6. Int(A&B,φ) = Int(A,φ)IInt(B,φ);

7. Int(¬A,φ) = W − Int(A,φ);

8. Int(2iA,φ) = {H | IntH(A,φ) ∈ Θi(H)};

9. Int(x = y, φ) = {H | φ(x)(H) = φ(y)(H)};

10. ExtH(λxA,φ) = {m ∈ U | ∀φ′(m = φ′(x)(H)Λφ′ =Hx φ⇒
H ∈ Int(A,φ′))};

11. ExtH(δxA, φ) = {w ∈ UW | ∀φ′(w = φ′(x)(H)Λφ′ =x φ⇒
H ∈ Int(A,φ′))};

12. ExtH(Λ(λxA), φ) = t⇔ U ∈ ExtH(λxA,φ) ⇔
∀φ′(φ′ =Hx φ⇒ H ∈ Int(A,φ′));

13. ExtH(Λ.(λxA), φ) = t⇔ UH ⊆ ExtH(λxA,φ);

14. ExtH(Λ(δxA), φ) = t⇔ UW ⊆ ExtH(δxA, φ);
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15. ExtH((λxA)(y), φ) = t⇔ ExtH(y, φ) ∈ ExtH(λxA,φ);

16. ExtH((δxA)[y], φ) = t⇔ IntH(y, φ) ∈ ExtH(δxA, φ);

The introduced notions of extension and intension correspond
with two methods of applying functors to argument.

The quantifiers are introduced as:

ΛxA
 Λ(λxA),

∀xA
 ∀(δxA),

Λ.xA
 Λ.(λxA).

According to Montague, an intensional logic can be at least second
order one. Acceptance of two methods of application of functors
to their arguments and two operations of abstraction respectively
allows to introduce intensional predicates without any intensional
operators and to construct the semantics for first-order intensional
systems.

The principle of substitution of equals in the form a = b ⊃ A(a) ≡
A(b) holds in IPL but the principle a = b ⊃ A(a) ≡ A(b) does not
hold.

Proposed approach discovers peculiarities of semantics of inten-
sional contexts and explains why the principle of mutual replace-
ment is violated. It gives the key for comprehension Kripke’s puzzle
of belief contexts [1, 2].

The peculiarities of IPL: (1) any expression including intensional
predicates and operators has an intension as well as an extension;
(2) intensional contexts differ from extensional by ascription of spe-
cific values to intensional predicates (operators) and, what is more
important, by a way of their combination with arguments; (3) an in-
tension of any complex extensional expression is a function of inten-
sions of its compounds; (4) an extension of any complex intensional
expression is a function of functor’s extension and intensions of its
arguments; (5) unlike Montague’s method, this approach allows to
construct an intensional logic as first-order system.
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A case for satisfaction classes: model
theoretic vs axiomatic approaches to
the notion of truth
Andrea Strollo

abstract. One of the basic question we can ask about truth
in a formal setting is what, if anything, we gain when we have
a truth predicate at disposal. For example, does the expressive
power of a language change or does the proof strength of a theory
increase?

Satisfaction classes are often described as complicated model
theoretic constructions unable to give useful information toward
the notion of truth from a general point of view. Their import
is narrowed to a dimension of pure technical utility and curiosity.
Here I offer an application of satisfaction classes in order to show
that they can have a relevant role in confronting proof theoretical
equivalent theories of truth.

Keywords: truth, satisfaction classes, axiomatic theories of truth,
expansions, conservativity

1 Tarskian truth
The (broadly) Tarskian theory of truth has a prominent role in the
field of formal truth theories, and it is the forced starting point
for any further reflection toward the notion of arithmetical truth.
Sometimes, such a theory is also called ‘there is a full (not inductive)
satisfaction class ’ or, shortly, PA(S)−. It consists, apart from the
axioms of the base theory PA (Peano Arithmetic in its usual first
order formulation), of the truth-compositional axioms inspired by
the familiar Tarskian definition of truth. In other words PA(S)−
is the theory in the language LTr := LPA ∪ {Tr}, yielded by the
union of the axioms of PA in LPA (which means that we do not
have full induction) with the truth principles:
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1. ∀φ(Atomic(φ) → Tr(φ) ↔ (Tr∗(φ));

2. ∀φ(Tr(¬φ)) ↔ (¬Tr(φ));

3. ∀φ∀ψ(Tr(φ&ψ)) ↔ (Tr(φ) &Tr(ψ));

4. ∀φ∀i((Tr(∀vi(φ))) ↔ ∀tT r(φ(t/vi)))1.

This is the usual way of writing down the axioms and, though
comfortable, it is, strictly speaking, incorrect. In fact, a lot of coding
apparatus has been suppressed to achieve a greater readability. To
be rigorous we should write axiom 2, for example, like this:

∀x∀y{Sent(x) &Sent(y) &Neg(y, x)→ [Tr(y) ↔ ¬Tr(x)]}.

Here I shall persist with the most perspicuous presentation, but
keep in mind the right form. The name PA(S)− should then be
explained, because it carries important information.

When studying truth theories, it is often said that a background
theory of syntax is needed. Without it, formulating axioms for a
truth predicate and working out simple operations is impossible.
We need to ascribe truth to so called ‘truth-bearers’, and a theory
of syntax is intended to give us basic information about how these
entities behave. One would expect a theory of syntax to consist
of principles about linguistic expressions and this was exactly the
case in the original work of Tarski. However, explicit formal the-
ories of syntax, in the style of concatenation theories i.e., are not
much widespread among truth-theorists. The reason is that, after
Gödel, we know that a very good deal of syntax can be developed
in PA (as in even weaker arithmetical theories) and, accordingly,
we can correlate natural numbers and symbols of the language of
PA. There are many ways to think of this correspondence between
strings of symbols and numbers, but one often adopted is the easiest
one: strings of symbols are identified with corresponding numbers.

1I am here assuming a substitutional interpretation of quantifiers.
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2 Satisfaction classes and recursive saturation2

2.1 Non Standard Sentences and Satisfaction Classes

Thanks to Gödel’s arithmetization of syntax we can use formulas of
the language of PA, LPA, in order to talk about the syntax of this
very language. In particular we find a correspondence between the
set of sentences in LPA and the elements of the domain of N , the
standard model of arithmetic, whose domain contains all and only
standard natural numbers.

One of the immediate consequences of compactness is that PA
has, beside the standard modelN , also different models, non isomor-
phic to N ; it has non standard models3. Let M be one of these non
standard models, what would happen if we were to use M instead
of N as a base for arithmetization? What would happen if we
coded expressions of our language using not standard elements in
the domain of N but those that are in the domain of M? What
would happen if we also used non standard numbers?

The first consequence would be the existence, beside standard sen-
tences (those sentences coded by standard numbers), of new strange
non standard sentences, coded by non standard elements in M4. In
fact, among the many syntactical properties that can be represented
in PA we can obviously define that of being a sentence of the lan-
guage of PA, since there is a formula ‘Sent(n)’ which is true of n
if and only if n is a code of a sentence of LPA. Until we consider
the standard model of PA, as is natural doing, this works as ex-
pected. However, in non-standard models, the formula ‘Sent(x)’ is
going to be satisfied by non-standard numbers too. The reason is
the Overspill Principle. According to it, if a formula is such that
infinitely many standard numbers satisfy it, then — when we have
a non-standard model — some non-standard number will satisfy it
too. Clearly the formula ‘Sent(x)’ is satisfied by infinitely many

2The literature on satisfaction classes and recursive saturation is highly tech-
nical and difficult. We make general reference to [6], [2], [9], [8]. Personally, I
have to thank Fredrik Engström for his patience in explaining me the quibbles
of satisfaction classes. I certainly owe what I have understood (if any) to him
and his long mails.

3For a good brief introduction to non standard models see [1, Ch. 25]
4The fundamental work is [13].
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standard numbers, so when M |= PA is non standard, we have that
M |= Sent(b) for some b ∈ M , and b non standard (similar for
the syntactical notion of Term, Formula and so on). The existence
of non-standard numbers that, according to the model, code sen-
tences, drags us towards the realm of non-standard sentences. Very
roughly, non standard sentences are sentences with a non-standard
structure.

Non-standard sentences can be identified with non-standard ele-
ments that the model M ‘thinks’ to be actual sentences (those non-
standard numbers that code sentences in the sense of M). It is not
easy to give a clear description of what non standard sentences are.
I propose just an example. Consider the sentence in LPA(¬0 = 0).
This is a case of a standard sentence that N (and then M) rec-
ognizes to be a sentence, and such that it can be identified with
its standard natural number of Gödel. We have a similar example
with (¬0 = 0)&(¬0 = 0) and (¬0 = 0)&(¬0 = 0)&(¬0 = 0), where
the number of conjuncts is a standard natural number, (2 and 3 re-
spectively). If the number of conjuncts is a non-standard number,
for instance (¬0 = 0)&(¬0 = 0)& . . .&(¬0 = 0) (where the dots
‘. . . ’ stand for a-many repetitions of the sentence (¬0 = 0), and a
is a non-standard number) we do not deal with a standard sentence
anymore (N cannot recognize it as a sentence), we have obtained a
non-standard sentence and M (if it contains a) can recognize it to
be a sentence.

Regarding non-standard sentences a natural question is whether
and how they are true. We know that a truth predicate, ‘Tr’ such
that N |= Tr([φ]) ↔ φ for every sentence φ (where [φ] is the code
of φ), is not definable in LPA (for Tarski’s undefinability theorem).
This is the reason why we had to add such a new predicate together
with axioms governing it, obtaining the truth theory PA(S)−. The
same claim holds for non-standard sentences, since, a fortiori, a
predicate ‘Σ’ such that M |= Σ([φ]) ↔ φ, for every sentence φ in
the sense of M (standard and non-standard) cannot be defined in
M . What should such a predicate Σ be like? First of all it should
agree, at least, with the truth predicate for standard sentences,
namely it should respect Tarskian clauses. Here is where the notion
of satisfaction class must be introduced.
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Once we have added the truth predicate to PA and we have ob-
tained our truth theory PA(S)−, we need to find an extension S in
M for such a new predicate. Namely, given a model M |= PA, S is
supposed to be the set of numbers satifying the axioms of PA(S)−,
M,S |= PA(S)−. When, in a model M |= PA, such a set S is
available, we say that S is a satisfaction class for M . This explains
the name ‘PA plus there is a full (not inductive) satisfaction class’.
A satisfaction class5 S over a model M , then, is a set S of elements
in M , where any element b in S is such that M |= Sent(b) and b sat-
isfies the Tarskian clauses for truth, namely the axioms of PA(S)−.
In other words, S is a suitable extension for the truth predicate,
as governed by Tarskian axioms, possibly including (codes of) non-
standard sentences.

Definition 1.6 If M is a (non-standard) model of PA, a subset S
of M is a satisfaction class if and only if: M,S |= PA(S)−.

Satisfaction classes can be classified further as follows.

Definition 2. A satisfaction class S on M is full if, for every
M |= Sent([φ]), we have that [φ] ∈ S or [¬φ] ∈ S.

Definition 3. A satisfaction class S on M is partial if and only
if there is α belonging to M \ N such that if M |= Sent[φ] and
[φ] < α, then [φ] ∈ S or [¬φ] ∈ S.

The idea here is just that a satisfaction class is full if, for every
formula φ, S contains either φ or its negation and, if the satisfaction
class is partial this is true only for those sentences coded by a (non-
standard) number less than α. Since standard sentences are coded
by standard natural numbers and every standard natural number is
less than every non-standard natural number, it follows that every
satisfaction class (full or partial) behaves in the same way (they are
full) with respect to standard sentences. It is important to notice
that a satisfaction class, even if it is a partial one, has to decide
some non-standard sentence, otherwise we have not a satisfaction
class at all7.

5Though it is called ‘class’ it is a set.
6See [8] and [11].
7I owe this important remark to Fredrik Engström.



A case for Satisfaction Classes. . . 251

Indeed, if M is non standard we always have some non stan-
dard sentence into the extension of ‘Tr’. Since every axiom of
PA(S)− is subjected to a clause stating that the truth predi-
cate applies to elements satisfying the formula ‘Sent(x)’, when we
have a non-standard model, non-standard numbers can well enter
into the range of the truth predicate. Actually this is not only
possible but mandatory. In fact, PA(S)− proves ∀φ{Sent(φ) →
[(Tr([φ]) ∨ Tr([¬φ]))]}, thus, for every φ such that M |= Sent([φ])
either φ or ¬φ must be in the extension of ‘Tr’, even if φ is non-
standard.

Definition 4. A satisfaction class is inductive if and only if the ex-
panded structure (M,S) satisfies all the induction axioms for every
formula in the language LS = LPA ∪ {S} (Where the new symbol
‘S’ is governed by axioms stating that S is a satisfaction class. In
our cases ‘S’ is substituted with ‘Tr’).

If this is the case, we have ‘PA plus there is a full inductive satis-
faction class’, turning from PA(S)− to PA(S). These two theories
have very different features and strength, but I shall mostly consider
PA(S)− only.

Crossing these definitions we can get other classifications by dis-
tinguishing, with respect to full and partial satisfaction classes,
those satisfaction classes that are inductive and those that are not.

We saw that, as far as standard sentences are concerned, a satis-
faction class agrees with the traditional characterization of Tarskian
truth. The surprising news is that classical compositional axioms
are not enough to shape the truth of non-standard sentences. In
other words, in order to characterize the truth (or falsity) of non-
standard sentences we need some other tool than just compositional
clauses in their standard formulation. If we only stick with Tarskian
axioms, then we are free of constructing many different satisfaction
classes such that they will agree on standard sentences but will dis-
agree on many non-standard sentences. As a result, if a model M
admits a satisfaction class, then it admits many satisfaction classes.
Indeed, if S is a full satisfaction class for a countable M, then there
are continuum many non isomorphic expansions (M,T ) which are
all elementarily equivalent to (M,S).
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This richness should be contrasted with this other fact: though a
model can have many different satisfaction classes, not every model
of PA can have one. Non recursively saturated models, in fact,
cannot have any satisfaction class.

2.2 Recursive saturation
In order to explain the notion of recursive saturation we need some
minimal elementary information8.

Definition 5. If B is a theory, a type over B is:

(i) a set P (x) of formulas containing a finite number of free vari-
ables x (‘x’stands for a sequence of variables).

(ii) P (x) is such that B ∪ {φ(c) | φ(x) ∈ P (x)} is consistent.
(Where ‘c’ stands for a sequence of — possibly new — individ-
ual constants).

Definition 6. A type P (x) is complete if and only if T ∪P (x) is a
syntactical complete theory (that is for every φ(x), T ∪P (x) ⊢ φ(x)
or T ∪ P (x) ⊢ ¬φ(x)).

Definition 7. A type P (x) is principal if and only if there is a
single formula ψ(x) such that T ⊢ ∀x(ψ(x) → φ(x)), for every
φ(x) ∈ P (x).

Definition 8. If M |= B, a type P (x) is realized in M if and only
if there is a ∈ M , such that M |=, φ(a), for every φ(x) ∈ P (x).
Otherwise M omits the type P (x).

For completeness theorem, if P (x) is a type over a theory B, then
B has a model that realizes P (x). Similarly, if P ′(x), P ′′(x). . . are
types over the theory Th(M) of a model M (that is the set of all
the sentences φ such that M |= φ), then there is an elementary
extension M ′ of M that realizes every type P (x).

Definition 9. A type P (x) is recursive if the set {φ(x) | φ(x) ∈
P (x)} is recursive. (Notice that what is recursive is the set of for-
mulas, not the formulas, which can have whatever complexity.)

8It is possible to give the following definitions also in model-theoretic terms
instead of talking of theories. I use the proof theoretic definition in order to
stress the relation of this notion with the notion of truth as axiomatized by
PA(S)−.
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Definition 10. A model M is recursively saturated if and only if
every recursive type over Th(M) is realized in M .

A recursively saturated model can be thought as a big and ho-
mogeneous model. A non-recursively saturated model O is a model
where at least one recursive type (a recursive set P (x) of formulas) is
not realized in O. This means that there are formulas φ(x) ∈ P (x),
for which elements a in O such that O |= φ(a) are not available.
This can happen, for example, when the model is not homogeneous
or it is not big enough. To make it such, we need to extend O to O′

adding new elements a with the desired features.
The fundamental fact now is that if a non-standard model admits

a satisfaction class, then such a model needs to be big and homo-
geneous in this sense: it must be recursively saturated. This is the
sense of Lachlan’s theorem:

Theorem 1 (Lachlan’s theorem9). If M is a non-standard
model of PA with a full not inductive satisfaction class, then M
is recursively saturated.

It is possible to get a similar result also for partial satisfaction
classes too:

Theorem 2.10 If M is a non-standard model of PA with a partial
satisfaction class, then M is recursively saturated.

We can sum up the story stating that if M is non-standard and
it has a satisfaction class (it does not matter whether full or par-
tial, or whether it is inductive or not), then M must be recursively
saturated. Recursive saturation is a necessary condition for a non-
standard model to have a satisfaction class11.

However, recursive saturation is not a sufficient condition to guar-
antee the possibility of a satisfaction class: in fact there exist non
countable recursively saturated models without a full satisfaction
class or an inductive satisfaction class12. Recursive saturation of a

9[12]
10See [6, Theorem 15.5 and proposition 15.4].
11Notice that this is not true for the standard model N. N is not recursively

saturated but it does admit a ‘satisfaction class’.
12See [5].
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non-standard model is a sufficient condition to have a satisfaction
class only together with countability:

Theorem 3. If M is a countable recursively saturated model of
PA, then M admits a satisfaction class.

Notice that this does not mean that every countable recursively
saturated model of PA admits a satisfaction class whatsoever: for
instance it is not enough to have a full inductive satisfaction class.
In fact, PA(S) is famously able to prove the consistency of PA, so
that just models where Con(PA) holds can be expanded to models
of PA(S), and some recursively saturated models are excluded.

It is very important for us to stress that there are non-
standard models of PA such that they are not recursively
saturated. Therefore, there are non-standard models of PA that
do not admit a satisfaction class.

3 Satisfaction classes and axiomatic truth theories
With such results available we can draw some important conse-
quences. The first observation is rather natural and concerns the
relation between satisfaction classes and axiomatic theories of truth.
The notion of satisfaction class has been constructed with the pur-
pose of characterizing the set of all arithmetical truths in a certain
model from a model-theoretic point of view, while an axiomatic set-
ting tries to characterize the behaviour of the truth predicate. It is
clear that such approaches can be considered, in a certain measure,
as two different ways of working at the same problem. We can then
expect an axiomatic theory of truth to give an axiomatization of a
predicate defining a satisfaction class13.

The second, more important observation, is that a model-
theoretic approach to truth can enlighten aspects that a pure proof
theoretic investigation is not able to show. PA(S)− gives us the
clearest example of such a situation. In fact, from a proof theoretic

13In our definition of satisfaction class we used a relation symbol to talk about
the satisfaction of a formula by a sequence of objects, while in the axiomatic
theories we are using a one-place truth predicate. This difference, however, has
not deep effects, at least with regard to our problems. It would have been possi-
ble, for example, to define a satisfaction class avoiding the notion of satisfaction
(as in [2]).
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point of view, PA(S)− is a conservative extension of PA. So with
the addition of the truth axioms in PA(S)−, apparently, we do not
get any new arithmetical information, and, viewed from PA, this
enrichment looks rather useless. We might be tempted to say that
PA and PA(S)− have the same arithmetical content. This, how-
ever, would be a mistake as the application of satisfaction classes
will show.

To better explain the point, consider the theory ACA−14, which
is the axiomatic theory for second order arithmetic (Arithmetic
with Comprehension Axioms), yielded adding to PA axioms for sec-
ond order comprehension preventing full induction. More precisely:
ACA− is formulated in the second order language L2 of second
order arithmetic and is given by adding to PA the axioms

∃X∀y(y ∈ X ↔ φ)

where φ is a formula of L2 without any second order quantifier or
X. Notice that in ACA− there is arithmetical induction only.

As is well known ACA− is conservative over PA. Moreover
ACA− can define a truth predicate for PA. Namely, in ACA−
it can be defined a formula τ(x) such that ACA− ⊢, τ([φ]) ↔ φ.
(Though a truth predicate respecting Tarskian clauses cannot be
defined in ACA−.) Again a natural expectation might be that
ACA− and PA(S)− should be two arithmetically equivalent the-
ories, sharing the same arithmetical content. This is the natural
conclusion given the fact that both additions are conservative over
PA, so that they prove the same arithmetical theorems. Indeed, if
we have full induction, turning to ACA and PA(S)15, we obtain
an interdefinability result. As is well known, ACA can define the
truth predicate of PA(S), and PA(S) can define membership of
ACA. Thus, the moment we drop full induction, even if we lose
this pleasant interdefinability, we might expect the equivalence to
keep holding. As a matter of fact, however, these two theories are
not arithmetically equivalent and the proposed proof theoretic anal-
ysis did not give us all relevant information. If we turn to a model

14See [4].
15These theories are exactly the same as ACA− and PA(S)− except from

the fact that induction of PA is now extended to these new languages.
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theoretic approach, instead, we see clearly that they have a deeply
different arithmetical impact.
ACA− is conservative over PA and each model of PA can be

expanded to a model of ACA−. This is actually how the conserva-
tivity of ACA− is usually proved. So, in this sense, ACA− can be
thought to really have the same arithmetical content of PA. ACA−
keeps characterizing all the models of PA. Hence, if we see PA as a
way to talk about a large class of (arithmetical) structures, ACA−
can be seen as another way to talk of the very same class. This
is a strengthening of the conservativity result: not only do not we
get new arithmetical theorems, we do not restrict the number of
possible models either.

From the supposed equivalence between ACA− and PA(S)− one
would expect a similar situation to keep holding even for PA(S)−,
which, in fact, is conservative over PA too. But, as we know, thing
are very different. Indeed, a non-standard model M of PA is a
model of PA(S)− if and only if M admits a satisfaction class. Un-
fortunately, not every model of PA does. If a non-standard model
of PA is not recursively saturated, then it is no use trying to expand
it to PA(S)−. The reason is just Lachlan’s theorem.

There is a kind of asymmetry between ACA− and PA(S)− then.
Both are conservative over PA, but they affects the models of PA in
very different ways. PA(S)− cannot be taken to be another way of
characterizing the same class of structures since it is able to exclude
some of the models of PA. Thus, claiming that PA(S)− has the
same arithmetical content of PA is not plainly correct. It has extra-
content, for it requires the models to be in a certain precise way:
they must be recursively saturated.

4 A philosophical application
A philosophical insight into the notion of truth is deeply related
to similar issues. Consider, for example, a deflationist approach
to truth, which is probably the most debated proposal nowadays.
Deflationism rejects the traditional philosophical explanation of the
concept. In particular, according to it, truth is claimed not to be
a very deep notion, and the property it stands for, if any, not to
have any metaphysical structure or weight. Opposite to traditional
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approaches, like correspondence theories, truth is claimed to lack
any robust ontological import: truth is an unsubstantial property.

Such an unsubstantiality has been explained by exploiting the
fact that, if truth is characterized using some very simple axioms,
exactly like typical Tarskian ones, we can easily get conservative
extensions of PA in a number of cases. Since, then, conservative
theories are thought to be innocent additions, by using the notion
of conservativity it is possible to make sense of the metaphysical
innocence of truth. If a theory T is conservative over a theory B, T
does not prove anything new regarding what B is about, so that, it
has been suggested, viewed from B, the addition of T is redundant.
If T is our theory of truth, then, truth is harmless in this sense, as
deflationists argue. Consequently, the unsubstantiality of truth can
be identified with the conservativity of its theory. If a truth theory
is conservative, it will not prove anything apart from semantical
claims, and it will not be capable of concrete (read extra semantical)
power. The conservativity of a theory of truth can be taken to be
evidence for the evanescent nature of the property of truth.

Things, however, are not so easy. In fact, as our previous analysis
showed, there is much more content in a theory than that that
can be enlightened by merely proof theoretical means. Possibly,
a theory T can be conservative over B, while not every model of
B be expandable to a model of T ∪ B, so that T can still have
some impact over what B is about. Conservative theories can as
well affect the content of the theory they are added to. A truth
theory like PA(S)− is conservative over PA, nevertheless it makes a
difference. PA(S)− has a rich and interesting arithmetical content
which is at least as rich as the notion of recursive saturation, a
very pivotal tool in model theory. It follows that conservativity is
not a suitable candidate to analyse the alleged unsubstantiality and
innocence of truth; exactly as a mere proof theoretic approach is
not enough to make us able to draw all the relevant consequences.

5 Conclusion
When we take an axiomatic approach to truth, the customary way
of proceeding is that of devising a suitable set of axioms governing
the truth predicate and then studying the logical properties of such
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an axiomatization. In particular, a certain axiomatic theory of truth
is evaluated with respect to its impact over an arithmetical theory
like PA. We check whether it is conservative, whether it is able to
prove new arithmetical theorems or whether it is able to prove the
consistency of PA and so on. Once we have that, it is interesting to
assess what the proof strength of our theory is with respect to other
proposals on the market. We try to put our new axiomatization in
the right place of the hierarchy.

The reflections I proposed are mainly motivational ones. They
are intended to show that a merely proof theoretical evaluations
of theories, and of truth theories in particular, are not, sometimes,
fine grained enough. There might be more differences than those
emerging in proof theoretical terms: two theories with the same
arithmetical proof strength can have very different impacts over the
model of PA, and exhibit a different arithmetical content. This
is absolutely relevant if we are interested in identifying the correct
power of truth theories. But this is also important from a general
philosophical point of view, since, if this point is neglected, meta-
physical misconceptions loom.

The notion of truth is traditionally tackled, into a formal frame-
work, by building either axiomatic systems or semantical interpre-
tations. Where, in the latter case, one proposes a model in which
the truth predicate is interpreted in some nice way. Semantical and
axiomatic approaches do not interact many often, so that the con-
nection between them is rather weak. This is certainly unpleasant
from a general point of view: a model theoretical approach can be
crucial to enlighten important aspects of axiomatic theories and can
offer an important contribution to their evaluation. The consider-
ations above showed a case of this possibility and can be generally
considered as a first step toward a closer collaboration between an
axiomatic and a semantical approach to the notion of truth.
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Proto-Entailment in RS logic
Dmitry V. Zaitsev1

A jump into abstraction – performed in
universal algebra and universal logic –

allows space for monsters.
J-Y. Bézeau

abstract. In this paper I propose a formalization of proto-
entailment relation introduced by V. Shalak by means of RS logic.
The first section clarifies the idea and formal developments of RS
logic, which is the logic of Rational Subject. In the second section
I will very briefly introduce the conception of proto-entailment as
it was promoted in Shalak’s writings. The third section contains
the formal account for proto-entailment and axiotimatization of
resulting logic.

Keywords: proto-entailment, logic of rational subject, generalized
truth-values

1 Logic of Rational Subject
The abbreviation RS-logic expansion is [logic] ‘of Rational Subject’,
that is a four-valued propositional logic, whose values are two-
component entities composed of logical and epistemological con-
stituents. First the idea of such a logic emerged in the course of
working on the project of generalized classical truth values [4]. We
elaborated an idea of distinguishing between ontological and epis-
temological aspects of classical truth values. In so doing, we came
across two unary twin connectives that deal only with either onto-
logical or epistemological component of generalized classical truth
value, leaving the other untouched. That is why these connectives
were labeled as semi-classical negations. I turned onto whether there

1Supported by Russian Foundation for Basic Research,grant №11-06-00296-а.
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is any logic wherein any of our semi-negations is treated as full-scale
one. This stream of thought led me to the logic of Rational Subject.

Imagine a rational subject who knows the laws of classical logic.
It means that when it is necessary to calculate the value of any
compound formula from the values of its constituent formulas our
subject performs computations guided by a knowledge of classical
truth-assignments. It is evident that proceeding along these lines
he (or she) sometimes can figure out the value of a formula, and,
thus, knows its value, and sometimes the information in hand is not
enough to fix the value of the formula, and when this occurs, our
subject does not know the value. Hence, besides two ‘logical’ (or
ontological) values Truth and Falsity one must take into account two
extra ‘epistemic’ values characterizing the state of rational subject’s
knowledge. Let Truth and Falsity as usual be denoted by ‘t ’ and
‘f ’, while for ‘knows’ and ‘does not know’ we select ‘1’ and ‘0’ cor-
respondingly. Then we have just four values being two-component
entities composed of logical and epistemological constituents that
can be treated as pairs or as sets:
T1 ⟨t, 1⟩ {t, 1};
T0 ⟨t, 0⟩ {t};
F0 ⟨f, 0⟩ {f};
F1 ⟨f, 1⟩ {f, 1}.

Consider the clauses for negation and conjunction to clarify the
way rational subject works. If rational subject knows that an arbi-
trary formula is true, he knows that its negation is false, and vice
versa. In the meantime, if you do not know the value of a formula,
you do not know the value of its negation. The resulting truth-table
goes as follows in Figure 1.

A ¬A
T1 F1
T0 F0
F1 T1
F0 T0

Figure 1. Table for ‘rational’ semi-classical negation



262 Dmitry V. Zaitsev

Due to its classical nature conjunction is true if and only if both
conjuncted formulas are true, that determines the first component
of values-as-pairs (occurrence of element ‘t’ in a value-as-set). The
second epistemic component of a value can be calculated on the ba-
sis of the following reflections: one knows that conjunction is true if
and only if one knows that both conjuncts are true, and one knows
that conjunction is false if and only if one knows that at least one
of conjuncts is false. Summing up these considerations we receive
the truth-table for conjunction depicted in Figure 2. The analogous

∧ T1 T0 F0 F1
T1 T1 T0 F0 F1
T0 T0 T0 F0 F1
F0 F0 F0 F0 F1
F1 F1 F1 F1 F1

Figure 2. Table for ‘rational’ conjunction

argument provided for disjunction clause makes it possible to con-
sider the structure of generalized values as a four-elements lattice
with linear ordering depicted in Figure 3.

t
t

t
tT0

T1

F0

F1

Figure 3. The ‘rational’ lattice

Now define a valuation function v as a map from the set of propo-
sitional variables to the set V = {T1, T0, F0, F1}, and in a straight
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forward way extend it to arbitrary formula A given correspondence
between lattice meet (join) and conjunction (disjunction). Thus,
we have a four-valued valuational system, which allows to define
different consequence relations on it.

For a period I had been zeroing in on the different problems put
RS logic aside. However it was my student Yekaterina Kubyshkina
who in her graduation thesis and relevant publications [3] exam-
ined some consequence systems, which axiomatize RS logics with
different consequence relations. In particular, she introduced three
consequence relations: ∀A,B

• A |=RM B ⇔ ∀v(v(A) ∈ D ⇒ v(A) ∈ D),
where D = {T1} — T1-preserving consequence;

• A |=TV B ⇔ ∀v(v(A) ∈ D ⇒ v(A) ∈ D),
where D = {T1, T0} — truth-preserving consequence;

• A |=KL B ⇔ ∀v(v(A) ≤ v(A)),
where ≤ is the ‘rational’ order — comparative consequence.

She has proved that corresponding semantical logics can be pre-
sented as consequence systems: RSRM (RS with |=RM ) is axioma-
tized by the first-degree fragment of RM; RSTV (RS with |=TV ) is
axiomatized by classical consequence system; RSKL (RS with |=KL)
is axiomatized by Kleene strong logic.

Immediately, a string of questions arises. And among them the
following directly pertains to the topic of this paper: what is the
consequence system axiomatizing a 1-preserving entailment? To an-
swer this question we first turn to Shalak’s idea of proto-entailment.

2 Proto-Entailment
Modern Russian logician Vladimir Shalak set forth an idea of proto-
entailment proceeding from radically different intuitive premisses.
The title of his doctoral dissertation is ‘Proto-Logic: new insight
into the nature of logicality’ and he sees his primary objective in
clarifying the very concept of logic. His approach is very close to
the so called project of universal logic, which pretends to be a gen-
eral theory of logics. Shalak himself highlights the cognation of his
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theory with the ideas of J-Y. Bésiau [1, 2]. J-Y. Bésiau interprets
universal logic by analogy with universal algebra: the latter is an
abstract set of formulas together with equally abstract consequence
relation subject for no specific restrictions.

Meanwhile, it is worth noting that Shalak himself in English-
language abstract to his papers (published in Russian) uses the term
‘consequence relation’. However he oftentimes emphasizes that this
consequence relation is free from well-known paradoxes, and hence
makes a good name of (proto-) entailment for it.

However even such an abstract relation needs a precise defini-
tion. This is a fragment from his paper devoted to an alternative
definition of consequence relation that helps to grasp the underlying
informal intuition.

In classical logic, truth of premises is a sufficient condition of verity
of the conclusion. However, that is too stronghold limiting a require-
ment. A laxer claim might be to have valid ways of reasoning simply
not lead us to erroneous conclusion or fallacies. . .

In other words, the form of the argument is valid if the knowledge of
its premises’ truth-value is a sufficient condition of the awareness of
its conclusion’s truth-value. . . [5, p. 283].

To understand why and how Shalak proceeded from this informal
motivation to the axiomatically presented proto-Boolean logic, one
should take into account the other, maybe even most important for
him, idea that constitutes his conception of modern logic. One of
his fundamental presumptions is that the radical turn from subject-
predicate paradigm in logic to relational one neither was necessarily
determined nor offered any advantage in a formal language expres-
sive power. In fact, he suspects that as a result of such a paradigm
shift our world-view has been distorted. It would be more natural
and convenient to develop symbolic logic on the ontological basis
of (monadic) properties and functions rather than on the ground of
relational structures. This presuppositions have strongly influenced
on his further formal explication of consequence relation, which he
defines functionally as follows.

This [the above consideration] gives rise to the following definition of
the entailment relation:
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The set of formulas Σ = {B1, . . . , Bk} entails formula A, iff there
exists function f which allows calculation of the truth-value of A
given truth-values of the formulas of the set Σ. [5, p. 283].

Quite predictably this function f turns to be Boolean one that pro-
vides extremely plain axiomatization of proto-Boolean logic as a
consequence system ACL (that is alternative consequence logic or
alternative to classical logic , as may well be imagined). There are
just three axiom schemes and two rules:

A1 A ∨ ¬A;

A2 {A,B} ⊢SH A ∧B;

A3 {A} ⊢SH ¬A;

R1
⊢TV A ≡ B

{A} ⊢SH B
; R2

Γ ⊢TV A, {A} ∪ ∆ ⊢SH B

Γ ∪ ∆ ⊢SH B
,

where ⊢SH and ⊢TV stand for Shalak’s proto-entailment and clas-
sical consequence relation correspondingly.

It can be easily shown that ⊢TV A⇒ ⊢SH A, thereby validating
in ACL all classically valid formulas.

In his resent writings, Shalak makes an attempt to formalize more
abstract functional concept of proto-entailment. However, currently
he has only suggestive axiomatization of corresponding consequence
relation.

3 Proto-Entailment as a 1-Preserving Consequence
Relation

In what follows, I will present a consequence system RSPE which
formalizes proto-entailment as a 1-preserving consequence relation
in RS logic. In so doing, first consider semantics for RSPE in more
detail.

For the sake of convenience, in this section, the values of RS logic
will be interpreted as sets (sf. the 1st section). A valuation function
v is the map from the set of propositional variable into the four-
element set of values-as-pairs, extended to compound formulas in a
straightforward way as provided by the truth-tables above. Then
the following proposition can be put forward.
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Proposition 1.
t ∈ v(¬A) ⇔ f ∈ v(A) f ∈ v(¬A) ⇔ t ∈ v(A)
1 ∈ v(¬A) ⇔ 1 ∈ v(A)
t ∈ v(A ∧B) ⇔ t ∈ v(A) and t ∈ v(A)
f ∈ v(A ∧B) ⇔ f ∈ v(A) or f ∈ v(B)
1 ∈ v(A ∧ B) ⇔ [1 ∈ v(A) and 1 ∈ v(B) and t ∈ v(A) and t ∈
v(B)] or [1 ∈ v(A) and f ∈ v(A)] or [1 ∈ v(B) and f ∈ v(B)].

Definition 1. For arbitrary formulas A and B of LRS , A |=1 B ⇔
∀v(1 ∈ v(A) ⇒ 1 ∈ v(B)).

A consequence system RSPE is presented as pair (LRS ,⊢), where
⊢ satisfies the following deductive postulates:

A1. A ⊢ ¬A

A2. ¬A ⊢ A

A3. A ∧ (B ∨ C) ⊢ (A ∧B) ∨ C

A4. A ∧B ⊢ ¬A ∨ ¬B

A5. ¬A ∨ ¬B ⊢ A ∧B

A6. A ∨B ⊢ ¬A ∧ ¬B

A7. ¬A ∧ ¬B ⊢ A ∨B

R1.
A ⊢ B,B ⊢ C

A ⊢ C
R2.

A ⊢ B,A ⊢ C
A ⊢ B ∧ C

R3.
A ⊢ B,C ⊢ B
A ∨ C ⊢ B

R4.
A ⊢ B,A ⊢TV ¬B

A ⊢ B ∧ C

R5.
A ⊢ B ∧ C,A ⊢TV B ∧ C

A ⊢ B,A ⊢ C
R6.

A ⊢ B ∧ C,A ⊢TV ¬B
A ⊢ B or A ⊢ C

,

where ⊢TV designates classical consequence relation.

There are some interesting and helpful theorems:

t1. A ∧B ⊣⊢ ¬(¬A ∨ ¬B)
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t2. A ∨B ⊣⊢ ¬(¬A ∧ ¬B)

t3. A ∧ ¬A ⊣⊢ A

t4. C ∧ (A ∧ ¬A) ⊣⊢ C ∧A

t5. A ⊢ A

The proof of soundness is mostly a routine check which can be
smoothly omitted.

Theorem 1 (Completeness). For any A and B of LRS: If A |=1

B ⇔ A ⊢ B.

Proof. Suppose A |=1 B. To show that A ⊢ B, define canonical
valuation via consequence relation as follows:
vc(p) = T1 ⇔ A ⊢TV p and A ⊢ p;
vc(p) = T0 ⇔ A ⊢TV p and A 0 p;
vc(p) = F0 ⇔ A ⊢TV ¬p and A 0 p;
vc(p) = F1 ⇔ A ⊢TV ¬p and A ⊢ p.
To simplify the proof consider only three generalized conditions for
canonical valuation so defined:

1. t ∈ vc(p) ⇔ A ⊢TV p;

2. f ∈ vc(p) ⇔ A ⊢TV ¬p;

3. 1 ∈ vc(p) ⇔ A ⊢ p.

Now we need to prove that the canonical valuation for arbitrary
formula B satisfies conditions 1–3.

The first point that strikes the eye is the possibility for conditions
1 and 2 to coincide. If A ⊢TV B and A ⊢TV ¬B then A ⊢TV B∧¬B.
The latter means that A is of the form F ∧ (C ∧ ¬C). By t3.
and t4., F ∧ (C ∧ ¬C) ⊣⊢ F ∧ C. Let now A∗ be F ∧ C. As
long as according to our basic assumption A |=1 B, to show that
A ⊢ B is equivalent to show that A∗ ⊢ B, reducing the case to
non-contradictory one.

The proof for arbitrary formula B will be carried out by simul-
taneous induction on the length of a formula. Keeping in mind
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theorems t1. and t2. one can consider only cases with negation
and conjunction.

Case (¬B) and conditions 1–3 hold.
1) t ∈ vc(¬B) ⇔[prop.1.] f ∈ vc(B) ⇔[ind. assumption] A ⊢TV ¬B
2) f ∈ vc(¬B) ⇔[prop.1.] t ∈ vc(B) ⇔[ind. assumption] A ⊢TV B
⇔[PC] A ⊢TV ¬¬B
3) 1 ∈ vc(¬B) ⇔[prop.1.] 1 ∈ vc(B) ⇔[ind. assumption] A ⊢ B
⇔[A1.,A2] A ⊢ ¬B

Case (B ∧ C) and conditions 1–3 hold.
1) and 2) are routine.
3) 1 ∈ vc(B ∧ C) ⇔[prop.1.] [1 ∈ vc(B) and 1 ∈ vc(C) and
t ∈ vc(B) and t ∈ vc(C)] or [1 ∈ vc(B) and f ∈ vc(B)]
or[1 ∈ vc(C) and f ∈ vc(C)]
⇒:
1 ∈ vc(B) and 1 ∈ vc(C) and t ∈ vc(B) and t ∈ vc(C) ⇒[ind. assum.]

A ⊢ B and A ⊢ C ⇒[R.2.] A ⊢ B ∧ C
1 ∈ vc(B) and f ∈ vc(B) ⇒[ind. assum.] A ⊢ B and A ⊢TV C ⇒[R.4.]

A ⊢ B ∧ C
1 ∈ vc(B) and f ∈ vc(B) is analogous
⇐: A ⊢ B ∧ C ⇒[R.5.] (A ⊢ B,A ⊢ C,A ⊢ B ∧ C) or
(A ⊢ B,A ⊢TV ¬B) or (A ⊢ C,A ⊢TV ¬C) ⇒[ind. assum.]

[1 ∈ vc(B) and 1 ∈ vc(C) and t ∈ vc(B) and t ∈ vc(C)]
or [1 ∈ vc(B) and f ∈ vc(B)] or [1 ∈ vc(C) and f ∈ vc(C)] ⇔[prop.1.]

1 ∈ vc(B ∧ C)

Turning to completeness, A |=1 B means that ∀v(1 ∈ v(A) ⇒ 1 ∈
v(B)). And hence 1 ∈ vc(A) ⇒ 1 ∈ vc(B), that is A ⊢ A⇒ A ⊢ B.
A ⊢ A holds by t5., and by MP, A ⊢ B, completing the proof. 2

4 Conclusion
The aim of this paper was twofold.

(1) Formalization of proto-entailment. What kind of (proto-)en-
tailment, in Shalak’s sense, is formalized by the system RSPE? Is
it Boolean proto-entailment or general functional one? The answer
that suggests itself is that the 1-preserving consequence relation
corresponds to Boolean proto-entailment. The main argument in
favour of such a conclusion is the apparently classical justification
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of the truth-conditions for compound formulas exploited in the first
section. Though one can call in question this reflection by asking
if any other (non-classical) interpretation of propositional connec-
tives are entitled to exist. Maybe it would be useful to consider
non-Fregean logical components of compound values? As I see it,
presumably this trick won’t come off. The proliferation of logical
components will complicate the assignment procedure and bring
about to loss of clarity in compound values interpretation. Thus,
the presented formalization can pretend to be the explication of
general functional proto-entailment as well.

What is worth noting is the relationship between the 1-preserving
entailment and the t-preserving entailment (|=TV ): if A |=1 B, then
A |=TV B orA |=TV ¬B but not vice versa. Supporting my previous
claim the same relation holds between |=1 and |=RM and between
|=1 and |=KL!

(2) Prospects for RS logic. Digressing from proto-entailment, this
logic seems of certain interest in itself.

First, it opens possibilities for a wide range of different con-
sequence relations defined for instance via transfer from truth of
premises to the awareness of conclusion and so on.

Second, RS logic is still waiting to be supplied with appropri-
ate implication(s). Interestingly, natural classical style implication
can be easily added as an abbreviation for ¬A ∨ B. However this
simple-mind implication turns to be a Kleene’s one. Regarding
 Lukasiewicz’s implication, which, if added, would allow to get the
full-fledged  L4, it does not agree with our informal intuition about
the values of RS. For instance, consider the case when 2/3 was
assigned to the antecedent, while the consequent has the value 1/3.
In terms of RS logic values this assignment means T0 for 2/3 and
F0 for 1/3. Under these circumstances the value of  Lukasiewicz’s
implication will be 2/3, that looks at least strange.

Third, this logic is in a sense an epistemic one. It can be applied
as a logical tool for public announcement modelling and other
exciting ventures.
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Equality of consequence relations in
finite-valued logical matrices
Leonid Yu. Devyatkin

abstract. In this paper the procedure is presented that allows
to determine in finite number of steps if consequence relations in
two finite-valued logical matrices for propostional language L are
equal.

Keywords: product of logical matrices, consequence relation,
equality of matrices

In his paper ‘A test for the equality of truth-tables’ [2], J. Kalicki
has described a general method for testing the equality of the classes
of tautologies in different finite-valued matrices. Below I present
a generalization of Kalicki’s method which allows to test whether
the consequence relations in two finite-valued logical matrices
are equal.

First, the question of equality of consequence relations in two ar-
bitrary matrices will be reduced to the question of the properties of
a single matrix. This matrix will be obtained from initial matrices
via the operation of product, but it will have four classes of truth-
values instead of the standard two (designated and non-designated).
On the basis of these four classes I will define several consequence
relations. The properties that these relations display in the product
matrix will define if two initial matrices are equal in terms of conse-
quence relation. Then I will show that it is sufficient to consider a
finite set of formulas to investigate the properties in question, and
that therefore a finite number of steps is required to determine if
consequence relations are equal in two finite-valued matrices.

Let us begin with some necessary definitions.
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Definition 1. A logical matrix is a structure M =< V,F,D >,
where V is the set of truth-values, F is a set of functions on V called
basic functions, and D is a designated subset of V .

In this paper we will only consider the logical matrices where V
is finite.

If for any n it is true that M contains as much n-ary elements of
F as there are n-ary connectives in some propositional language L,
M is a logical matrix for L. In that case we can establish a one-to-
one correspondence between the elements of F and the connectives
of L, and define a valuation of a formula in M.

Definition 2. A valuation v of formulaA in M is a homomorphism
of L in < V,F > such that

1. if A is a propositional variable, then v(A) ∈ V ;

2. if A1, A2, · · · , An are formulas, and C is an n-ary connective of
L, then v(C(A1, A2, · · · , An)) = fn(v(A1), v(A2), · · · , v(An)),
where fn is a function from F corresponding to C.

The definition of consequence relation in M is a standard one.

Definition 3. Γ � (M)B iff there is no valuation v in M, such
that v[Γ] ⊆ D(M) (i.e. every formula from Γ assumes a truth-value
designated in M), and v(A) /∈ D(M).

Let us denote as C(M) a set of ordered pairs < Γ, B >, such that
Γ is a set of formulas, B is a formula, and Γ � (M)B. Now we will
define the equality of consequence relations in two arbitary matrices
for L.

Definition 4. Let A and B be the matrices for L. The conse-
quence relations in A and B are equal iff C(A) = C(B).

Now we will make the transition from two matrices to one by
applying the product operation. If A and B are the matrices for
L, a one-to-one correspondence between the elemnts of their sets
of basic functions can be established. This allows us to give the
following definition.

Definition 5. A product of matrices A and B is a matrix C =
A⊗B, such that
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• V (C) is a Cartesian product of V (A) and V (B);

• for each pair pair of mutually corresponding k-ary basic
functions fk(x1, x2, · · · , xk) from A and gk(y1, y2, · · · , yk)
from B there is one and only one basic operation hk from
C, and hk(< x1, y1 >,< x2, y2 >, · · · , < xk, yk >) =
< fk(x1, x2, · · · , xk), gk(y1, y2, · · · , yk) >.

This is a standard product operation. However, the truth-values
in C will be divided into four classes1:

• < xi, yj >∈ ω(C) iff xi ∈ D(A) and yj ∈ D(B);

• < xi, yj >∈ ξ(C) iff xi ∈ D(A) and yj /∈ D(B);

• < xi, yj >∈ ξ′(C) iff xi /∈ D(A) and yj ∈ D(B);

• < xi, yj >∈ ϕ(C) iff xi /∈ D(A) and yj /∈ D(B).

I will now consider two definitions of consequense relation based
on these four classes, �∪ and �∩.

Definition 6. Γ �∪ (C)B iff there is no valuation w in C, such
that w[Γ] ⊆ ω(C), and w(A) ∈ ϕ(C).

Lemma 1. Γ �∪ (C)B iff Γ � (A)B or Γ � (B)B.

Proof. (i) Let Γ �∪ (C)B, and Γ 2 (A)B, and Γ 2 (B)B. Then
there exists a valuation v∗ in A, such that v∗[Γ] ⊆ D(A) and v∗(A) /∈
D(A), and there exists a valuation u∗ in B, such that u∗[Γ] ⊆ D(B)
and u∗(A) /∈ D(B). For every v and u there is a mapping w of the
propositional variables of L on V (A) × V (B), such that w(pk) =<
v(pk), u(pk) >, where pk is a propositional variable. Obviously,
every such w is a valuation in C. By definition of C, w∗ obtained from
v∗ and u∗ is such a valuation that w∗[Γ] ⊆ ω(C), and w∗(A) ∈ ϕ(C).
That contradicts our assumption.

(ii) Let Γ 2∪ (C)B, and Γ � (A)B or Γ � (B)B. Then there is a
valuation w∗ in C, such that w∗[Γ] ⊆ ω(C), and w∗(A) ∈ ϕ(C). For

1This is essentially a distribution introduced by Kalicki [2], but he only
needed three classes, so elements of ξ(C) and ξ′(C) were assigned to the same
class.
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every valuation w in C there is the following valuation v in A: if
w(pk) =< xi, yj >, then v(pk) = xi. By definition of C, v∗ obtained
this way from w∗ is such a valuation in A that v∗[Γ] ⊆ D(A) and
v∗(A) /∈ D(A). The reasoning for valuation u∗ in B is analogous,
and leads to the contradiction. 2

Definition 7. Γ �∩ (C)B iff all three of the following conditions
are fulfilled:

• there is no valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) /∈ ω(C);

• there is no valuation w in C, such that w[Γ] ⊆ ω(C) ∪ ξ(C),
and w(A) /∈ ω(C) ∪ ξ(C);

• there is no valuation w in C, such that w[Γ] ⊆ ω(C) ∪ ξ′(C),
and w(A) /∈ ω(C) ∪ ξ′(C).

Lemma 2. Γ �∩ (C)B iff Γ � (A)B and Γ � (B)B.

Proof. (i) Let Γ �∩ (C)B, and Γ 2 (A)B, and Γ 2 (B)B. The
reasoning is analogous to the one in Lemma 1.

(ii) Let Γ �∩ (C)B, and either Γ 2 (A)B or Γ 2 (B)B. Suppose
Γ 2 (A)B and Γ � (B)B. Then there is a valuation v∗ in A, such
that v∗[Γ] ⊆ D(A) and v∗(A) /∈ D(A). Now we have to consider
two possibilities.

(ii.1) There is a valuation u∗ in B, such that u∗[Γ] ⊆ D(B)
and u∗(A) ∈ D(B). In this case, from v∗ and u∗ we can obtain a
corresponding valuation w∗ in C (see Lemma 1), such that w∗[Γ] ⊆
ω(C), and w∗(A) ∈ ξ′(C). But then Γ 2∩ (C)B, which contradicts
our assumption.

(ii.2) For every valuation u in B, u[Γ] /∈ D(B). Let u′ be such a
valuation that u′[Γ] /∈ D(B), and u′(A) /∈ D(B). The correspond-
ing valuation w′ in C obtained from v∗ and u′ in the same way as in
Lemma 1 will be such that w′[Γ] ⊆ ξ(C), and w′(A) ∈ ϕ(C). Let u′′

be such a valuation that u′′[Γ] /∈ D(B), and u′′(A) ∈ D(B). The
corresponding valuation w′′ in C obtained from v∗ and u′′ will be
such that w′′[Γ] ⊆ ξ(C), and w′′(A) ∈ ξ′(C). Both cases lead us to
the contradiction with the assumption that Γ �∩ (C)B.
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The reasoning for Γ � (A)B and Γ 2 (B)B is analogous.
(iii) Let Γ 2∩ (C)B, and Γ � (A)B, and Γ � (B)B. If Γ 2∩ (C)B,

three cases are possible:
(iii.1) There is a valuation w in C, such that w[Γ] ⊆ ω(C), and

w(A) /∈ ω(C);
(iii.2) There is a valuation w in C, such that w[Γ] ⊆ ω(C)∪ ξ(C),

and w(A) /∈ ω(C) ∪ ξ(C);
(iii.3) There is a valuation w in C, such that w[Γ] ⊆ ω(C)∪ ξ′(C),

and w(A) /∈ ω(C) ∪ ξ′(C).
The reasining for all three cases is the same. We obtain from

w the corresponing valuations v in A and u in B in the same way
as we did in Lemma 1. Due to the properties of w described in
(iii.1)–(iii.3), either v, or u, or both of them will be such that they
will lead to the contradiction with the assumption that Γ � (A)B
and Γ � (B)B. 2

From Lemma 1 we have that C(C,�∪) = C(A) ∪ C(B). From
Lemma 2 we have that C(C,�∩) = C(A) ∩ C(B). Also, we have
that C(A) = C(B) iff C(A) ∪ C(B) = C(A) ∩ C(B). Therefore,
C(A) = C(B) iff C(C,�∪) = C(C,�∩).

Now let us consider another consequence relation.

Definition 8. Γ �∗ (C)B iff either

• there is no valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) /∈ ω(C),

• and there is no valuation w in C, such that w[Γ] ⊆ ω(C)∪ξ(C),
and w(A) /∈ ω(C) ∪ ξ(C),

• and there is no valuation w in C, such that w[Γ] ⊆ ω(C)∪ξ′(C),
and w(A) /∈ ω(C) ∪ ξ′(C),

• or there is a valuation w in C, such that w[Γ] ⊆ ω(C), and
w(A) ∈ ϕ(C).

Lemma 3. C(C,�∪) = C(C,�∩) iff Γ �∗ (C)B for each set of for-
mulas Γ and each formula B.
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Proof. If C(C,�∪) = C(C,�∩), for each Γ and B it is true that
either Γ �∩ (C)B or Γ 2∪ (C)B. Both cases lead to Γ �∗ (C)B. Now
let us assume that Γ �∗ (C)B for some arbitrary Γ and B. Then (i)
for every evaluation w in C, if w[Γ] ⊆ ω(C) then w(A) ∈ ω(C), if
w[Γ] ⊆ ω(C)∪ξ′(C), then w(A) ∈ ω(C)∪ξ′(C), if w[Γ] ⊆ ω(C)∩ξ′(C),
then w(A) ∈ ω(C) ∩ ξ′(C), or (ii) there is at least one valuation in
C, such that all formulas from Γ assume a truth value from ω(C),
and B assumes a value from ϕ(C). In the first case Γ �∩ (C)B. In
the second case Γ 2∪ (C)B. Therefore C(C,�∪) = C(C,�∩). 2

Below, the number of formulas that need to be considered will be
narrowed down to a finite set. I will use the method proposed by
J. Kalicki in [1] with necessary modifications.

Lemma 4. For each matrix Cm, where m is the number of the
elements of V (C), the following is true: if for each pair Γ and B
that contains i ≤ m different variables Γ �∗ (Cm)B, then for each
pair ∆ and E that contains m + t(t = 0, 1, · · · ) different variables
∆ �∗ (Cm)E.

Proof. Let us use the induction by t. For t = 0 it is obvious
that for each Γ and B that contains i ≤ m different variables
Γ �∗ (Cm)B, then for each pair∆ and E that contains m differ-
ent variables ∆ �∗ (Cm)E.

Let us assume that the theorem is true for t ≤ k and prove it
for t = k + 1. Let there exist ∆ and E that contain m + k + 1
different variables, and ∆ 2∗ (Cm)E. Then there exists a valua-
tion w0 in Cm that maps the variables p1, p2, · · · , pm+k+1 on values
x1, x2, · · · , xm+k+1 respectively, such that either (i) w0[∆] ⊆ ω(C),
and w0(E) /∈ ω(C), or (ii) w0[∆] ⊆ ω(C) ∪ ξ(C), and w(E) /∈
ω(C)∪ ξ(C), or (iii) w0[∆] ⊆ ω(C)∪ ξ′(C), and w(E) /∈ ω(C)∪ ξ′(C).

Let us consider (i). Due to the fact that in Cm there is m
different truth-values in total, there will be at least two i1 ̸= i2
among i = 1, 2, · · · ,m + k + 1, such that xi1 = xi2 . Now
let us consider ∆′ and E′, obtained from ∆ and D by re-
placement of all instances of pi2 with pi1 . It is clear that
w0[∆

′] ⊆ ω(Cm) and w0(E
′) /∈ ω(Cm). Because ∆′ and E′ con-

tain m + k different variables, according to the inductive assump-
tion, ∆′ �∗ (Cm)E′. Therefore, there exists a valuation w∗ in
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Cm, which maps the variables p1, p2, · · · , pi2−1 , pi2+1 , · · · , pm+k+1 on
the values y1, y2, · · · , yi2−1 , yi2+1 , · · · , ym+k+1 respectively, such that
w∗[∆′] ⊆ ω(Cm) and w∗(E′) ∈ ϕ(Cm). In this case we can con-
struct a valuation w∗∗, which maps the variables p1, p2, · · · , pm+k+1

on the values y1, y2, · · · , yi2−1 , yi1 , yi2+1 , · · · , ym+k+1 respectively. It
is clear that w∗∗[∆] ⊆ ω(Cm) and w∗∗(E) ∈ ϕ(Cm). But then
∆ �∗ (Cm)E, which contradicts our assumption.

The reasoning for (ii) and (iii) is analogous. 2

For m different variables there is k = mm different valuations
v1, v2, · · · , vk in Cm. We can assign to each variable pi(1 ≤ i ≤
m) a unique value-sequence |pi| =< x1, x2, · · · , xk >, where xl =
vl(pi)(1 ≤ l ≤ k).

Now let us construct the following sequence of the classes of for-
mulas:

• The elements of CL0 are the variables p1, p2, · · · , pm exclu-
sively;

• to a class CLt+1 belong all formulas that can be constructed
by means of one connective, an element of class CLt, and (if
needed) elements of CLn≤t.

For each formula B from CLn we can calculate the corresponding
value-sequence |B| =< y1, y2, · · · , yk >, where yj(1 ≤ j ≤ k) is
obtained from j-th elements of sequences assigned to the variables
included in B. Let us denote the set of value-sequences for elements
of Cln as |Cln|. Because the sequences in question consist of k
elements, and the number of truth-values equals m, in total there
is mk possible sequences. Therefore, there is a finite n0 ≤ mk, such
that |CLn0 | contains no value-sequence which is not also the element
of some |CLn<n0 |.
Lemma 5. The value-sequence of any formula B ∈ CLn>n0 is iden-
tical to some element of |CLn<n0 |.

Proof. Let B ∈ CLn0+1. By definition of CLn0+1, formula B
consists of the main connective, at least one formula from CLn0 ,
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and probably elements of CLni<n0 . By definition of n0, each value-
sequence from |CLn0 | is also present in some |CLnj<n0 |. Therefore,
by definition of |CL|, there is a set |CLmax(i,j)+1|, which contains
the value-sequence identical to |B|. Because ni < n0 and nj < n0,
we have that max(ni, nj) + 1 ≤ n0, |B| ∈ |CLn≤n0 |. From that,
according to the definition of n0, we obtain that |B| ∈ |CLn<n0 |.
The theorem is proved for CLn0+1. The generalization for CLn>n0

is obvious. 2

So the set |CL1|∪|CL2|∪· · ·∪|CLn0 | contains all value-sequences
possible in Cm for formulas that contain no more than m different
variables. From this fact and Lemma 4 it follows that Γ �∗ (Cm)B
for each Γ and B iff ∆ �∗ (Cm)E for every ∆ and E that consist
exclusively of the elemnts of CL1 ∪ CL2 ∪ · · · ∪ CLn0 .

This concludes the construction of the procedure for testing if
C(A) = C(B) for two arbitrary finite-valued matrices A and B for
some propositional language L.
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Generalization of Kalmar’s method for
quasi-matrix logic1

Yuriy V. Ivlev

abstract. Quasi-matrix logic is based on the generalization of
the principles of classical logic: bivalency (a proposition take val-
ues from the domain {t (truth), f (falsity)}); consistency (a propo-
sition can not take on both values); excluded middle (a proposi-
tion necessarily takes some of these values); identity (in a com-
plex proposition, a system of propositions, an argument the same
proposition takes the same value from domain {t, f}); matrix prin-
ciple — logical connectives are defined by matrices. As a result
of our generalization, we obtain quasi-matrix logic principles: the
principle of four-valency (a proposition takes values from domain
{tn, tc, fc, f i}) or three-valency (a proposition takes values from
domain {n, c, i}); consistency : a proposition can not take more
than one value from {tn, tc, fc, f i} or from {n, c, i}; the principle
of excluded fifth or fourth; identity (in a complex proposition, a
system of propositions, an argument the same proposition takes
the same value from domain {tn, tc, fc, f i} or domain {n, c, i});
the quasi-matrix principle (logical terms are interpreted as quasi-
functions). Quasi-matrix logic is a logic of factual modalities.

Keywords: quasi-matrix logic, semantic completeness, decision
problem, Kalmar’s method

1 Kalmar’s method
Well-known proof method for methateorem of semantic complete-
ness of classical propositional calculus, which may be also treated
as an approach to the solution of the decision problem, implies the
proof of the following lemma:

1This work is supported by Russian Foundation of Fundamental Research
grant № 11-06-00296-a.
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Lemma 1. Assuming thatD is a formula, a1, . . . , an are all different
variables, occurring in D, b1, . . . , bn are truth-values of these vari-
ables; let Ai be ai,¬ai, depending on whether bi takes value t or f ;
let D′ be D or ¬D depending on whether D takes value t or f with
truth-values b1, . . . , bn variables a1, . . . , an. Then A1, . . . , An ⇒ D′.

(⇒ is here a sign (symbol) for logical entailment, ¬ — for negation,
t и f — truth and falsity, respectively.)

2 Generalization of Kalmar’s method for
many-valued matrix logic

At the end of the sixties of the 20-th century I was able to generalize
this method for functionally complete many-valued matrix logics.
(Probably the generalization of this kind had been done earlier by
somebody else, but I have not heard of it up to now.)

Let’s illustrate the basic principles underlying the generalization
with one of the system of modal logic Sb− constructed by me.

Logical terms of language: ¬, ⊃, 2, ♢. (‘⊃’, ‘2’, ‘♢’ — are
respectively signs for implication, necessity and possibility)

2.1 Semantics Definitions of logical terms

⊃ tn tc f i f c

tn tn tc f i f c

tc tn tc f c f c

f i tn tn tn tn

f c tn tc tc tc

A ¬A 2A ♢A
tn f i tn tn

tc f c f c tc

f i tn f i f i

f c tc f c tc

tn, tc, f c, f i — are respectively truth-values ‘necessary truth’, ‘con-
tingent truth’, ‘contingent falsity’, ‘necessary falsity’. Designated
values are tn and tc.

2.2 Formalisation
The calculus includes schemes of axioms of classical propositional
calculus, modus ponens rule of inference and also following
schemes of axioms:

2A ⊃ A; ¬2¬A ⊃ ♢A; ♢A ⊃ ¬2¬A; ¬♢A ⊃ 2(A ⊃ B); 2B ⊃
2(A ⊃ B); ♢B ⊃ ♢(A ⊃ B); ♢¬A ⊃ ♢(A ⊃ B); ♢(A ⊃ B) ⊃
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(2A ⊃ ♢B); 2(A ⊃ B) ⊃ (♢A ⊃ 2B); 2A ⊃ 22A; ♢2A ⊃ ♢A;
♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.

For the proof of meta-theorem of semantic completeness of calculi
Sb− the following lemma is needed.

Lemma 2. Assuming that D is a formula, a1, ..., an are all different
variables occurring inD, b1, ..., bn are truth-values of these variables.
Let Ai be 2ai, ai&♢¬ai, ¬ai&♢ai, ¬♢ai depending on whether
bi is tn, tc, f c or f i. Let D′ be 2D, D&♢¬D, ¬D&♢D or ¬♢D
depending on whetherD takes value tn, tc, f c or f i with truth-values
b1, ..., bn of the variables a1, ..., an. Then A1, ..., An ⇒ D′. ( & — is
here a sign for conjunction)

Lemma is proved by the use of recurrent mathematical induction.
If formula D takes designated value with all possible truth-

values of its variables, then D′ is 2D or D&♢¬D. In each case
A1, ..., An ⇒ D.

Let us substitute assumption 2ai+1 with number i + 1 from the
set of assumptions A1, ..., An for the set of formulas ai+1, ¬♢¬ai+1,
assumption ai+1&♢¬ai+1 for the set of formulas ♢¬ai+1, ai+1, as-
sumption ¬ai+1&♢ai+1 for the set of formulas ¬ai+1,♢ai+1, as-
sumption ¬♢ai+1 for the set of formulas ¬ai+1,¬♢ai+1. Then all
assumptions with number i+ 1 may be eliminated.

2.3 Illustration
1. A1, ..., Ai, ai+1,¬♢¬ai+1 ⇒ D,

2. A1, ..., Ai, ai+1,♢¬ai+1 ⇒ D,

3. A1, ..., Ai,¬ai+1,♢ai+1 ⇒ D,

4. A1, ..., Ai,¬ai+1,¬♢ai+1 ⇒ D,

5. A1, ..., Ai, ai+1 ⇒ D – from 1, 2,

6. A1, ..., Ai,¬ai+1 ⇒ D – from 3, 4,

7. A1, ..., Ai ⇒ D – from 5, 6.

In my doctoral thesis I brought forward 30 problems calling for
solution. Later these ideas were published in monograph [8, p. 208–
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217]. Many of these problems have been solved by now. The solu-
tions were published in 13 PhD theses and publications. Some of the
problems have not been solved yet. One of these problems (prob-
lem number 9) may be formulated as follows: if logic is function-
ally complete, then for any propositional variable a and any truth
value i there is a formula fi(a) containing only this variable and
taking some designated value if and only if a takes value i; sup-
pose a1, a2, ..., an are all different variables occurring in D; suppose
b1, b2, ..., bn are the truth-values of these variables; suppose As is
fk(as), if bs is k; suppose D′ is fr(D) (fr(D) is a formula formed
on the basis of D and taking designated value with truth-values
b1, b2, ..., bn of the variables a1, a2, ..., an). Then A1, A2, ..., An ⇒ D.

For example, 1, 1
2 , 0 are the truth-values of three-valued modal

logic of  Lukasiewicz; f1(a) is 2a, f 1
2
(a) is ♢a&♢¬a, f0(a) is ¬♢a; if

formula takes value 1 with some truth-values of its variables, then
fr(D) is 2D, etc.; assumptions may be eliminated like it was stated
for Sb−.

The ninth problem is the problem of finding the proof for meta-
theorem of semantic completeness of all known finite-valued matrix
logics and finding sets of axioms for all logics of this kind stated
semantically.

The seventeenth problem is the problem of generalization of this
method for the proof of semantic completeness (and solution of the
decision problem) of propositional quasi-matrix logics. This problem
has not been solved for a long time. The solution is brought off in
this article.

3 Quasi-matrix logic

Quasi-matrix is a set (Q,G, qf1, ..., qfs), where Q and G are non-
empty sets such that Q ⊆ G; qf1, ..., qfs are quasi-functions.

If a function is a correspondence in virtue of which an object from
some (functional) domain is related with certain object (from the
range of the function) then a quasi-function is a correspondence in
virtue of which an object from a certain subset of some set is related
with some object from a certain subset of some or another set (from
the range of the quasi-function).
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3.1 Examples

Function: {(a, d), (b, k), (c, k)}.

Quasi-function: {(a, d)Y2(a, k), (c,m)} = {{(a, d), (c,m)}Y2{(a, k),
(c,m)}},

Quasi-function: {Y4((a, k), (a, n), (c, k), (c, n)), (d, r) = Y4[{(a, k),
(d, r)}, {(a, n), (d, r)}, {(c, k), (d, r)}, {(c, n), (d, r)}]},

Y2 and Y4 are two- and four-place (respectively ) metalinguistic ex-
clusive disjunctions. Let us assume that disjunction may be degen-
erative, i. e. in this particular case quasi-function is just a function.
Then a matrix is a particular case of quasi-matrix.

In the general case an object of application of a quasi-function,
as well as truth-value of a quasi-function, are indefinite. Only sub-
range of the range of quasi-function, which includes this object, and
sub-range of the range of values of a quasi-function, which contains
a value of a quasi-function, are defined.

Such vagueness may be of a cognitive nature. It takes place,
when the above-mentioned correspondence or relation is objectively
functional, but this is not known to the researcher. For example,
there are three probable variants of translation of a certain word in
a dictionary, but the translator doesn’t know, which of these three
readings is the most appropriate in the present case (context). Such
situations also appear in systems of automatic translation.

Another cause of indetermination is that reality may be indeter-
minate itself. For example, for planning of a production we have to
take into account the following reasons. Suppose that we know the
limits of alteration of a quantity of raw stuff, which will be factored
next year. But it s impossible to figure out any rigid link between
definite quantity of a factored raw stuff and a quantity of output,
even if we knew a quantity of man-power, equipment etc.

For the first time some particular examples of quasi-functions
were represented by H. Reichenbach (1932, 1935, 1936), Z. Zavarski
(1936), F. Gonseth (1938, 1941), N. Rescher (1962, 1964, 1965,
1969). Rescher considers a material implication and defines it as
follows:
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A ⊃ B

t t t
t f f
f (t, f) t
f (t, f) f

(t, f) is not a determinate truth-values. This bracketed entry (t, f)
means that either one of these two truth-values may occur in the var-
ious particular cases. Hence, depending on specific sense of propo-
sitions, the whole implication may be either true or false. Other
logical terms are formulated in a usual way.

It is obvious that not all tautologies of a classical propositional
logic of the form A ⊃ B take the truth-value ‘t’ under any given
assignment of truth-values to elementary propositions.

Rescher formulates the conception of quasi-tautology. He adopts
t and (t, f) in his quasi-functional system Q as designated truth-
values. Then quasi-tautology is a formula which invariably does or
can take either of this designated truth-values for every assignment
of truth-values to its propositional variables. But if we bring to a
logical end Rescher’s reasoning we also have to treat as a quasi-
tautology propositional variable p.

Then Rescher ‘corrects’ definitions of  Lukasiewicz’ three-valued
logic.

A & B
1
2 (12 , 0) 1

2

Independently of the above-mentioned and some other authors I
came to the same considerations at the end of the sixties / beginning
of the seventies. My ideas were concerned with the way of modal
logic development. Though by that time a lot of different ‘logical
systems’ had been constructed, it wasn’t clear, what kind of modal
operators and notions (either factual or logical necessity, possibil-
ity etc.) were defined by these systems. It made the application
of modal systems to the natural reasoning analysis very difficult.
This condition of modal logic seemed to me unsatisfactory and in-
adequate. On purpose to overcome these difficulties I distinguished
two different branches of modal logical investigations: proper logic
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(or logic itself) and an imitation of logic. Proper logic deals with the
forms of thoughts. H. Curry called this kind of logic a philosophical
one. Imitation of logic is a certain (formal) system, e. g. algebraic
system, which in some respect resembles philosophical logic (usually
with respect to some technical symbols and signs) [15].

In the following explanations I am treating modern logic as a
philosophical logic in the sense of Curry.

In logic, as well as in each other science, it’s possible to distin-
guish empirical and theoretical levels of development. An essential
feature of a theory is its ability to explain phenomena. As I think,
my approach to the analysis of logical modalities, elaborated by
N. Arkhiereev, possesses this ability. Theory of factual modalities,
which is to be based on quasi-matrix logic, has not been yet com-
pletely developed. (Fundamental ideas of theory of logical modali-
ties are represented in [1, 2, 6, 7, 13, 14].)

I began to work out quasi-matrix logic with constructing the sys-
tem of minimal modal logic.

3.2 Minimal modal logic Smin

(Symbols of formalised language: 2,♢,¬,⊃).
 Lukasiewicz’s well-known statement about impossibility of proper

definitions of modal operators ‘necessary (2) and ‘possibly’ (♢) in
terms of ‘truth’ and ‘falsity’ is valid only if these operators are in-
terpreted as functions.

But if we interpret modal operators as quasi-functions, it becomes
possible to define them in above-mentioned terms.

Let’s consider formula 2A. Assume A takes value f (falsehood).
Then formula 2A also takes value f , since not-existing state of
affairs can not be necessary (both logically and factually). Assume
formula A takes value t (truth). What truth-value takes formula
2A in this case? The value is indeterminate. Formula 2A takes
either value t, or value f . Let’s notify this situation by t/f .

By the same reasoning, we can conclude that truth-value of
the formula ♢A is indeterminate, when formula A takes value
f . Definitions of signs of negation and implication are usual.
Designated truth-value is t.
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Principles of classical propositional logic and logic Smin

Classical propositional logic prin-
ciples

Principles of quasi-matrix
logic Smin

(1) the principle of bivalency (propo-
sitions take values from the domain
{t (truth), f (falsity)})

the principle of bivalency

(2) the principle of consistency (a
proposition can not have both the val-
ues)

the principle of consistency

(3) the principle of excluded middle
(a proposition necessarily has some of
these values)

the principle of excluded middle

(4) the principle of identity (in a com-
plex proposition, a system of proposi-
tions, an argument one and the same
proposition has one and the same value
from the domain {t, f})

the principle of identity

(5) the principle of specifying the truth
value of a complex proposition by truth
values of elementary propositions con-
stituting it (in classical logic this prin-
ciple acts as a matrix principle — logi-
cal connectives are interpreted as func-
tions)

the principle of specifying the
truth value of a complex propo-
sition by truth values of elemen-
tary propositions constituting it
(in Smin this principle acts as
a quasi-matrix principle — logi-
cal terms are interpreted as quasi-
functions)

Smin — formalism which is adequate to the system constructed se-
mantically. Smin-calculus is an extension of a classical propositional
calculus with added new axiom schemes: 2A ⊃ A, A ⊃ ♢A.
Smin-calculus is weaker than basic modal logic of  Lukasiewicz, since
the formula 2A ≡ ¬♢¬A is not provable there.

For the proof of semantic completeness meta-theorem of Smin-
calculus, we define alternative interpretation as follows.

Alternative interpretation is a function || || such as to: If P is —
propositional variable then ||P || ∈ {t, f}.

If ||A|| and ||B|| are defined, then ||¬A|| = t ⇔ ||A|| = f ; ||A ⊃
B|| = f ⇔ ||A|| = f or ||B|| = t; ||A|| = f ⇒ ||2A|| = f ; ||A|| =
t ⇒ ||2A|| ∈ {t, f}; ||A|| = t ⇒ ||♢A|| = t; ||A|| = f ⇒ ||♢A|| ∈
{t, f}. (⇔ and ⇒ are here abbreviations for expression ‘if and only
if’ (‘iff’) and ‘if..., then...’ respectively.)
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Formula is satisfiable iff it takes the value ‘true’ in some alterna-
tive interpretation. Formula is valid iff it is true under each alter-
native interpretation.

3.3 Four-valued quasi-matrix logical systems
Truth-values tn, tc, f c, f i are interpreted as follows: proposition tak-
ing values tn describes a state of affairs which takes place in reality
and which is strictly determined by certain circumstances; proposi-
tion taking values tc describes a state of affairs which takes place in
reality and which is not strictly determined by either circumstances;
proposition taking values f c describes a state of affairs which doesn’t
exist in reality and the absence of which is not strictly determined
by either circumstances; proposition taking values f i describes a
state of affairs which doesn’t exist in reality and which absence is
strictly determined by certain circumstances.

Four-valued quasi-matrix logic based on the following generaliza-
tion of classical logic principles.

Classical logic principles Quasi-matrix logic principles
(1) the principle of bivalency (propo-
sitions take values from the domain
{t (truth), f (falsity)})

the principle of four-valency
(propositions take values from
the domain {tn, tc, fc, f i})

(2) the principle of consistency (a
proposition can not have both the val-
ues)

consistency: can not have
more than one value from
{tn, tc, fc, f i}

(3) the principle of excluded middle
(a proposition necessarily has some of
these values)

the principle of excluded fifth

(4) the principle of identity (in a com-
plex proposition, a system of proposi-
tions, an argument one and the same
proposition has one and the same value
from the domain {t, f})

identity from the domain
{tn, tc, fc, f i}
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(5) the principle of specifying the truth
value of a complex proposition by truth
values of elementary propositions con-
stituting it (in propositional logic this
principle acts as a matrix principle —
logical connectives are defined by ma-
trices, in predicate logic it shows up in
the interpretation of logical terms and
predicates as truth functions).

the quasi-matrix principle (logi-
cal terms are interpreted as quasi-
functions)

Logical terms are the same as those in the Smin-system.

Definitions of logical terms:

A ¬A a b c d e
2A ♢A 2A ♢A 2A ♢A 2A ♢A 2A ♢A

tn f i t t tn tn tn tn tc tc tc tc

tc fc f t fc tc f i tn fc tc f i tn

f i tn f f f i f i f i f i fc fc fc fc

fc tc f t fc tc f i tn fc tc f i tn

A ¬A f g h i
2A ♢A 2A ♢A 2A ♢A 2A ♢A

tn f i t t t t tn tn tc tc

tc fc f i tn fc tc f t f t

f i tn f f f f f i f i fc fc

fc tc f i tn fc tc f t f t

B

(−) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tc fc fc

f i tn tn tn tn

fc tn tc tc tc

B

( ) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tn|tc fc fc

f i tn tn tn tn

fc tn tc tc tn|tc

B

(+) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tn|tc fc fc

f i tn tn tn tn

fc tn tn|tc tc tn|tc

t and tn|tc mean «either tn, or tc». f and f i|f c mean «either f i, or
f c».
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Following logical systems have been constructed on the basis of
above-stated definitions: Sa−, Sa, Sa+, Sb−, Sb, Sb+, Sc−, Sc,
Sc+, Sd−, Sd, Sd+, Se−, Se, Se+, Sf−, Sf , Sf+, Sg−, Sg, Sg+,
Sh−, Sh, Sh+, Si−, Si, Si+. Lower case letters occurring in the
name of systems corresponds to the definition of modal terms, signs
+,− and their absence correspond to the definition of implication.
tn and tc are distinguished truth-values.
The following considerations underlie the above-stated definitions

of logical terms. Let us consider formula 22A. If the subformula
A takes value t, then the value of a formula 2A, as it has already
been settled, is not determined, i. e. situation which is described
by A takes place in reality but is determined itself either strictly or
not. In the first case we have to assign to the formula 2A value t,
in the second one — the value f .

I.e. in the first case a proposition A is interpreted as being true
and (factually) necessary (in our terms it takes value tn). What
value in this case takes formula 22A? If A describes a state of
affairs which is strictly determined by any circumstances, then these
circumstances may in its own turn be either determined or not by
some others. That is formula 2A also takes value tn (or tc) etc.

Such situations occur both in subjective and objective reality.
Different kinds of distinct and fuzzy determination in biology were

considered by V.Yu. Ivlev in [5,6].
Semantic-constructed systems are formalized by a number of cal-

culi including as their general part all schemes of axioms of a clas-
sical propositional calculus, modus ponens — rule of inference and
following schemes of axioms: 2A ⊃ A; ¬2¬A ⊃ ♢A; ♢A ⊃ ¬2¬A;
¬♢A ⊃ 2(A ⊃ B); 2B ⊃ 2(A ⊃ B); ♢B ⊃ ♢(A ⊃ B);
♢¬A ⊃ ♢(A ⊃ B); ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).

We sign with letter S the calculus, which is obtained from clas-
sic propositional calculus by means of above-stated eight model
schemes of axioms. The calculi corresponding to the semantic-
constructed systems may be worked out by addition to S of the
following schemes of axioms:
Sa−: 2(A ⊃ B) ⊃ (♢A ⊃ 2B).
Sa: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);

2(A ⊃ B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))).
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Sa+: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B).
Sb−: 2(A ⊃ B) ⊃ (♢A ⊃ 2B); 2A ⊃ 22A; ♢2A ⊃ ♢A;

♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.
Sb: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B); 2(A ⊃

B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))); 2A ⊃ 22A; ♢2A ⊃ ♢A;
♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.
Sb+: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);

2A ⊃ 22A; ♢2A ⊃ ♢A; ♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A;
♢♢A ⊃ ♢A.

Calculi Sc−, Sd−, Se−, Sf−, Sg−, Sh−, Si− include schemes of
axioms 2(A ⊃ B) ⊃ (♢A ⊃ 2B).

Calculi Sc, Sd, Se, Sf, Sg, Sh, Si include schemes of axioms
2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B); 2(A ⊃
B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))).

Calculi Sc+, Sd+, Se+, Sf+, Sg+, Sh+, Si+ include schemes of
axioms 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);.

Calculi, which have the same lower case letter occurring in the
names (e. g. calculi Sc−, Sc, Sc+), differ from calculi, which have
other lower case letters occurring in the names (e. g. calculi
Si−, Si, Si+), by sets of schemes of axioms {2(A ⊃ B) ⊃ (♢A ⊃
2B)}, {2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);
2(A ⊃ B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B)))}, {2(A ⊃ B) ⊃ (2A ⊃
2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B)}.

The other additional schemes of axioms of these calculi are the
same:

Calculi Sc−, Sc, Sc+: 2A ⊃ 22A; ♢♢A ⊃ ♢A; ♢2A ⊃ 2A;
♢A ⊃ 2♢A.

Calculi Sd−, Sd, Sd+: ♢A∗, A∗ is modalized formula.
Calculi Se−, Se, Se+: ♢♢A; ♢¬2A; ¬♢A ⊃ ♢2A; 2A ⊃ ♢¬♢A;

♢2A ⊃ (A ⊃ 2A); ♢2A ⊃ (♢A ⊃ A); A ⊃ (♢¬A ⊃ 2♢A);
¬A ⊃ (♢A ⊃ 2♢A).

Calculi Sf−, Sf, Sf+: ♢2A ⊃ (A ⊃ 2A); ♢2A ⊃ (♢A ⊃ A);
A ⊃ (♢¬A ⊃ 2♢A); ¬A ⊃ (♢A ⊃ 2♢A).

Calculi Sg−, Sg, Sg+: A ⊃ (¬2A ⊃ ♢2A); ¬A ⊃ (♢A ⊃ ♢2A);
2♢A ⊃ (A ⊃ 2A); 2♢A ⊃ (♢A ⊃ A).

Calculi Sh−, Sh, Sh+: 2A ⊃ 22A; ♢2A ⊃ ♢A; 2A ⊃ 2♢A;
♢♢A ⊃ ♢A.
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Calculi Si−, Si, Si+: ♢♢A; ♢¬2A; ¬♢A ⊃ ♢2A; 2A ⊃ ♢¬♢A.
We use the rule of substitution of ¬¬A with A and visa versa.
For the proof of metatheorem of semantic completeness of calculi

Sb−, Sc−, Sd−, Se− (semantics for these calculi are of matrix sort)
the following lemma is proved.

Lemma 3. Assuming that D is a formula, a1, ..., an are all differ-
ent variables, occurring in D, b1, ..., bn are truth-values of these
variables. Let Ai be 2ai, ai&♢¬ai, ¬♢ai, ¬ai&♢ai depending on
whether bi is tn, tc, f i or f c. Let D′ be 2D, D&♢¬D, ¬♢D or
¬D&♢D depending on whether D takes value tn, tc, f i or f c with
truth-values b1, ..., bn variables a1, ..., an. Then A1, ..., An ⇒ D′.(⇒
is here a sign for entailment.)

Lemma is proved by the use of recurrent mathematical induction.

Semantics for others calculi are quasi-matrix (proper). For the
proof of metatheorem of semantic completeness of these calculi the
notion of alternative interpretation is used. We have the following
definition of alternative interpretation for Sa+-system.

Alternative interpretation is a function || || satisfying the follow-
ing:

If P is — propositional variable then ||P || ∈ {tn, tc, f i, f c}.
If ||A|| and ||B|| are defined, then ||¬A|| = tn ⇔ ||A|| = f i;

||¬A|| = tc ⇔ ||A|| = f c; ||¬A|| = f i ⇔ ||A|| = tn; ||¬A|| = f c ⇔
||A|| = tc;

||A ⊃ B|| = f c ⇔ (||A|| = tn and ||B|| = f c) or (||A|| = tc and
||B|| = f i);

||A ⊃ B|| = f i ⇔ ||A|| = tn and ||B|| = f i;
if either (||A|| = tn and ||B|| = tc) or (||A|| = f c and ||B|| = f i),

then ||A ⊃ B|| = tc;
if ||A|| = f i or ||B|| = tn, then ||A ⊃ B|| = tn;
if either ||A|| = ||B|| = tc or (||A|| = f c and ||B|| = tc), or

||A|| = ||B|| = f c), then ||A ⊃ B|| ∈ {tn, tc};
||A|| = tn ⇒ ||2A|| ∈ {tn, tc}; if either ||A|| = tc or ||A|| = f c, or

||A|| = f i, then ||2A|| ∈ {f c, f i};
||A|| = f i ⇒ ||♢A|| ∈ {f c, f i}; if either ||A|| = tn or ||A|| = tc, or

||A|| = f c, then ||♢A|| ∈ {tn, tc}.
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Sr — three-valued quasi-matrix logic.
(Symbols of formalised language are the same.) n, c, i — values

of Sr-system — which are interpreted respectively as ‘necessary’,
‘contingently’, ‘impossibly’. State of affairs is necessary if and only
if (iff) it is distinctly determined by certain circumstances; state of
affairs is contingent, iff neither its existence nor its absence is not
strictly determined by some circumstances; state of affairs is impos-
sible iff its absence is strictly determined by some circumstances.
Actually, here and above the evaluations of state of affairs concern
(to) propositions. (To my regret, I couldn’t find proper terms for
evaluation of propositions.)
Sr-logic is based on the following generalizations of principles of

classic logic.

Classical logic principles Principles of quasi-matrix logic
Sr

(1) the principle of bivalency the principle of three-valency (propo-
sitions take values from the domain
{n, c, i})

(2) the principle of consistency consistency: can not have more than
one value from {n, c, i}

(3) the principle of excluded middle the principle of excluded fourth
(4) the principle of identity Identity (in a complex proposition, a

system of propositions, an argument
one and the same proposition has one
and the same value from the domain
{n, c, i})

(5) the matrix principle the quasi-matrix principle (logical
terms are interpreted as quasi-
functions)

Definitions of logical terms:

A ¬A 2A ♢A
n i n n

c c i n

i n i i

⊃ n c i

n n c i

c n n|c c

i n n n

n|c is interpreted as ‘either n or c’. n is a designated value.
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Corresponding calculus includes all schemes of axioms of classi-
cal propositional calculus (note: in these schemes of axioms meta-
symbols A, B, C denote modalized formulas; the modalized formula
definition: if A is a formula of classical propositional calculus, then
2A and ♢A are modalized formulas; if B and C are modalized
formulas, then 2B, ♢B, ¬B, (B&C), (B ∨C), (B ⊃ C) are modal-
ized formulas; nothing else is a modalized formula.), modus ponens,
Godel’s rule, all schemes of axioms of Sc+-calculus, and besides the
following schemes: 2A ⊃ ♢A; ¬A ⊃ ¬2A; ¬♢A ⊃ ¬A; A ⊃ ♢A.

Alternative interpretation is a function || || for which the following
helds:

If P is propositional variable then ||P || ∈ {n, c, i}.
If ||A|| and ||B|| are defined, then ||¬A|| = n⇔ ||A|| = i; ||¬A|| =

c⇔ ||A|| = c; ||¬A|| = i⇔ ||A|| = n;
if either ||A|| = i or ||B|| = n, then ||A ⊃ B|| = n;
if ||A|| = ||B|| = c, then ||A ⊃ B|| ∈ {n, c};
if either {||A|| = c and ||B|| = i} or {||A|| = n and ||B|| = c},

then ||A ⊃ B|| = c;
||A|| = n and ||B|| = i, iff ||A ⊃ B|| = i;
||2A|| = n iff ||A|| = n; ||2A|| = i, iff {either ||A|| = c or

||A|| = i};
||♢A|| = i, iff ||A|| = i; ||♢A|| = n, iff {either ||A|| = n or

||A|| = c}.
The formalisation and the proof of the meta-theorem of semantic

completeness are the same as they were stated above.

3.4 Some peculiar properties of this logical system

First of all, it allows the use of the rule A⇒ 2A.
Besides, all derivable rule of inference of a classical propositional

calculus are applicable to modalized formulas only. Some (at least
some) direct rules of inference of a classical propositional calculus
are also applicable to non-modalized formulas, for example: A ∨
B,¬A⇒ B; but such indirect rules as rule of deduction:

Γ, A⇒ B

Γ ⇒ A ⊃ B
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and rule reductio ad absurdum

Γ, A⇒ B; Γ, A⇒ ¬B
Γ ⇒ ¬A

are not applicable to non-modalized formulas in derivation.
However, so-called weakened rule of reductio ad absurdum

Γ, A⇒ B; Γ, A⇒ ¬B
Γ ⇒ ♢¬A

is applicable to any formula in derivation.

4 Generalisation for quasimatrix logic
4.1 For logic Smin

Lemma 4. suppose that D is a formula, a1, ..., an are all different
variables, occurring in D, b1, ..., bn are truth-values of these vari-
ables; let Ai be ai or ¬ai, depending on whether bi is t or f ; let D′

be D or ¬D depending on whether D takes value t or f with truth-
values b1, ..., bn of the variables a1, ..., an in every alternative inter-
pretation, formed on the basis of some initial interpretation. Let D′

be D ∨ ¬D depending on whether D takes value t under the truth
assignment b1, ..., bn of the variables a1, ..., an in some alternative
interpretation formed on the basis of the initial interpretation, or it
takes value f under the truth assignment b1, ..., bn of the variables
a1, ..., an in some alternative interpretation formed on the basis of
the initial interpretation. Then A1, ..., An ⇒ D′.

If in some alternative interpretations formula D takes value t
and in some alternative interpretations it takes value f , then state-
ment ‘A1, ..., An ⇒ D ∨ ¬D’ may be substituted for the statement
‘A1, ..., An ⇒ D or A1, ..., An ⇒ ¬D’.

Proof. Lemma is proved by the use of recurrent mathematical
induction.

Basis of induction. D does not contain any logical terms. Proof
is obvious.

Assumption of induction. Proof holds for the formulas, containing
k (k ≤ n) occurrences of logical terms.
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Step of induction. Proof holds for the formulas containing n+ 1
occurrences of logical terms.

Case 1. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of negation. Formula D is ¬B.

Suppose formula D takes value t in all alternative interpretations,
formed on the basis of some initial interpretation. Then B takes
value f in all these alternative interpretations. Вy the assumption
of induction A1, ..., An ⇒ ¬B.

Suppose formulaD takes value f in all alternative interpretations,
formed on the basis of some initial interpretation. Then B takes
value t in all these alternative interpretations and by the assumption
of induction A1, ..., An ⇒ B. Then A1, ..., An ⇒ ¬¬B.

Under the third possibility A1, ..., An ⇒ ¬B ∨ ¬¬B.
Case 2. n+ 1-th occurrence of the logical terms is the occurrence

of the sign of necessity. Formulа D is 2B. Suppose B takes value f
in all alternative interpretations, formed on the basis of some initial
interpretation. Then by the assumption of induction A1, ..., An ⇒
¬B. Since ¬B ⊃ ¬2B is a theorem scheme (contraposition of axiom
scheme 2B ⊃ B), then A1, ..., An ⇒ ¬2B. If B takes value t in
all or some alternative interpretations, then formula 2B takes value
t in some alternative interpretations and in some other alternative
interpretations it takes value f . Then it is obvious that A1, ..., An ⇒
2B ∨ ¬2B.

Case 3. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of possibility. Formula D is ♢B. Suppose B takes value t
in all alternative interpretations, formed on the basis of some initial
interpretation. Вy the assumption of induction A1, ..., An ⇒ B.
Since B ⊃ ♢B is a theorem , A1, ..., An ⇒ ♢B. If B takes value f in
all or some alternative interpretations, then formula ♢B takes value
t in some alternative interpretations and it takes value f in some
other alternative interpretations. Then A1, ..., An ⇒ ♢B ∨ ¬♢B.

Case 4. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of implication. Formula D is B ⊃ C. If formula D un-
der above-mentioned truth-assignments of its variables takes value
t in some alternative interpretations and in some other alternative
interpretations it takes value f , then D′ is (B ⊃ C) ∨ ¬(B ⊃ C).
The entailment is obvious. If D takes value f , then D′ is ¬(B ⊃ C).
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It is possible if in every alternative interpretation formula B takes
value t and formula C takes value f . Вy the assumption of induc-
tion for every alternative interpretation holds that A1, ..., An ⇒ B
and A1, ..., An ⇒ ¬C. Consequently A1, ..., An ⇒ ¬(B ⊃ C). Let’s
take into consideration the last case, then D takes value t in every
alternative interpretation. It means that in every alternative inter-
pretation formula B takes value f or formula C takes value t. Hence
by the assumption of induction,

A1, ..., An ⇒ ¬B
or

A1, ..., An ⇒ C.

Analyzing all possible cases we conclude: A1, ..., An ⇒ (B ⊃ C).
2

4.2 For logic Sr
Lemma 5. Suppose that D is a formula, a1, ..., an are all differ-
ent variables, occurring in D, b1, ..., bn are values of these variables;
let Ai be 2ai , ♢ai&♢¬ai, ¬♢ai, depending on whether bi is n, c,
or i. Let D′ be 2D, ♢D&♢¬D or ¬♢D, depending on whether
D takes value n, c, or i with values b1, ..., bn variables a1, ..., an
in all alternative interpretations, formed on the basis of some ini-
tial interpretation; suppose D′ is 2D ∨ (♢D&♢¬D), 2D ∨ ¬♢D,
(♢D&♢¬D) ∨ ¬♢D, (2D ∨ (♢D&♢¬D)) ∨ ¬♢D, depending on
whether D takes, respectively, value n in some alternative interpre-
tations and in some other alternative interpretations it takes value
c; D takes value n in some alternative interpretations and in some
others it takes value i; D takes value c in some alternative interpre-
tations and in some others it takes value i; D takes value n in some
alternative interpretations or it takes value c in some other alter-
native interpretations, or it takes value i in some other alternative
interpretations. Then A1, ..., An ⇒ D′.

If D′ is 2Di ∨ (♢Di&♢¬Di), statement ‘A1, ..., An ⇒ D′’ may
be substituted for ‘A1, ..., An ⇒ 2Di or A1, ..., An ⇒ ♢Di&♢¬Di’.
The substitution of the same kind is possible in case of other val-
ues in different alternative interpretations. I.e, logical entailment
is based on alternative interpretations formed on the basis of some
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initial interpretation. For example, if formula takes value n in every
alternative interpretation, then the following holds for these alter-
native interpretations ‘A1, ..., An ⇒ 2Di or A1, ..., An ⇒ 2Di, or
A1, ..., An ⇒ 2Di’. Hence A1, ..., An ⇒ 2Di. Note that if there is
no any ambiguity the only alternative interpretation that is possible
is the initial one. In this case A1, ..., An ⇒ 2Di also holds. The
same holds for the other values.

Proof. Lemma is proved by recurrent mathematical induction on
the number of occurrences of logical terms in formula D.

Step of induction.
Case 1. Formula D is ¬B.
Suppose D takes value n in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value i in every alternative interpretation formed on the basis of this
initial interpretation. Вy the assumption of induction A1, ..., An ⇒
¬♢B. ¬♢B ⊃ 2¬B is a theorem scheme. (Using theorem scheme
¬2¬A ⊃ ♢A.) Then A1, ..., An ⇒ 2¬B.

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Then B takes value n
in every alternative interpretation. By the assumption of induction
A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ ¬♢¬B. Here we use the
axiom scheme ♢A ⊃ ¬2¬A and the rule of substitution of ¬¬A for
A and vice versa.

Suppose D takes value c in every alternative interpretation
formed on the basis of some initial interpretation. Тhen B also
takes value c in every alternative interpretation. Вy the assump-
tion of induction A1, ..., An ⇒ ♢B&♢¬B. Hence A1, ..., An ⇒
(♢¬B&♢¬¬B).

Suppose D takes value n in some alternative interpretations
and it takes value c in some others. By the assumption of in-
duction: A1, ..., An ⇒ ¬♢B or A1, ..., An ⇒ ♢B&♢¬B. Since
in the first case A1, ..., An ⇒ 2¬B and in the second one
A1, ..., An ⇒ (♢¬B&♢¬¬B), the following holds: A1, ..., An ⇒
2¬B ∨ (♢¬B&♢¬¬B).

For other possible cases proof is analogous.
Case 2. Formulа D is 2B.
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Suppose D takes value n in every alternative interpretation
formed on the basis of some initial interpretation. Тhen B also takes
value n in every alternative interpretation. By the assumption of in-
duction A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ 22B. (Using axiom
scheme 2A ⊃ 22A.)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Тhen B takes value i in
every alternative interpretation, or it takes value c in every alterna-
tive interpretation, or it takes value i in some alternative interpreta-
tion and it takes value c in some another alternative interpretation.
Under the last possibility by the assumption of induction

A1, ..., An ⇒ ¬♢B
or

A1, ..., An ⇒ (♢B&♢¬B).

In both cases A1, ..., An ⇒ ¬♢2B. (In the first case we use
axioms schemes ♢2A ⊃ 2A and 2A ⊃ ♢A, and in second one –
♢2A ⊃ 2A and ♢A ⊃ ¬2¬A.) Formula D can not take value c.

If formula D takes different truth values in different alternative
interpretations the proof may be concluded from the above-analyzed
cases.

Сase 3. Formula D is ♢B.
Suppose D takes value n in every alternative interpretation

formed on the basis of some initial interpretation. Тhen B takes
value n in every alternative interpretation, or it takes value c in ev-
ery alternative interpretation, or it takes value n in some alternative
interpretation and it takes value c in another alternative interpre-
tation. Under the last possibility by the assumption of induction

A1, ..., An ⇒ 2B
or

A1, ..., An ⇒ (♢B&♢¬B).

In both cases A1, ..., An ⇒ 2♢B. (In the first case we use axioms
schemes 2A ⊃ ♢A and ♢A ⊃ 2♢A, and in the second case we need
only the last axiom)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Тhen B takes value i in
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every alternative interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬♢B. Тhen A1, ..., An ⇒ ¬♢♢B. (Using the axiom
scheme ♢♢A ⊃ ♢A.) Formula D can not take value c. If formula D
takes different truth values in different alternative interpretations
the proof may be concluded from the above-analyzed cases.

Сase 4. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of implication. Formula D is B ⊃ C.

Suppose D takes value n in every alternative interpretation
formed on the basis of some initial interpretation. It is possible if
B takes value i in every alternative interpretation or C takes value
n in every alternative interpretation. Вy the assumption of induc-
tion for every alternative interpretation holds: A1, ..., An ⇒ ¬♢B
or A1, ..., An ⇒ 2C. Hence: A1, ..., An ⇒ 2(B ⊃ C). (Using axiom
schemes ¬♢A ⊃ 2(A ⊃ B); 2B ⊃ 2(A ⊃ B).)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. It is possible if B takes
value n in every alternative interpretation and C takes value i
in every alternative interpretation. Вy the assumption of induc-
tion for every alternative interpretation holds: A1, ..., An ⇒ 2B и
A1, ..., An ⇒ ¬♢C. Then A1, ..., An ⇒ ¬♢(B ⊃ C). (Using axiom
schemes ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).)

Suppose D takes value c in every alternative interpretation
formed on the basis of some initial interpretation. It is possible if B
takes value n and C takes value c in every alternative interpretation
or B takes value c and C takes value i in every alternative interpreta-
tion. In the first case A1, ..., An ⇒ 2B and A1, ..., An ⇒ ♢C&♢¬C.
Then we have to prove: A1, ..., An ⇒ ♢(B ⊃ C)&♢¬(B ⊃ C).
A1, ..., An ⇒ ♢(B ⊃ C) (using theorem scheme ♢B ⊃ ♢(A ⊃

B)). A1, ..., An ⇒ ♢¬(B ⊃ C) (using axiom schemes 2(A ⊃ B) ⊃
(2A ⊃ 2B) and ¬2¬A ⊃ ♢A, and rule of substitution of ¬¬A
for A and vice versa). In second case A1, ..., An ⇒ ♢B&♢¬B, and
A1, ..., An ⇒ ¬♢C. Тhen A1, ..., An ⇒ ♢(B ⊃ C) ( using axiom
scheme ♢¬B ⊃ ♢(A ⊃ B)). A1, ..., An ⇒ ♢¬(B ⊃ C) (using axiom
schemes 2(A ⊃ B) ⊃ (♢A ⊃ ♢B) and ¬2¬A ⊃ ♢A).

Suppose D takes value n in some alternative interpretation
formed on the basis of some initial interpretation and it takes value
c in another interpretation. Then we have to prove: A1, ..., An ⇒
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♢(B ⊃ C)&♢¬(B ⊃ C) or A1, ..., An ⇒ 2(B ⊃ C), or the
equivalent statement A1, ..., An ⇒ ♢(B ⊃ C). This case is pos-
sible if both B and C takes value c in all alternative interpreta-
tions. Вy the assumption of induction A1, ..., An ⇒ ♢B&♢¬B and
A1, ..., An ⇒ ♢C&♢¬C. Тhen A1, ..., An ⇒ ♢(B ⊃ C) (using axiom
scheme ♢B ⊃ ♢(A ⊃ B)).

The proof of other possibilities may be concluded from the above-
analyzed cases. 2

Metatheorem 1. If formula D is universally satisfiable then it is
provable.

Since for every truth-assignment of the variables holds
A1, ..., An ⇒ 2D, then the following holds:

1. A1, ..., An−1,2an ⇒ 2D,

2. A1, ..., An−1,¬♢an ⇒ 2D,

3. A1, ..., An−1,♢an&♢¬an ⇒ 2D.

Hence:

4. A1, ..., An−1,♢an,¬♢¬an ⇒ 2D, from 1,

5. A1, ..., An−1,¬♢an ⇒ 2D, from 2,

6. A1, ..., An−1,♢an,♢¬an ⇒ 2D, from 3.

7. A1, ..., An−1,♢an ⇒ 2D, from 4, 6,

8. A1, ..., An−1 ⇒ 2D, from 5, 7. etc.

As 2D entails D, D is provable.

Remark 1. Since formula can take one of the seven values (n, c, i,
n/c, n/i, c/i, n/c/i), the problem arises to construct 7-valued logic
with this values (lets sign them with 1, 2, 3, 4, 5, 6, 7) and compare
it with Sr.
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4.3 For logic Sa-

Lemma 6. Suppose D is a formula, a1, ..., an are all different vari-
ables, occurring inD, b1, ..., bn are truth-values of these variables; let
Ai be 2ai , ai&♢¬ai, ¬♢ai, ¬ai&♢ai, depending on whether bi is tn,
tc, f i or f c. Let D′ be 2D, D&♢¬D, ¬♢D or ¬D&♢D, depending
on whether D takes value tn, tc, f i or f c with values b1, ..., bn of the
variables a1, ..., an in all alternative interpretations formed on the
basis of some initial interpretation. Suppose D′ is 2D∨ (D&♢¬D),
2D∨¬♢D, (D&♢¬D)∨¬♢D, (2D∨(D&♢¬D))∨¬♢D and so on,
depending on whether D takes respectively value tn in some alter-
native interpretations and in some other alternative interpretations
it takes value tc; D takes value tn in some alternative interpreta-
tions and in some others it takes value f i; D takes value tc in some
alternative interpretations and in some others it takes value f i; D
takes value tn in some alternative interpretations or it takes value
tc in some other alternative interpretations, or it takes value f i in
some other alternative interpretations. Then A1, ..., An ⇒ D′.

Proof. Lemma is proved by recurrent mathematical induction on
the number of occurrence of logical terms in formula D.

Step of induction.
Case 1. Formula D is ¬B.
Suppose D takes value tn in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value f i in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬♢B. ¬♢B ⊃ 2¬B is a theorem scheme. (Using
theorem scheme ¬2¬A ⊃ ♢A.) Then A1, ..., An ⇒ 2¬B.

Suppose D takes value f i in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
value tn in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ ¬♢¬B. Here we use an axiom
scheme ♢A ⊃ ¬2¬A and rule of substitution of ¬¬A for A and vice
versa.

Suppose D takes value tc in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
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value f c in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬B&♢B. Hence A1, ..., An ⇒ ¬B&♢¬¬B.

Suppose D takes value f c in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
value tc too in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ B&♢¬B. Hence A1, ..., An ⇒ ¬¬B&♢¬B.

Suppose D takes value tn in some alternative interpretations
formed on the basis of some initial interpretation and it takes value
tc in some other interpretations. Вy the assumption of induction B
takes value f i in some alternative interpretations and it takes value
f c in other alternative interpretations. Then A1, ..., An ⇒ ¬♢B or
A1, ..., An ⇒ ¬B&♢B.

Since in the first case A1, ..., An ⇒ 2¬B and in the second
A1, ..., An ⇒ ¬B&♢¬¬B, the following holds: A1, ..., An ⇒ 2¬B ∨
(¬B&♢¬¬B).

For other possible cases proof is analogous.
Сase 2. Formula D is 2B.
Suppose D takes value tn or tc in every alternative interpreta-

tion formed on the basis of some initial interpretation. Then B
takes value tn in every alternative interpretation formed on the
basis of this initial interpretation. Вy the assumption of induc-
tion A1, ..., An ⇒ 2B. Then we have to prove: A1, ..., An ⇒
22B ∨ (2B&♢¬2B).

22B ∨ (2B&♢¬2B) ⇔ (22B ∨2B)&(22B ∨ ♢¬2B).
(22B∨2B)&(22B∨♢¬2B) ⇔ (22B∨2B)&(22B∨¬22B).
(22B ∨2B)&(22B ∨ ¬22B) ⇔ 2B.
Proof is completed. (⇔ is a sign for metalanguage equivalence).
Suppose D takes value f i or f c in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value tc or f i, or f c in every alternative interpretation formed on the
basis of this initial interpretation. We have to prove: A1, ..., An ⇒
¬♢2B ∨ (¬2B&♢2B). That is, we have to prove: A1, ..., An ⇒
¬2B.

In the first case by the assumption of induction A1, ..., An ⇒
B&♢¬B. The proof is evident.
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In the second case A1, ..., An ⇒ ¬♢B. ¬♢B ⇒ ¬2B. (Using
axiom schemes ¬2¬A ⊃ ♢A and 2A ⊃ A.) The statement is
proved.

In the third case A1, ..., An ⇒ ¬B&♢B. ¬B ⇒ ¬2B. The
statement is proved.

Сase 3. Formula D is ♢B.
Suppose D takes value tn or tc in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value tn or tc, or f c in every alternative interpretation formed on the
basis of this initial interpretation. We have to prove: A1, ..., An ⇒
2♢B ∨ (♢B ∧ ♢¬♢B). That is we have to prove: A1, ..., An ⇒ ♢B.
By the assumption of induction in every of three cases A1, ..., An ⇒
♢B.

Suppose D takes value f i or value f c in every alternative inter-
pretation formed on the basis of some initial interpretation. Then
B takes value f i in every alternative interpretation. We have to
prove: A1, ..., An ⇒ ¬♢♢B ∨ (¬♢B&♢♢B). By the assumption of
induction A1, ..., An ⇒ ¬♢B.

¬♢♢B ∨ (¬♢B&♢♢B) ⇔ ¬♢B
So A1, ..., An ⇒ ¬♢♢B ∨ (¬♢B&♢♢B) is proved.
Cases when formula D takes different values in different alterna-

tive interpretations may be reduced to the above-analyzed cases.
Сase 4. n+ 1-th occurrence of the logical terms is the occurrence

of the sign of implication. Formula D is B ⊃ C.
Suppose formula D takes value tn in every alternative interpreta-

tion. It is possible if either B takes value f i or C takes value tn. We
have to prove: A1, ..., An ⇒ 2(B ⊃ C). The statement may be eas-
ily proved by axiom schemes ¬♢A ⊃ 2(A ⊃ B), 2A ⊃ 2(A ⊃ B).

Suppose formula D takes value f i in every alternative interpre-
tation. Then B takes value tn and C takes value f i. We have to
prove: A1, ..., An ⇒ ¬♢(B ⊃ C). By the assumption of induc-
tion A1, ..., An ⇒ 2B and A1, ..., An ⇒ ¬♢C. Hence, A1, ..., An ⇒
¬♢(B ⊃ C). (Using axiom scheme ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).)

Suppose formula D takes value tc in every alternative interpreta-
tion. It is possible if both B and C takes value tc in every alternative
interpretation, or if B takes value tn and C takes value tc, or if B
takes value f c аnd C takes one of the three values: tc or f i or f c.
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We have to prove: A1, ..., An ⇒ (B ⊃ C)&♢¬(B ⊃ C). Under the
first condition A1, ..., An ⇒ B&♢¬B and A1, ..., An ⇒ C&♢¬C.
C ⇒ B ⊃ C. B ⇒ ♢B. ♢¬C ⇒ ¬2C. ♢B&¬2C ⇒ ♢¬(B ⊃ C).
(Using axiom schemes 2(A ⊃ B) ⊃ (♢A ⊃ 2B), ¬2¬A ⊃ ♢A.)

Under the second condition A1, ..., An ⇒ 2B and A1, ..., An ⇒
C&♢¬C. The proof is the same as in the previous case.

Under the third condition A1, ..., An ⇒ ¬B&♢B and
A1, ..., An ⇒ C&♢¬C or A1, ..., An ⇒ ¬♢C, or A1, ..., An ⇒
¬C&♢C. In any case A1, ..., An ⇒ ¬2C. The proof is completed.

2

Cases when formula D takes different values in different alterna-
tive interpretations may be reduced to the above-analyzed cases.

Metatheorem 2. If formula D is universally satisfiable then it is
provable.

(Since for every truth-assignment of the variables holds
A1, ..., An ⇒ 2D or A1, ..., An ⇒ (D&♢¬D) then the following
holds: A1, ..., An ⇒ D.)

1. A1, ..., An−1,2an ⇒ D,

2. A1, ..., An−1,¬♢an ⇒ D,

3. A1, ..., An−1, an&♢¬an ⇒ D,

4. A1, ..., An−1,¬an&♢an ⇒ D,
Hence

5. A1, ..., An−1,¬♢¬an ⇒ D, from 1,

6. A1, ..., An−1,¬an,¬♢an ⇒ D, from 2,

7. A1, ..., An−1, an,♢¬an ⇒ D, from 3,

8. A1, ..., An−1,¬an,♢an ⇒ D, from 4,
And then:

9. A1, ..., An−1, an ⇒ D, from 5, 7,

10. A1, ..., An−1,¬an ⇒ D, from 6, 8,

11. A1, ..., An−1 ⇒ D, from 9, 10, and so forth.



Generalization of Kalmar’s method for quasi-matrix logic 307

References
[1] Arkhiereev, N., Semantics of restricted sets of state-descriptions for

propositional logic, Bulletin of M.S.U., ser. ‘Philosophy’ 5:44–57, 1993
(in Russian).

[2] Arkhiereev, N., Abstracts of PHD, Thesis ‘Semantics of restricted
sets of state-descriptions’, Moscow, 2001 (in Russian).

[3] Curry, H. B., Foundations of Mathematical Logic, New York, San
Francisco, Toronto, London, 1963.

[4] Finn, V. K., On some characteristic Truth-tablaus of classical logic
and three valued  Lukasiewicz logic, in Investigations of logical systems,
Moscow, 1970, pp. 215–261 (in Russian).

[5] Ivlev, V. Y., ‘Necessity’, ‘Contingency’, ‘Possibility’ in biology and
their philosophical generalizations, Categories. Philosophical Journal
2:22–42, 1997 (in Russian).

[6] Ivlev, V. Y., Categories of necessity, contingency and possibility: their
sense and methodological functions in scientific cognition, Philosophy
and society 2, 1997 (in Russian).

[7] Ivlev, V. Y., and Y. V. Ivlev, Problems of construction of theory of
factual modalitis, Logical investigations 7:269–278, 2000 (in Russian).

[8] Ivlev, Y. V., Modal logic, Moscow, 1991, 224 p. (in Russian).
[9] Ivlev, Y. V., Contentive semantic of modal logic, Moscow, 1985, 170

p. (in Russian).
[10] Ivlev, Y. V., Quasi-functional logic, Scientific and technical informa-

tion. Ser. 2. Inform. processes and systems 6, 1992 (in Russian).
[11] Ivlev, Y. V., Truth-tables for modal logic, Bulletin of M.S.U., ser.

‘Philosophy’ 6, 1973 (in Russian).
[12] Ivlev, Y. V., Theory of Logical Modalities, Multi. Val. Logic, 5:91–102,

2000.
[13] Ivlev, Y. V., Outlines of the transition from the principles of tradi-

tional logic to the principles of non-classical logic, in Zwischen tradi-
tioneller und modernen logik. Nichnklassische Ansatze, Mentis, 2001,
pp. 297–310.

[14] Ivlev, Y. V., Quasi-matrix logic, Journal of Multi. Val. Logic and Soft
Computing 11(3-4):239–252, 2005.

[15] Karpenko, A. S., Many-valued logic, Moscow, 1997 (in Russian).
[16] Rescher, N., Many-valued logic, N.Y., 1969.



The concept of ‘Translation’: history
and theory
Ivan A. Karpenko

abstract. This article deals with the problem of translations.
It covers the history of translation in linguistics and analyzes pe-
culiarities and role of translation in logic. Moreover, the article
contains typical examples of embedding operations in terms of
different logical theories.

Keywords: logic, translation, embedding, embedment, operation,
language, calculi, theory

1 ‘Theory of translation’ in linguistics
The French poet and philosopher, humanist Etienne Dolet [18, p. 6]
in the XVI century was one of the first, who was trying to formu-
late a theory of translation in order to impart scientific justification
into this kind of activity. According to his point of view, the true
translation must meet the following criteria: perfect understand-
ing of the content of the original text and the author’s intentions;
mastery of languages, which are involved in the translation pro-
cess; inappropriateness of literal translation (in order to preserve
the authentic atmosphere of the original); preserving the style of the
original text, etc.

Later, another researcher T. Sevori [18, pp. 13–14] made a list of
requirements for the various authors translations. Outlining of some
of his statements will be enough to get his point of view on trans-
lation process: 1) the translation must convey the source words,
2) the translation must convey the source ideas, 3) the translation
must be read like the original, 4) the translation must be read like
a translation, etc. It is important to note that different scientists at
different periods of time sometimes demanded from translation to-
tally antithetic requirements. Hereafter, many translators, serious
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writers, and, finally, linguists made their own lists of requirements
for ‘translation’ and then provide them with the corresponding the-
oretical justification. Here we are not going to discuss such research,
carried out within this framework. Our main goal is to discuss the
‘linguistic theory of translation’, as so far scientific, well substanti-
ated discipline.

The foundations of scientific translation theory were developed
in the mid-twentieth century. That was the time of close attention
of linguisticians and linguists to this problem. Some philosophers
cast doubts on the possibility of translation in general — V. Hum-
boldt, in particular [11]. According to him, every translation is an
attempt to solve unsolvable task because of the dependence on the
personal characteristics of the individual translator and his attitude
to the text. Similar views served as the forerunners of the ‘theory
of untranslatability’.

The doubts on the possibility of the translation studies by the
methods of linguistics were dispelled when this phenomenon became
known as a special kind of verbal activity. This kind of activity was
admitted to be the one, in which the units of the target language
are selected depending on the specific language units of the source
text, but not as a result of individual translation creativity. Here,
apparently, there was a final demarcation of this area on the direct
field of translation activities and the theory of translation.

J. Vinai and J. Darbelnet’s attempt to subject different languages
to the comparative analysis contributed a lot to the development of
the linguistic theory of translation [29]. The analysis helps to de-
tect units from different languages, which can be used in translation
interchangeably. These words should a priori carry the same mean-
ings in their two language systems or should come up as equivalents
at the end of the translation.

Another linguist R. Jakobson [12] introduced an idea that the
theory of translation plays an important role in other sciences, par-
ticularly in different branches of linguistics. He offered to define
different types of translation: intralingual, interlingual and inter-
semiotic, in which one system of signs transforms into another. He
supposed every transformation which carries the original meaning
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to be an adequate translation. This idea of R. Jakobson is closely
correlated with the role of translation in logic.

G. Mounin in [21] paid special attention to the semantic struc-
tures of languages and claimed to square up to their differences.
They occur because semantic discrepancies impose certain trans-
lation restrictions, for instance, make it impossible to render the
original meaning fully.

It is also important to mention the merits of Russian scientists
I.I. Revsin and V.U. Rosentsveig to the linguistic translation theory.
In [26] they pointed out that the theory of translation should be not
a prescriptive (i.e. the one that a priori formulates translation de-
mands), but a descriptive — the one to describe the objective reality.
It is the description that produces standards and regulatory guide-
lines of translation. They also highlighted the use of the deductive
approach, which extends the use of general linguistic concepts in
translation process.

I.I. Revsin and V.U. Rosentsveig defined two methods to trans-
form source text to translated one: a) the direct substitution of the
units of the source language into the units of another, b) interpreta-
tion. Last was meant to comprehend the reality at first, described
by the original language, and then to descript it by the means of
the target language.

J. Catford in [3] presumed that the central problem of the trans-
lation theory is to render the meaning of original and translated
statements adequately close. In such a way he raised the question
of texts equivalence in translation. He supposed that the original
language meaning is replaced with the meaning of the target one,
therefore the equivalence depends on the accuracy of such replace-
ment.

V.N. Komissarov created an integrated theoretical conception in
[17]. There he summarized different aspects of the linguistic analysis
of translation, classified the research datum, including some men-
tioned above. Special attention was eftsoons paid to the problem of
equivalence.

The issues stated above are just several fragments of the huge
linguistic mosaics of translation theory problematic field. On the
assumption of asserted, it is possible to point out two major infer-
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ences. These inferences will be the requirements basis for defining
the term ‘translation” and for comparing other definitions with the
worked out one later. First of all, any translation should keep the
meaning of both the original and target texts. In other words, the
problem of invariance should be taking into account while crossing
the boundaries of two languages. Secondly, the target text should
be theoretically equivalent to the original one. The logical sequence
and inter-originating of these two principles can be clearly observed.

2 ‘Translation’ in logic
The area of interest for this research includes particular use of trans-
lation method — more specifically, transfers between logical calculi.
Hereunder, the concept of translation would require clarification.
This concept stays in contrast to the linguistic requirements for
translation, which state saving of semantic units as one of the key
conditions. It is necessary to preserve the verity for compliance of
translation in logic. That means, logical truths of one language
should be translated into logical truths of another.

The consequence of the R. Yakobson’s requirement about saving
of semantic units is that 1) the true statement translation result is
a true statement. As it was already mentioned, the logical verity is
important in logic. Considering that, the adaptation in logic angle
of the requirement 1) formulated above is the claim that 1)′ the true
logic statement translation result is a true logic statement. Taking
into consideration this requirement, the definition of translation will
be:

Definition 1 (Df1). The translation of calculus C1 into the cal-
culus C2 meant to be such a mapping of φ set of all L1-formulas of
calculus C1 into the set of all L2-formulas of calculus C2, that for
every L1-formula A the following condition holds:

if ⊢C1 A, then ⊢C2 φ(A).

However, any calculus will be transferred to any other calculus
with this understanding of translation. That leads to questioning
the retention of the source statement meaning — plus the fact, that
logically true statements are not always equivalent in logical calculi.
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Besides, it remains unknown, how the translation result corresponds
to the original. According to J. Catford, it is essential to estimate
semantic affinity between the statements in the original and in the
translation in order to verify their equivalence. In addition, this
definition does not take into consideration the content of the state-
ments. Therefore, it does not lead to source reconstitution by the
translation, that is, in principle, impossible as it was indicated by
G. Mounin.

Then let’s introduce another requirement:

Definition 2 (Df2). The translation of calculus C1 into the cal-
culus C2 meant to be such a mapping of φ set of all L1-formulas of
calculus C1 into the set of all L2-formulas of calculus C2, that for
every L1-formula A the following condition holds:

⊢C1 A, if and only if ⊢C2 φ(A).

In contrast to the first definition, there is an opportunity to check
the logical validity of the first calculus statement, considering the
assumption of the logical validity of its image in the second calculus
statement. Now it is possible to correlate the translation with the
original. But most of the former lacks last even in this definition.

To avoid them, let’s add to Df2 the following condition for avoid-
ing those lacks — φ is a recursive function. Then the new definition
will be Df3.

But there are a number of drawbacks even in such way. According
to R. Epstein [6, p. 291], for example, this definition does not guar-
antee the safety of the produced formulas structures. That means
the impossibility of full source content reproduction on free analogy
with Mounin’s remark. Then it is necessary to take into account
the structure of the formulas, that, in fact, is the requirement of
inductive definition? (let‘s name this definition Df4).

Is it enough to give a good definition of the translation? Appar-
ently, not. The question remains, whether the equivalence of the
original and the translation result observes?

It is necessary to work out more strict criteria for what is called
‘translation’. Below such definitions proposed directly by logics will
be considered.
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3 Definitions of embedding operations
Let’s analyze and compare the most important, in our opinion, def-
initions, suggested by V.A. Smirnov, R. Wojcicki and R. Epstein.

In [28] V.A. Smirnov defined the translations between theories.
However, his definition will also be relevant for the calculi with the
appropriate modification.

Suppose, that T1 and T2 are theories, formulated accordingly in
languages L1 and L2 with the corresponding logics. Suppose, that
φ is a recursive function that matches formulas in language L1 with
formulas in language L2 for any L1-formula A. The function meant
to be called translation of theory T1 to T2, if the following condition
holds: if A ∈ Т1, then φ(А) ∈ Т2. If the following additional
condition holds: if φ(А) ∈ Т2, then A ∈ Т1, then the recursive
function φ would be called an embedding operation of the theory
T1 to the theory T2. Theory Т1 could be embedded to the theory
T2, if and only if there is a recursive function, which embeds T1 to
T2. Of course, if there is a translation — there is not necessarily the
case of embedment. Later we will talk more about the ‘embedment’
since we are deeply interested in cases that satisfy both Smirnov’s
conditions at once.

V. A. Smirnov’s definition actually coincides with the above Df3.
R. Wòjcicki offered a different definition [30].
Mapping φ from sentential language L1 to sentential language

L2, which have the same set of propositional variables, is called the
embedment if and only if the following two conditions hold:

1. There is a formula ϕ(p0) from one propositional variable p0 in
L2, such that for every propositional variable p, φ(p) = ϕ(p0).

2. For each logical connective ri in L1 there is a formula ϕi in
L2, such that for all α1, . . . , αk in L1, k is the arity ri,

φ(ri(α1, . . . , αk)) = ϕi(p1/φ(α1), . . . , pk/φ(αk)).

Then, the definition of embedment is stated for propositional cal-
culi and theories.

Suppose that C1 = (L1, C1), C2 = (L2, C2) are some proposi-
tional calculi, and T1 = (L1, T1), T2 = (L2, X2) are some theories,
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then φ is the embedding operation from L1 to L2, if for every T ⊆ L1

and for every α ∈ L1 the following holds:

α ∈ С1(T ) if and only if φ(α) ∈ С2(φ(T ))(φ(T1) = T2).

Epstein offered a similar definition (ref. [9, pp. 290–291]), but
with some differences, which will be defined in detail below.

At first, he formulated the definition of a mapping from one logic
to another. This helps to preserve the relation of deductivity.

Mapping of the propositional logic L to the propositional logic
M , which preserves the relation of deductivity, is a mapping φ from
language LL to language LM (LL и LM are the languages of logics
L and M , respectively), such that for every formula A the following
condition holds:

⊢L A if and only if ⊢M φ(A).

Mapping is a translation, if for any G and А the following condi-
tion holds:

G ⊢L A if and only if φ(G) ⊢M φ(A), where G is the set of
formulas, and φ(G) = {φ(A) : A ∈ G}.

According to Epstein, such definition of embedment does not
cause the preservation of target language structure. This appears
to be valid, especially while discussing such examples, as Glivenko’s
translation of classical propositional logic into the intuitionistic logic
[9], which matches the above specified definition.

Epstein then introduced the concept of grammatical mapping:
Mapping φ of propositional language L1⊃¬ to any propositional

language L2 is called grammatical, if there are schemes λ, φ, ψ in
language L2, such that

p∗ = λ(p),
(¬A)∗ = φ(A∗),

(A ⊃ B)∗ = ψ(A∗, B∗),

whereas it is implied, that in these languages, the set of proposi-
tional variables is the same.



The concept of ‘Translation’: history and theory 315

Grammatical mapping is called homophonic if each connective
maps into itself. Grammatical embedment is a grammatical map-
ping, which comes out as an embedment.

R. Wòjcicki and R. Epstein’s definitions meet the one, which was
marked above as Df4.

4 Comparison of definitions

As is clear from aforementioned definitions, all of them have spe-
cific differences. V.A. Smirnov provides the broadest definition.
Glivenko‘s contribution resulted in translation of the classical propo-
sitional logic into the intuitionistic one. His translation meets
the definition of V. A. Smirnov, but falls outside the scope of R.
Wòjcicki and R. Epstein’s meaning of embedment.

Let us denote the differences in the definitions of Wòjcicki and
Epstein. There is a need to reformulate them in a similar style and
then compare.

Suppose the languages L′ and L′′ are given with one and the same
set of propositional variables, ⊃ and ¬ are the logical connectives
of L′ language, φ is the embedding operation from L′ language to
L′′, and A, B, C are some formulas of L′′ language.

Then the definition of Wòjcicki can be represented in the
following form:

• φ(p) = [p0/p]A, where [p0/p]A is the result of substitution
p instead of p0 into the formula A, which does not contain
occurrences of propositional variables, other than p0,

• φ(A ⊃ B) = [p1/φ(A), p2/φ(B)]B , where [p1/φ(A),
p2/φ(B)]B is the result of substitution φ(A) instead of p1
and φ(B) instead of p2 into the formula B,

• φ(¬A) = [p1/φ(A)]C, where [p1/φ(A)]C is the result
of substitution φ(A) instead of p1 into the formula C,
which does not contain occurrences of propositional variables,
other than p1.
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Epstein claims the following:

• φ(p) = [p0/p]A, where [p0/p]A is the result of the substitution
p instead of p0 into the formula A,

• φ(A ⊃ B) = [p1/φ(A), p2/φ(B)]B , where [p1/φ(A),
p2/φ(B)]B is the result of substitution φ(A) instead of p1
into the formula B ,

• φ(¬A) = [p1/φ(A)]C , where [p1/φ(A)]C is the result of
substitution φ(A) instead of p1 into the formula C , which
does not contain occurrences of propositional variables,
other than p1.

So the only varying cases are those, which hold the scope of the
embedding operation within propositional variables. Otherwise, R.
Wòjcicki and P. Epstein’s definitions stay matching.

But wherein does the complexity of embedment universal defini-
tion as a means for comparison and study of logical systems lie?
As referred to M.N. Rybakov and A.V. Chagrov in [4], it makes
sense to impose additional conditions (other than those, that were
put forward in the above definition), depending on the purpose of
a particular embedment, since it is often necessary to consider the
contents of the formulas. Otherwise, it is impossible to represent
adequately the formulas of one logic by the means of another logic.
In other words, in any embedment could be a list of requirements
for embedding operation.

The definition proposed by V.A. Smirnov would be the basis for
this research on different embedments of logical calculi. This was
motivated by simplicity and convenience of his definition. But our
embedding operations are also true within R. Wòjcicki and R. Ep-
stein’s theories, as it will become clear from their construction.

5 Reasons for embedding operations application in
logic. Philosophical and technical aspects

There are several reasons for the use of embedding operations in
logic. Here we can highlight technical and philosophical aspects.

As it was mentioned above, philosophically, embedment helps to
map one theory by another theory terms. The ability of comparing
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theories, formulated in different languages, becomes real with such
a phenomena, but stands in opposition to Firebrand’s idea of ‘in-
commensurability of theories’. According to this idea terms of one
theory cannot be expressed in terms of another one, as they them-
selves have different meanings. The embedding operations method
(if we can call it a method) removes the ‘problem of understanding’.
If we embed non-interpreted calculus into calculus, which has some
semantic meaning, the interpretation of first embedment formulas
becomes possible.

This raises the problem of negation in language: embedment of
containing negation language to a different positive language or its
own positive part we get an opportunity to speak about the first
language facts using only affirmative sentences, i.e. without saying
any ‘no’.

Speaking about the technical aspect we should note the problem
of decidability. Hereby, embedment of any calculus into a decid-
able one results into solving the problem of decidability of the first
calculus. The problem of languages relative insolvability is also ob-
served in terms of this problem. Embedment of calculi into their
own fragments and other calculi fragments decreases the number
of connectives, which are necessary to express formulas in differ-
ent languages. This is again very important for understanding of
the original calculi. V.M. Popov got one of the most eloquent and
unexpected results in this area, when he embedded classical proposi-
tional logic into its implicative fragment and implicative fragment of
intuitionistic propositional logic. We think that this idea demands
some serious deliberation, as it is not quite clear.

Besides, as it was shown in V.M. Popov’s research in [22], use of
the embedding operations helps to prove fragment severability in
calculi. The characteristics, mentioned here, can be added to much
broader list of application areas than discussed here.

6 The history of the concept of ‘embedment’.
Specific embedding operations in classical and
intuitionistic propositional logics

Besides the above mentioned Smirnov, Wòjcicki and Epstein, at-
tempts to determine and organize embedding operations were also
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taken by N.A. Shanin [27], who, according to V.A. Smirnov (ref.
[28, p. 120]), had first coined the term, D. Prawitz and P. Mamnos
[25], W.A. Carnielli and M.L. D’Ottaviano [2]. Based upon the last
work of Carnielli and D’Ottaviano, A.S. Karpenko concluded that
the application of embedding operations is a key tendency in the
development of contemporary logic [13].

The term of embedding operation was first time introduced, ac-
cording to V.A. Smirnov [28, p. 120], by A. N. Kolmogorov in 1925
[16] while embedding classical logic into intuitionistic. Particular
attention is worth paying to the problem of relation between classi-
cal and intuitionistic logics towards the embedding operations after
many leading scientists who made it a point.

For that let’s specify after [15] the calculi PC (classical proposi-
tional calculus) and Int (intuitionistic propositional calculus).

Language L∧∨⊃¬ of these calculi is the conventionally deter-
mined propositional language with a set of propositional variables
{p1, p2, p3, . . . }.

Calculi PC and Int are the calculi of Hilbert type with the con-
ventionally determined concept of proof. The set of deduction rules
for each of these calculi has the only rule: А,А ⊃ В/В. Therefore,
it is sufficient to define the set of its axioms in order to specify any
of these calculi.

Calculus PC. The set of all axioms of calculus PC is the set of
all formulas, each of which is stated in at least one of the following
types:

1. A ⊃ (B ⊃ A),

2. A ⊃ (B ⊃ C) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),

3. (A ∧B) ⊃ A,

4. (A ∧B) ⊃ B,

5. A ⊃ (B ⊃ (A ∧B)),

6. A ⊃ (A ∨B),

7. B ⊃ (A ∨B),
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8. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C)),

9. (A ⊃ B) ⊃ ((A ⊃ (¬B)) ⊃ (¬A)),

10. (¬(¬A)) ⊃ A.

Calculus Int. The set of all axioms of Int is the union of the set of
all formulas, each of which is a formula of at least one of the above
mentioned 1–8 types with the set of all formulas of the type:

9′ (¬A) ⊃ (A ⊃ B).

Glivenko in 1929 suggested embedding operation for classical and
intuitionistic logics, which lies within the language L — the con-
ventionally determined propositional language with a set of logical
connectives {∧,∨,⊃,¬}. This embedding operation associates each
L-formula A with L-formula ¬(¬A). Precisely, Glivenko proved the
following theorem, which let’s call T1 for convenience of reference.

Theorem 1 (T1). G ⊢PC A if and only if ¬(¬G) ⊢PC ¬(¬A).

V. Popov noted an interesting fact about Glivenko’s embedding
operation to fail for the predicative versions of intuitionistic and
classical logics.

In 1933 Gödel showed [10] that Int could be considered as the
extension of classical propositional logic, formulated in the language
L∧¬ within the meaning of the following theorem (let’s call it T2).

Theorem 2 (T2). For L∧¬-formula A it is true that ⊢PC∧¬ A if
and only if ⊢INT A.

Proof. The proof of this theorem right to left is obvious, because
the set of all Int theorems is included into the set of all PC theo-
rems. Let’s prove that if ⊢PC∧¬ A, then ⊢INT A.

The proof is carried out by induction on the structure of L∧¬-
formula A.

Now there are three options: 1) A is a propositional variable pi,
2) А is ¬В, 3) A is В1 ∧ В2.

Let’s consider 1). Here the following statement requires prove-
ment — if ⊢PC∧¬ pi, then ⊢INT pi. But none of propositional vari-
ables can be the theorem of PC calculi. Therefore, the theorem



320 Ivan A. Karpenko

would be true here, taking into consideration the characteristics of
the classical implication.

Let’s consider 2). Here the following statement requires prove-
ment — if ⊢PC∧¬ ¬B, then ⊢INT ¬B. But after Glivenko’s
result [9] that ⊢PC ¬A if and only if ⊢INT ¬A the previous state-
ment would be true.

Let’s consider 3). Here the following statement requires prove-
ment — if ⊢PC∧¬ В1∧В2, then ⊢INT В1∧В2. Taking into consider-
ation the characteristics of PC∧¬ it is true that a) if ⊢PC∧¬ В1∧В2,
then ⊢PC∧¬ В1 and ⊢PC∧¬ В2.

Using the inductive assumption, we have: b) if ⊢PC∧¬ B1, then
⊢INT B1 and ⊢PC∧¬ B2, then ⊢INT B2.

In Int the following formula is provable: с) В1 ⊃ (В2 ⊃ (В1∧В2)).
From a), b) and c) by the definition of Int proof, we obtain that
⊢INT В1 ∧ В2.

Thus, the theorem T2 is proved. 2

Now let’s introduce the result of  Lukasiewicz [19] on embedment
of PC into Int, when the binary identical relations of classical logic
were used for connectives ⊃ and ∨. This was initiated for repre-
senting the PC formulas, stated in the L∧∨⊃¬ language, into the
Int formulas. There has been constructed the following embedding
operation (here and below we will use the original symbols for em-
bedding operations):

• p∗ = p

• (A ∧B)∗ = A∗ ∧B∗

• (¬A)∗ = ¬(A∗)

• (A ∨B)∗ = ¬((¬A∗) ∧ (¬B∗))

• (A ⊃ B)∗ = ¬(A∗ ∧ (¬B∗)).

Theorem 3 (T3). ⊢PC A if and only if ⊢INT A
∗.

According to Epstein (ref. [6, p. 213]), neither the embedment in
the sense of T2, nor the embedment in the sense of T3 preserves the
relations of consequences. That happens because these theorems
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are false in the wording of G ⊢PC A if and only if G ⊢INT A. For
example, if we have ¬¬p ⊢PC p, then we also have ¬¬p ⊢INT p, and
hence we obtain by the theorem of deduction the false statement
⊢INT ¬¬p ⊃ p.

Proposed by Gentzen in 1936 [8], his embedment preserves the
relation of consequences. This statement consists of the language
L(¬,⊃,∧,∨) and the following embedding operation:

• p◦ = ¬¬p

• (A ∧B)◦ = A◦ ∧B◦

• (¬A)◦ = ¬(A◦)

• (A ∨B)◦ = ¬((¬A◦) ∧ (¬B◦))

• (A ⊃ B)◦ = A◦ ⊃ B◦,

Theorem 4 (T4). G ⊢PC A if and only if G◦ ⊢INT A
◦.

Here Gentzen managed to preserve the relation of consequences
while embedment process exactly because of non-standard mapping
of propositional variable (through double negation).

It also makes sense to specify here the aforementioned significant
result of V.M. Popov [23] in order to close the review of the history
of embedment of classical propositional logic into intuitionistic.

Classical propositional logic is axiomatized by calculus Cl⊃f . Its
axioms are those and only those L⊃f -formulas, each of which is
given as A ⊃ (B ⊃ A) or (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))
or ((A ⊃ f) ⊃ f) ⊃ A. The inference rule here: A,A ⊃ B/B.

Implicative fragment of intuitionistic propositional logic is ax-
iomatized by calculus Int⊃. Its axioms are those and only those
L⊃-formulas, each of which is given as A ⊃ (B ⊃ A) or (A ⊃ B) ⊃
((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)). The inference rule here: A,A ⊃ B/B.

The following operations are offered here: Sd (first introduced by
V.M. Popov in [24]), and T. Sd is meant to be a mapping of the
set of all L⊃f -formulas into the set of all L⊃-formulas, and T is a
mapping of the set of all L⊃-formulas into the set of all L⊃-formulas.
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• Sd(f) = p1,

• Sd(pi) = pi+1 (where i ∈ {1, 2, 3, . . . }),

• Sd(A ⊃ B) = Sd(A) ⊃ Sd(B).

• Т(p1) = p1,

• T (pi) = (pi ⊃ p1) ⊃ p1 (where i ∈ {1, 2, 3, . . . }),

• T (A ⊃ B) = T (A) ⊃ T (B).

Further the theorem provement takes place (T5 in our notation).

Theorem 5 (T5). ⊢Sd⊃f А if and only if ⊢Int⊃ Т(Sd(А)).

V.A. Bocharov, M. Zaharyashev, V.I. Markin, A.V. Chagrov,
L.L. Esakia should be also mentioned as the contemporary Rus-
sian scientists who gave their tribute to the study of logical systems
through embedding operations. V.A. Bocharov in [1] constructs em-
bedment of Boolean algebra into syllogistics, among other works on
this subject. V.I. Markin in his book [20, pp. 35–43] embedded the
systems of clear positive Aristotelian syllogistics into the predicate
calculus. A translation from the calculus RM to the positive frag-
ment of RM is constructed in [14]. Work of M. Zaharyashev and
A.V. Chagrov [5] is dedicated to embedment of intuitionistic logic
and its extensions to different normal modal logics. L.L. Esakia
in [7] considers new aspects of Gödel’s embedment of intuitionistic
logic into modal logic S4.
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[30] WÒjcicki, R., Theory of Logical Calculi: Basic Theory of Consequence
Operations, Dordrecht, Kluwer, 1988.



Syntax and semantics of simple
paracomplete logics1

Vladimir M. Popov, Vasiliy O. Shangin

abstract. For an arbitrary fixed element β in {1, 2, 3, . . . ω}
both a sequent calculus and a natural deduction calculus which
axiomatise simple paracomplete logic I2,β are built. Additionally,
a valuation semantic which is adequate to logic I2,β is constructed.
For an arbitrary fixed element γ in {1, 2, 3, . . . } a cortege semantic
which is adequate to logic I2,γ is described. A number of results
obtainable with the axiomatisations and semantics in question are
formulated.

Keywords: paracomplete logic, paraconsistent logic, cortege se-
mantics, valuation semantics, sequent calculus, natural deduction
calculus

We study logics I2,1, I2,2, I2,3, . . . I2,ω presented in [8]. These logics
are paracomplete counterparts of paraconsistent logics I1,1, I1,2, I1,3,
. . . I1,ω from [7]. In the paper, (a) simple paracomplete logics I2,1,
I2,2, I2,3, . . . I2,ω are defined (see [8]); these logics form (in the order
indicated above) a strictly decreasing (in terms of the set-theoretic
inclusion) sequence of logics, (b) for any j in {0, 1, 2, 3, . . . ω} both
a sequent calculus GI2,j (see [10]) and a natural deduction calcu-
lus NI2,j which axiomatise logic I2,j are formulated, (с) for any j
in {1, 2, 3, . . . ω}, we propose a valuation semantics for logic I2,j
(see [9]), (d) for any j in {1, 2, 3, . . . }, we propose a cortege seman-
tics for logic I2,j (see [9]). Below there are some results obtained
with the semantics and calculi in question.

The language L of each logic in the paper is a stan-
dard propositional language with the following alphabet: {&,∨,

1The paper is supported by Russian Foundation for Humanities, project
№10-03-00570a and project №13-03-00088a (both authors).
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⊃,¬, (, ), p1, p2, p3, . . . }. As it is expected, &, ∨, ⊃ are binary logi-
cal connectives in L, ¬ is a unary logical connective in L, brackets
(, ) are technical symbols in L and p1, p2, p3, . . . are propositional
variables in L. A definition of L-formula is as usual. Below, we say
‘formula’ instead of ‘L-formula’ only and adopt the convention on
omitting brackets as in [4]. A formula is said to be quasi-elemental
iff no logical connective in L other than ¬ occurs in it. A length
of a formula A is, traditionally, said to be the number of all occur-
rences of the logical connectives in L in A. We denote the rule of
modus ponens in L by MP and the rule of substitution of a formula
into a formula instead of a propositional variable in L by Sub. A
logic is said to be a non-empty set of formulas closed under MP and
Sub. A theory for logic L is said to be a set of formulas including
logic L and closed under MP. It is understood that the set of all
formulas is both a logic and a theory for any logic. The set of all
formulas is said to be a trivial theory. A complete theory for logic
L is said to be a theory T for logic L such that, for some formula A,
A ∈ T or ¬A ∈ T. A paracomplete theory for logic L is said to be a
theory T for logic L such that T is not a complete theory and any
complete theory for logic L, which includes T, is a trivial theory. A
paracomplete logic is said to be a logic L such that there exists a
paracomplete theory for logic L. Simple paracomplete logic is said
to be a paracomplete logic L such that for any paracomplete theory
T for logic L holds true: there exists a quasi-elemental formula A
such that neither A, nor ¬A belongs to T.

Let us agree that anywhere in the paper: α is an arbitrary element
in {0, 1, 2, 3, . . . ω}, β is an arbitrary element in {1, 2, 3, . . . ω}, γ is
an arbitrary element in {1, 2, 3, . . . }. We define calculus HI2,α. This
calculus is Hilbert-type calculi, the language of HI2,α is L. HI2,α has
MP as the only rule of inference. The notion of a derivation in HI2,α
(of a proof in HI2,α, in particular) is defined as usual; and for HI2,α,
both notion of a formula derivable from the set of formulas in this
calculus and a notion of a formula provable in this calculus are
defined as usual. Now we only need to define the set of axioms of
HI2,α.

A formula belongs to the set of axioms of calculus HI2,α iff it is
one of the following forms (hereafter, A, B, C denote formulas):
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(I) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)), (II) A ⊃ (A ∨ B), (III)
B ⊃ (A ∨ B), (IV) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)),
(V) (A&B) ⊃ A, (VI) (A&B) ⊃ B, (VII) (C ⊃ A) ⊃ ((C ⊃ B) ⊃
(C ⊃ (A&B))), (VIII) (A ⊃ (B ⊃ C)) ⊃ ((A&B) ⊃ C), (IX)
((A&B) ⊃ C) ⊃ (A ⊃ (B ⊃ C)), (X) ((A ⊃ B) ⊃ A) ⊃ A, (XI, α)
(E ⊃ ¬(B ⊃ B)) ⊃ ¬E, where E is formula which is not a quasi-
elemental formula of a length less than α, (XII) ¬A ⊃ (A ⊃ B).

Let us agree that, for any j in {0, 1, 2, 3, . . . ω}, I2,j is the set of
formulas provable in HI2,j .

The following theorems 1 and 2 are shown.

Theorem 1. Sets I2,0, I2,1, I2,2, I2,3, . . . I2,ω are logics, and, for
any k and l in {0, 1, 2, 3, . . . ω}, if k < l, then I2,l ⊆ I2,k.

Theorem 2. Logic I2,0 is the set of the classical tautologies in L.

Let us establish connections between logics I2,1, I2,2, I2,3, . . . I2,ω
and logic I2,0 (that is, the classical propositional logic in L).

Let φ be a mapping of the set of all formulas into itself satisfying
the following conditions: (1) φ(p) is not a quasi-elemental formula,
for any propositional variable p in L, (2) for any propositional vari-
able p in L, formulas p ⊃ φ(p) and φ(p) ⊃ p belong to logic I2,0,
(3) φ(B ◦C) = φ(B) ◦φ(C), for any formulas B, C and for any bi-
nary logical connective ◦ in L, (4) φ(¬B) = ¬φ(B), for any formula
B.

Following these conditions, theorem 3 is shown.

Theorem 3. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,0 iff φ(A) ∈ I2,j.

Let now ψ be such a mapping the set of all formulas into it-
self satisfying the following conditions: (1) ψ(p) = p, for any
propositional variable p in L, (2) ψ(B ◦ C) = ψ(B) ◦ ψ(C), for
any formulas B, C and for any binary logical connective ◦ in L,
(3) ψ(¬B) = ψ(B) ⊃ ¬(p1 ⊃ p1), for any formula B.

Following these conditions, theorem 4 is shown.

Theorem 4. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,0 iff ψ(A) ∈ I2,j.

Let us now show a method to build up a sequent calculus GI2,β
which axiomatises logic I2,β . Calculus GI2,β (see [10]) is a Gentzen-
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type sequent calculus. Sequents are of the form Γ → ∆ (hereafter,
Γ, ∆, Σ and Θ denote finite sequences of formulas). The set of basic
sequents of GI2,β is the set of all sequents of the form A→ A. The
only rules of GI2,β are the rules R1-R15, R16(β), R17 listed below.

Γ, A,B,∆ → Θ
R1,

Γ, B,A,∆ → Θ

Γ → ∆, A,B,Θ
R2,

Γ → ∆, B,A,Θ

A,A,Γ → Θ
R3,

A,Γ → Θ

Γ → Θ, A,A
R4,

Γ → Θ, A

Γ → Θ R5,
A,Γ → Θ

Γ → Θ R6,
Γ → Θ, A

Γ → ∆, A B,Σ → Θ
R7,

A ⊃ B,Γ,Σ → ∆,Θ

A,Γ → Θ, B
R8,

Γ → Θ, A ⊃ B

A,Γ → Θ
R9,

A&B,Γ → Θ

A,Γ → Θ
R10,

B&A,Γ → Θ

Γ → Θ, A Γ → Θ, B
R11,

Γ → Θ, A&B

Γ → Θ, A
R12,

Γ → Θ, A ∨B

Γ → Θ, A
R13,

Γ → Θ, B ∨A

A,Γ → Θ B,Γ → Θ
R14,

A ∨B,Γ → Θ

Γ → Θ, A
R15,¬A,Γ → Θ

E,Γ → Θ
R16(β),

Γ → Θ,¬E
where E is a formula which is not a quasi-elemental
formula of a length less than β,

Γ → ∆, A A,Σ → Θ
R17 (cut rule)

Γ,Σ → ∆,Θ

A derivation in calculus GI2,β is defined in a standard sequent
calculus fashion. The definition of a sequent provable in GI2,β is as
usual. The cut-elimination theorem is shown (by Gentzen’s method
presented in [3]) to be valid in GI2,β .

The following theorem 5 is shown.

Theorem 5. For any j in {1, 2, 3, . . . ω} and for any formula A:
A ∈ I2,j iff a sequent → A is provable in GI2,j.

Let us now show a method to build up a Fitch-style natural de-
duction calculus NI2,β which axiomatises logic I2,β .

The set of NI2,β-rules is as follows, where [A]C denotes a deriva-
tion of a formula C from a formula A.

C&C1
&el1

C

C&C1
&el2

C1

C,C1
&in

C&C1
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C ∨ C1, [C]C2 [C1]C2 ∨el
C2

C ∨in1
C ∨ C1

C1 ∨in2
C ∨ C1

C ⊃ C1, C ⊃el
C1

[C]C1 ⊃in
C ⊃ C1

[A ⊃ B]A ⊃p
A

[E] ¬(C ⊃ C) ¬in1(β),
¬E

where E is a formula which is not a quasi-
elemental formula of a length less than β.

¬C1, C1 ¬in2
C

A derivation in NI2,β is defined in a standard natural deduction
calculus fashion.

The following theorem 6 is shown.

Theorem 6. For any j in {1, 2, 3, . . . ω} and for any formula A :
A ∈ I2,j iff A is provable in NI2,j.

The proof search procedures which were proposed to the classical
and a variety of non-classical logics are applicable [1, 2].

Let us construct I2,β-valuation semantics for I2,β . By Qβ we de-
note the set of all quasi-elemental formulas of a length less or equal
to β. By I2,β-valuation we mean any mapping v set Qβ into the set
{0, 1} such that, for any quasi-elemental formula e of a length less
than β, if v(e) = 1, then v(¬e) = 0. Let Form denote the set of all
formulas and let Val2,β denote the set of all I2,β-valuations. It can
be shown there exists a unique mapping (denoted by ξ2,β ) satisfying
the following six conditions: (1) ξ2,β is a mapping a Cartesian prod-
uct Form × Val2,β into the set {1, 0}, (2) for any quasi-elemental
formula Y in Qβ and any I2,β-valuation v: ξ2,β(Y, v) = v(Y ), (3) for
any formulas A, B and any I2,β-valuation v: ξ2,β(A&B, v) = 1 iff
ξ2,β(A) = 1 and ξ2,β(B) = 1, (4) for any formulas A, B and any I2,β-
valuation v: ξ2,β(A∨B, v) = 1 iff ξ2,β(A) = 1 or ξ2,β(B) = 1, (5) for
any formulas A, B and any I2,β-valuation v: ξ2,β(A ⊃ B, v) = 1 iff
ξ2,β(A) = 0 or ξ2,β(B) = 1, (6) for any formula A which is not a
quasi-elemental formula of a length less than β, and for any I2,β-
valuation v: ξ2,β(¬A, v) = 1 iff ξ2,β(A, v) = 0. A formula A is said
to be I2,β-valid iff for any I2,β-valuation v, ξ2,β(A, v) = 1.

The following theorems 7 and 8 are shown.

Theorem 7. For any j in {1, 2, 3, . . . ω}, for any formula A, for
any set Γ of formulas: formula A is derivable from Γ in HI2,j iff for
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any I2,j-valuation v, if for any formula B in Γ, ξ2,j(B, v) = 1, then
ξ2,j(A, v) = 1.

Theorem 8. For any j in {1, 2, 3, . . . ω} and for any formula A,
A ∈ I2,j iff formula A is I2,j-valid.

It should be noted that the proposed I2,β-valuation semantics
is consistent to the requirements, which, in our point of view,
N.A. Vasiliev considers to be necessary in [11]: (1) no proposition
cannot be true and false at once, (2) in general case, a value of the
proposition that is a negation of a proposition P , is not determined
by the value of P .

Let us construct I2,γ-cortege semantics for I2,γ . By I2,γ-cortege
we mean an ordered γ + 1-tuplet of elements of the set {1, 0} such
that for any two neighboring members of this ordered γ + 1-tuplet,
at least one of them is 0. By a designated I2,γ-cortege we mean
I2,γ-cortege, where the first member is 1. By S2,γ we denote the set
of all I2,γ-corteges and by D2,γ we denote the set of all designated
I2,γ-corteges. By a normal I2,γ-cortege we mean I2,γ-cortege such
that any two neighboring members of this I2,γ-cortege are different.
By a single I2,γ-cortege we mean a normal I2,γ-cortege such that the
first member of it is 1. By a zero I2,γ-cortege we mean a normal
I2,γ-cortege such that the first member of it is 0.

It is clear that there exists a unique single I2,γ-cortege (denoted
by 1γ) and there exists a unique zero I2,γ-cortege (denoted by 0γ).
It can be shown that there exists a unique binary operation on S2,γ

(denoted by &2,γ) satisfying the following condition, for any X, Y in
S2,γ : if the first member of I2,γ-cortege X is 1 and the first member
of I2,γ-cortege Y is 1 then X&2,γY is 1γ ; otherwise, X&2,γY is 0γ .
It can be shown that there exists a unique binary operation on S2,γ

(denoted by ∨2,γ) satisfying the following condition, for any X and
Y in S2,γ : if the first member of I2,γ-cortege X is 1 or the first mem-
ber of I2,γ-cortege Y is 1 then X ∨2,γ Y is 1γ ; otherwise, X ∨2,γ Y
is 0γ . It can be shown that there exists a unique binary operation
on S2,γ (denoted by ⊃2,γ) satisfying the following condition, for any
X and Y in S2,γ : if the first member of I2,γ-cortege X is 0 or the
first member of I2,γ-cortege Y is 1 then X ⊃2,γ Y is 1γ ; otherwise,
X ⊃2,γ Y is 0γ . It can be shown that there exists a unique unary
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operation on S2,γ (denoted by ¬2,γ) satisfying the following con-
dition, for any I2,γ-cortege < x1, x2, . . . , xγ , xγ+1 >: if xγ+1 is 1
then ¬2,γ(< x1, x2, . . . , xγ , xγ+1 >) =< x2, . . . , xγ , xγ+1, 0 >
and if, if xγ+1 is 0, then ¬2,γ(< x1, x2, . . . , xγ , xγ+1 >) =
< x2, . . . , xγ , xγ+1, 1 >.

It is clear that < S2,γ ,D2,γ ,&2,γ ,∨2,γ ,⊃2,γ ,¬2,γ > is a logi-
cal matrix. This logical matrix (denoted by M2,γ) is said to be
I2,γ-matrix. M2,γ-valuation is said to be a mapping the set of
all propositional variables in L into S2,γ . The set of all M2,γ-
valuations is denoted by ValM2,γ . It can be shown that there ex-
ists a unique mapping (denoted by ξM2,γ) satisfying the following
conditions: (1) ξM2,γ is a mapping a Cartesian product Form x
ValM2,γ into the set S2,γ , (2) for any propositional variable p in
L and for any M2,γ-valuation w, ξM2,γ(p, w) = w(p), (3) for any
formulas A, B and for any M2,γ-valuation w, ξM2,γ(A&B,w) =
ξM2,γ(A,w)&2,γξM2,γ(B,w), (4) for any formulas A, B and for any
M2,γ-valuation w, ξM2,γ(A∨B,w) = ξM2,γ(A,w)∨2,γ ξM2,γ(B,w),
(5) for any formulas A, B and for any M2,γ-valuation w, ξM2,γ(A ⊃
B,w) = ξM2,γ(A,w) ⊃2,γ ξM2,γ(B,w), (6) for any formula A and
for any M2,γ-valuation w, ξM2,γ(¬A,w) = ¬2,γξM2,γ(A,w).

A formula A is said to be M2,γ-valid iff for any M2,γ-valuation w,
ξM2,γ(A,w) ∈ D2,γ .

The following theorems 9–11 are shown.

Theorem 9. For any j in {1, 2, 3, . . . }, for any formula A and for
any set Γ of formulas, formula A is derivable from Γ in HI2,j iff for
any M2,j-valuation w, if for any formula B from Γ, ξM2,j(B,w) ∈
D1,j then ξM2,j(A,w) ∈ D2,j.

Theorem 10. For any j in {1, 2, 3, . . . } and for any formula A,
A ∈ I2,j iff A is M2,j-valid.

Theorem 11. For any j in {1, 2, 3, . . . } and for any for-
mula A, A is M2,j-valid iff for any M2,j-valuation w,
ξM1,j(A,w) ∈ 1j.

The following theorems 12–19 are shown with the help of the
axiomatisations and semantics presented in the paper.
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Theorem 12. Logics I2,1, I2,2, I2,3, . . . I2,ω are simple paracomplete
logics.

Theorem 13. For any j and k in {1, 2, 3, . . . ω}, if j ̸= k then
I2,j ̸= I2,k.

Theorem 14. For any j in {1, 2, 3, . . . ω}, the positive fragment of
logic I2,j is equal to the positive fragment of logic I2,0.

Theorem 15. For any j in {1, 2, 3, . . . ω}, logic I2,j is decidable.

Theorem 16. For any j in {1, 2, 3, . . . }, logic I2,j is finitely-valued.

Theorem 17. Logic I2,ω is not finitely-valued.

Theorem 18. Logic I2,ω is equal to the intersection of logics I2,1,
I2,2, I2,3, . . .

Theorem 19. There is a continuum of logics which include I2,ω
and are included in I2,1.
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Cardinality of sets of closed functional
classes in weak 3-valued logics
Nikolay N. Prelovskiy

abstract. This paper proves that sets of closed functional
classes in 3-valued logics of Bochvar B3 and Hallden H3 contains
a continuum of different closed classes. It is also proven that both
of these logics contain a closed functional class which has no basis.

Keywords: Bochvar’s logic, Hallden’s logic, closed class, contin-
uum, cardinality

The research on cardinality of closed sets of functions in different
logics was started by E. Post. Thus, in [10] he proved that classical
logic only contains an enumerable set of different closed functional
classes. In 1959 Yu.I. Yanov and A.A. Muchnik [3] for the first time
showed that for every k ≥ 3 the k-valued Post’s logic Pk contains
a closed class which has no basis, and also contains a continual
set of different closed functional classes. M.F. Ratsa in [4] and [5]
showed that 3-valued logic of Heyting G3 contains a continual set
of different functional classes which have bases and a continual set
of classes which have no bases. Consequently, cardinalities of sets
of closed functional classes in different logics were researched in the
fundamental monograph [9] by D. Lau which deals with functional
algebras on finite sets.

A.S. Karpenko in [2] suggested a hypothesis that the set of closed
classes in Bochvar’s 3-valued logic B3 has the power of continuum
(truth-tables, defining basic functions of B3, will be formulated be-
low). As a justification of this hypothesis the author uses the condi-
tion (see [9, pp. 221–222]) for a class to contain just an enumerable
set of closed functional classes. A.S. Karpenko found out that logic
B3 does not satisfy this criterion. Nevertheless, this condition is a
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sufficient but not necessary one. Despite this argument, we cannot
conclude that the set of closed classes in B3 is continual.

Thus, the question on cardinality of the set of closed classes in
B3 remained open until now. It was also unknown, whether there
are functional classes in B3 (id est logics weaker, than B3 itself)
which contain continual sets of closed classes. In this paper the
author gives positive answers to these questions, and the answer to
the latter may also be viewed as an answer to the former of them.
In particular, as 3-valued Hallden’s logic H3 which was first studied
in [8] contains (as shown below) a continual set of different closed
classes, and as H3 is precomplete in B3 (this fact was proven by
V.K. Finn in [6]), the set of closed classes in B3 is continual.

Let us formulate a series of corresponding theorems and prove
them. For this purpose we shall use the slightly modified strategy
of Yu.I. Yanov and A.A. Muchnik.

Below we shall use basic functions of B3, defined by the following
truth-tables:

∩ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 1
2 0

∪ 1 1
2 0

1 1 1
2 1

1
2

1
2

1
2

1
2

0 1 1
2 0

∼ x

0 1
1
2

1
2

1 0

⊢ x

1 1

0 1
2

0 0

Theorem 1. The set of closed classes in B3 contains a class, which
has no basis.

Proof. Let us consider a sequence

S = f0, f1(x1), f2(x1, x2), ...

of functions fi(x1, ..., xi) of 3-valued Post logic P3 for i ∈ {0, 1, 2, ...},
satisfying the following conditions:

f0 ≡ 0;

fi(x1, ..., xi) =

{
1 if x1 = ... = xi = 1

2 ;
0 otherwise.

First of all, it is necessary to demonstrate that all the functions
fi(x1, ..., xi) are in B3. For this purpose it is sufficient to observe
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that the constant 0 is in B3 and may be expressed with, for example,
a formula ⊢ x∩ ∼⊢ x, and to express the rest of the functions
fi(x1, ..., xi) for every i > 0 with formulas:

∼⊢ x1∩ ∼⊢∼ x1 ∩ ...∩ ∼⊢ xi∩ ∼⊢∼ xi.

It is worth mentioning that the formula ∼⊢ x∩ ∼⊢∼ x represents
the Rosser–Turquette operator (J-operator) for the value 1

2 in B3
1.

So, the formula, expressing functions fi(x1, ..., xi), may be simplified
with the use of J-operator for the value 1

2 just as follows:

J 1
2
(x1) ∩ ... ∩ J 1

2
(xi).

Let M(S) be a class generated by the set of functions

{f0, f1(x1), f2(x1, x2), ...} ⊂ B3

by renaming variables without identifying them. This class is a
closed one. Let us also assume that M(S) has a basis. In this case,
there is a function f ′ that is obtained from function fn0(x1, ..., xn0)
through renaming variables for which the number n0 is minimal.
Then we have two cases:

1. The basis contains at least one more function f ′′ corresponding
to a function fn1(x1, ..., xn1) with n1 > n0. As fn0(x1, ..., xn0) may
be obtained from fn1(x1, ..., xn1) by identifying some of the variables
x1, ..., xn1 , the function f ′ may be expressed through f ′′, and this
contradicts to the definition of a basis.

2. The basis consists of a single function f ′. In this case no other
function fn for n > n0 can be expressed with f ′, as fn0(..., fn0 , ...) ≡
0, that leads to a contradiction again. 2

Theorem 2. There is a closed class with an enumerable basis in
B3.

Proof. To prove the theorem we shall consider a sequence

S = f2(x1, x2), f3(x1, x2, x3), ...

1RosserTurquette operators J1(x) =⊢ x, J 1
2
(x) =∼⊢ x∩ ∼⊢∼ x and

J0(x) =⊢∼ x for B3 were for the first time constructed by V.K. Finn in [7].
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of functions fi(x1, ..., xi) in 3-valued logic of Post P3 for i ∈
{2, 3, ...}, which satisfy the following conditions:

fi(x1, ..., xi) =


1 for x1 = ... = xj−1 = xj+1 = ... = xi = 1

2 ,
xj = 1 (1 ≤ j ≤ i);

0 otherwise.

Let us show that for every i these functions can be defined using
the basic functions of B3. With this purpose for every xj (1 ≤ j ≤ i)
and every i we shall consider the following formulae of B3:
Fj =⊢ xj ∩ (∼⊢ x1∩ ∼⊢∼ x1)∩ ...∩ (∼⊢ xj−1∩ ∼⊢∼ xj−1)∩ (∼⊢

xj+1∩ ∼⊢∼ xj+1) ∩ ... ∩ (∼⊢ xi∩ ∼⊢∼ xi).
Then let F be the internal disjunction of formulae Fj :

F =

i∪
1

Fj .

For every fixed i, formulae F define functions fi(x1, ..., xi) from
B3. Thus, for example, for i = 2, there are only two formulae Fj , id
est: F1 =⊢ x1 ∩ (∼⊢ x2∩ ∼⊢∼ x2) and F2 =⊢ x2 ∩ (∼⊢ x1∩ ∼⊢∼
x1). Then F = F1 ∪ F2 is expressed in the following manner:

(⊢ x1 ∩ (∼⊢ x2∩ ∼⊢∼ x2)) ∪ (⊢ x2 ∩ (∼⊢ x1∩ ∼⊢∼ x1)).
It is easy to verify that the function f2(x1, x2) ∈ B3 corresponding

to this formula returns the value 1 only on two tuples
⟨
1, 12

⟩
and⟨

1
2 , 1

⟩
of truth-values of variables x1 and x2. On all other tuples of

truth-values this function returns the value 0.
Thus, it is proven that for every i functions fi(x1, ..., xi) are in

B3.
Notation of formulae Fj and F may be simplified essentially if we

use J-operators for the truth-values 1 and 1
2 :

F ′
j = J1(xj) ∩ J 1

2
(x1) ∩ ... ∩ J 1

2
(xj−1) ∩ J 1

2
(xj+1) ∩ ... ∩ J 1

2
(xi).

Formula F , in this case, should be rewritten as the internal dis-
junction of all of the F ′

j :

F ′ =

i∪
1

F ′
j .



338 Nikolay N. Prelovskiy

Let M(S) be a closed class generated by the system of functions
{f2(x1, x2), f3(x1, x2, x3), ...}. We shall prove that this system is a
basis for M(S). It is sufficient to show that none of the functions
fm(x1, ..., xm) in this class can be expressed only with functions

{f2(x1, x2), f3(x1, x2, x3), ...}\{fm(x1, ..., xm)},

id est there is no representation:

fm(x1, ..., xm) = A[f2, ..., fm−1, fm+1, ...].

The formula A[f2, ..., fm−1, fm+1, ...] may be rewritten as:

A[f2, ..., fm−1, fm+1, ...] =

= fr(B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...]).

Using the first equation, we have:

fm(x1, ..., xm) =

= fr(B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...]).

Let us observe three possible cases:
1. At least two of the formulae among

B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...],

where r ≥ 2, do not coincide with symbols of variables. In this case,
for every m-tuple ⟨α1, ..., αm⟩ of truth-values of variables x1, ..., xm,
there are values 1 or 0 on corresponding argument places of the
function

fr(B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...]),

and this function, according to its definition, will be equivalent
to 0. That is a contradiction to the hypothesis that the function
fm(x1, ..., xm) may be expressed only with functions from

{f2(x1, x2), f3(x1, x2, x3), ...}\{fm(x1, ..., xm)},
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as no function in the set

{f2(x1, x2), f3(x1, x2, x3), ...}

is equivalent to 0.
2. Only one formula Bs among

B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...]

does not coincide with a symbol of variable. In this case, functions
corresponding to the rest of the formulae in this list are equivalent
to variables, and, as r ≥ 2, there is at least one formula Bp ≡ xq.
Let us consider an m-tuple ⟨α1, ..., αm⟩ of truth-values for variables
x1, ..., xm such that α1 = ... = αq−1 = αq+1 = ... = αm = 1

2 , and
αq = 1. On this ordered set of truth-values the function correspond-
ing to the formula Bs returns the value 1 or 0. Then on the m-tuple
⟨α1, ..., αm⟩ of truth-values for variables x1, ..., xm in the function

fr(B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...])

there are at least two argument places having truth-values which
do not coincide with 1

2 . Therefore, the right part of the equation
is equal to 0, and its left part must, according to definition of the
function fm(x1, ..., xm), be equal to 1 which is impossible.

3. All of the formulae among

B1[f2, ..., fm−1, fm+1, ...], ...,Br[f2, ..., fm−1, fm+1, ...]

are equivalent to symbols of variables. Then r > m, and there
are at least two entries of some variable xp in the formula ex-
pressing the function fm(x1, ..., xm). Considering the ordered m-
tuple ⟨α1, ..., αm⟩ of truth-values for variables x1, ..., xm such that
α1 = ... = αp−1 = αp+1 = ... = αm = 1

2 and αp = 1, we find out
again that the right part of the corresponding equation is equal to
0, and its left part is equal to 1 which is impossible.

All three cases lead to contradiction. Therefore, none of the func-
tions fm(x1, ..., xm) where m ≥ 2 can be represented as a formula
using only functions from

{f2(x1, x2), f3(x1, x2, x3), ...}\{fm(x1, ..., xm)}.

2
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This theorem allows to prove one of the main results of this paper,
that the set of closed classes in B3 has the cardinality of continuum.
The method for proving this result is the same with the strategy
used by Yu.I. Yanov and A.A Muchnik, to prove continuality of the
set of closed classes of functions in k-valued logics of Post Pk, for
all k ≥ 3.

Theorem 3. The class of functions of B3 contains a continuum of
different closed sets.

Proof. The upper bound for cardinality of the set of closed classes
in B3 coincides with cardinality of the set of all subsets of functions
in B3. As the set of functions in B3 is enumerably infinite, the set
of all subsets of this set has the cardinality of continuum.

To obtain the lower bound for cardinality of the set of closed
classes in B3 it is enough to consider the closed class M(S) con-
structed in the previous theorem. This class has a basis

{f2(x1, x2), f3(x1, x2, x3), ...}.

For every sequence S′ = s1, s2, ... of natural numbers, where 2 ≤
s1 < s2 < ..., let us consider a closed class M(S′) which has a
following set of functions as its basis:

{fs1(x1, ..., xs1), fs2(x1, ..., xs2), ...}.

It is obvious that

M(s1, s2, ...) ̸= M(s′1, s
′
2, ...),

if {s1, s2, ...} ̸= {s′1, s′2, ...}.
Consequently, the set of closed classes {M(S′)} in the set of closed

classes of B3 is continual. 2

A question arises, whether existence of a set

{f2(x1, x2), f3(x1, x2, x3), ...}

of functions defined in the previous manner in a functional class of
some 3-valued logic is necessary for this logic to contain a continuum
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of different closed classes. In general, the answer to this question
is ‘wrong’, as the above-formulated definition of the sequence S of
functions fi(x1, ..., xi) (i ≥ 2) is, in a certain sense, too strong,
because it requires possibility to use at least two J-operators, as we
can do in B3. But prerequisites of this definition may be weakened
essentially, so that we shall be able to prove one of the key theorems
of this paper about continuality of the set of closed classes in 3-
valued logic of Hallden H3.

The basic connectives of logicH3 are those in the set {∼, J 1
2
,∩,∪}

(for example, see [1, p. 57]).

Theorem 4. The set of closed functional classes in H3 contains a
class, which has no basis.

Proof. The sequence of functions

S = f0, f1(x1), f2(x1, x2), ...

is defined, using Rosser–Turquette operator J 1
2
(x), just as it was

done in Theorem 1. The rest of the proof is completely analogous
to the proof of Theorem 1. 2

Theorem 5. The class of functions in H3 contains a closed class,
which has an enumerable basis.

Proof. To prove the theorem, consider a sequence

S = f2(x1, x2), f3(x1, x2, x3), ...

of functions fi(x1, ..., xi) of 3-valued logic of Post P3, for i ∈
{2, 3, ...}, satisfying the following definition:

fi(x1, ..., xi) =


1 if x1 = ... = xj−1 = xj+1 = ... = xi = 1

2 ,
xj ∈ {1, 0} (1 ≤ j ≤ i);

0 otherwise.

Let us show that such functions may be defined using the basic
functions of H3, for each i. With this purpose we need to consider,
for every xj (1 ≤ j ≤ i) and every i, the following formulae of H3:
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Fj =∼ J 1
2
(xj) ∩ J 1

2
(x1) ∩ ... ∩ J 1

2
(xj−1) ∩ J 1

2
(xj+1) ∩ ... ∩ J 1

2
(xi).

Then, for every i, let F be the internal disjunction of all of the
formulae Fj :

F =
i∪
1

Fj .

The rest of the proof is analogous to the corresponding proof for
B3. 2

Theorem 6. There is a continuum of different closed functional
classes among functions of H3.

Proof. The proof of this theorem is identical with the correspond-
ing proof for B3. 2

It is worth mentioning that proofs of theorems 4–6 do not depend
on proofs of theorems 1–3, and, as H3 is precomplete in B3, the for-
mer of them may be viewed as independent proofs of corresponding
facts for B3.

After proving these theorems one can suppose that enjoying the
property of having a continuum of different closed functional classes
for various multi-valued logics is rather a normal phenomenon, than
a strange deviation, even for very weak multi-valued functional sys-
tems like H3. If this hypothesis is true, it may be viewed as a
new philosophical argument enforcing the thesis about qualitative
difference between multi-valued logics and classical bivalent logic.
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Natural three-valued logics and
classical logic
Natalya E. Tomova

abstract. In this paper implicative fragments of natural three-
valued logic are investigated. It is proved that some fragments are
equivalent by set of tautologies to implicative fragment of classical
logic. It is also shown that some natural three-valued logics verify
all tautologies of classical propositional logic.

Keywords: three-valued logis, natural implication, classical logic,
set of tautologies

1 Introduction
In paper [3] we investigated functional properties of three-valued lo-
gics. We define some conditions for ‘good’ implication and introduce
the idea of natural implication. So, as the result we have class of 30
implications1 with strictly specified natural properties. Extensions
of regular Kleene’s logics by natural implications were regarded.

According to our definition, natural three-valued logic is a logic
which includes natural implication as a connective.

On examination of 30 implicative extensions of weak Kleene’s
logic we received 7 basic logics2:  Lukasiewicz’s logic  L3, paracon-
sistent logic PCont, three-valued Bochvar’s logic B3, logic Z, T3,
T2 and T1. These logics form a lattice w.r.t. relation of functional
inclusion one logic to another.

Thus all these different three-valued systems, which appeared his-
toricaly on different motivations, are presented in the same language

1Truth-tables for natural implications are given in appendix.
2In [4] the functional eqiuvality of some implicative extensions of weak

Kleene’s logic was proved.
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with the following connectives: ∼, ∪ and →, where ∼, ∪ — con-
nectives of weak Kleene’s logic and → — natural implication. It
will allow us to compare these logics by set of tautologies. This
is the next point of our research. And in this paper we focus on
implicative fragments of natural three-valued logics.

2 Basic definitions
For the sake of clarity let us formulate some basic definitions.

Definition 1. The language L→ is a propositional language with
the following alphabet:

(1) p, q, r, . . . — propositional variables;

(2) → — binary logical connective;

(3) (, ) — technical symbols.

Definition 2. A definition of L→-formula is as usual:

(1) if A is propositional variable, then A is L→-formula;

(2) if A and B are L→-formulas, then A→ B is L→-formula;

(3) nothing else is L→-formula.

Definition 3. A logical matrix is a structure M =< V,F,D >,
where V is the set of truth-values, F is a set of functions on V called
basic functions, and D is a set of designated values, D is a subset
of V .

In this paper we will concider the logical matrices, where V =
{1, 1/2, 0} (let denote this set as V3), F consists of one function3 —
natural implication and D = {1} or D = {1, 1/2}.

Let’s recall definition of natural implication:

Definition 4. Implication is called natural if it is satisfied the
following criteria:

(1) C-extending, i.e. restrictions to the subset {0, 1} of V3 coin-
cide with the classical implication.

3When we consider the implicative fragments of natural three-valued logics.
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(2) If p → q ∈ D and p ∈ D, then q ∈ D, i.e. matrices for
implication need to be normal in the sense of  Lukasiewicz-
Tarski (they verify the modus ponens) [2, p. 134].

(3) Let p ≤ q, then p→ q ∈ D.

(4) p→ q ∈ V3, in other cases.

According to the definition of natural implication, there are 6
implications with D = {1} and 24 implications with D = {1, 1/2}
(appropriate truth-tables are given in appendix).

Definition 5. A valuation v of an arbitrary L→-formula A in
M (symbolically — |A|Mv ) is defined as usual: |p|Mv ∈ V3, if p is a
propositional variable; if A and B are L→-formulas, and → is basic
function in M, then |A→ B|Mv = |A|Mv → |B|Mv .4

Definition 6. An arbitrary L→-formula A is a tautologie in M iff
|A|Mv ∈ D for all valuation v in M.

3 Implicative fragments of natural three-valued
logics

Let consider the following matrices which corespond to the implica-
tive fragments of natural three-valued logics:

Mi
→ =< {1, 1/2, 0},→i, {1} >, i ∈ {1, 2, 3, 4, 5, 6},

Mi
→ =< {1, 1/2, 0},→i, {1, 1/2} >, i ∈ {7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28},

M1′
→ =< {1, 1/2, 0},→1, {1, 1/2} >,

M4′
→ =< {1, 1/2, 0},→4, {1, 1/2} >,

where matrix operation → is defined by appropriate truth-tables of
natural implications.

The following tautologies express the fundamental properties of
implication:

4For the clarity we use the same symbols both for language functor (propo-
sitional connective) and corresponding matrix function.
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K : p→ (q → p)

S : (p→ (q → r)) → ((p→ q) → (p→ r))

S′ : ((p→ q) → r) → ((p→ r) → (q → r))

P : ((p→ q) → p) → p

W : (p→ (p→ q)) → (p→ q)

C : (p→ (q → r)) → (q → (p→ r))

B : (q → r) → ((p→ q) → (p→ r))

And all implicative fragments of natural three-valed logics can be di-
vided into 10 classes according to the fact that implicative formulas
are tautologies in corresponding matrices:

K S S′ P W C B

M1′
→,M

i
→

+ + + + + + +(i ∈ {2, 5, 7, 8, 9, 10, 11, 12, 13

17, 18, 19, 20, 21, 22, 23, 24})

M1
→ + + + − + + +

M25
→ − + + − + + +

M3
→ + − + − − + +

M4
→, M4′

→ − + + − + − +

M27
→ − − + + + − −

M26
→ − + − − + − −

Mi
→ (i ∈ {15, 28}) − − − + + − −

M6
→ − − + − − − −

Mi
→ (i ∈ {14, 16}) − − − − − − −

So, let us consider the class matrices (corresponding to the first
line of table above), in which all given implicative formulas are
tautologies. This class consists of 18 matrices: 2 with D = {1} and
16 with D = {1, 1/2}. We can prove that all these matrices have the
same class of tautologies.

The reasoning is as follows. For example, consider the matrices:
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M7
→ =< {1, 1/2, 0},→7, {1, 1/2} >

M13
→ =< {1, 1/2, 0},→13, {1, 1/2} >

To show that these matrices have the same class of tautologies is
sufficent to prove the following theorem:

Theorem 1. For any L→-formula A, for any valuation v5:

|A|M
7
→

v = 0 iff |A|M
13
→

v = 0.

Proof may be given by induction on the structure of formula A.
Base case. Let A is a propositional variable, then it is obvious

that theorem is true for this case.
Induction step. Let us assume that theorem is true for the formu-

las, that contain less than n occurrence of propsitional connectives
(induction hypothesis). Then it is sufficent to prove, that theo-
rem is true for L→-formula A that contains precisely n occurrence
of propsitional connectives and graphically identical with formula
(B → C), i.e. A P (B → C).

Then, the proof of the theorem reduces to the proof of the fol-
lowing two propositions:

Proposition 1. ∀v∀A : if |A|M
7
→

v = 0, then |A|M
13
→

v = 0.

Proposition 2. ∀v∀A : if |A|M
13
→

v = 0, then |A|M
7
→

v = 0.

Let us present the proof of the Proposition 1.
Proof.

1. Let proposition 1 does not hold – assumption

2. ∃v∃A : |A|M
7
→

v = 0 and |A|M
13
→

v ̸= 0 – from 1

3. |B → C|M
7
→

v∗ = 0 and |B → C|M
13
→

v∗ ̸= 0 – from 2, elimina-

tion of quantifiers

4. |B → C|M
7
→

v∗ = 0 – from 3

5. |B|M
7
→

v∗ →7 |C|M
7
→

v∗ = 0 – from 4, def. 5

6. |B|M
7
→

v∗ ∈ {1, 1/2} and |C|M
7
→

v∗ = 0 – from 5, def. of →7

5As set V3 in M7
→ and in M13

→ is the same, then it is true that any valuation
in M7

→ is valuation in M13
→ and vice versa.
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7. |C|M
7
→

v∗ = 0 – from 6

8. |C|M
13
→

v∗ = 0 – from 7 by induc-

tion hypothesis

9. |B → C|M
13
→

v∗ ̸= 0 – from 3

10. |B|M
13
→

v∗ →13 |C|M
13
→

v∗ ̸= 0 – from 9

11. |B|M
13
→

v∗ = 0 – from 10 and 8,

def. of →13

12. |B|M
7
→

v∗ = 0 – from 11 by induc-

tion hypothesis

13. |B|M
7
→

v∗ ∈ {1, 1/2} – from 6

14. |B|M
7
→

v∗ ̸= 0 – from 13

15. Assumption 1. is incorrect – from 12 and 14

Proposition 1 is proved. 2

The proof of Proposition 2 is analogous to that of Proposition 1.
Thus theorem is proved. 2

By using similar methods of reasoning, it is not difficult to prove
that all 18 matrices (matrices of the first group) have the same set
of tautologies.

Let us investigate these 18 matrices in detail. It is well known
that the implicative fragment of classical logic can be characterized
deductively by the axioms K, S and P and the inference rule modus
ponens. From this point of view each of 18 implcative fragments
discussed above are the classical ones.

Let us consider natural three-valued logics, which implicative
fragments are equivalent to the implicative fragment of classical
logic. Corresponding logical matrices are the following:

Mi =< {1, 1/2, 0},∼,∪,→i, {1} >, i ∈ {1, 5},

Mi =< {1, 1/2, 0},∼,∪,→i, {1, 1/2} >,
i ∈ {2, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24},

where ∼, ∪ are defined like in weak Kleene’s logic, appropriate
truth-tables for →i are given in appendix.
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From functional point of view, these 18 systems correspond to 7
basic logic:

 L3 PCont B3 Z T1 T2 T3

Mi Mi Mi M17 M23 M24 M13

(i ∈ {1, 2, 8, 9, (i ∈ {18, 19, (i ∈ {5, 7})

10, 11, 12} 20, 21, 22}

7 basic logics form the following lattice w.r.t. relation of func-
tional inclusion one logic to another:

HHHHH

HHHHH

HHHHH

�����

�����

�����

r
�����

�����

�����

rHHHHH

HHHHH

HHHHH

r

HHHHH

HHHHH

HHHHH

r �����

�����

�����

r
r
r

 L3

PCont

B3

Z

T1

T2

T3

Let us show that a constant ⊥, which interpreted as false-
hood, is defined by the basic functions of the 10 matrices Mi, (i ∈
{1, 2, 5, 7, 8, 9, 10, 11, 12, 13}):

⊥ =∼ (p→i p), i ∈ {1, 2, 5, 7, 8, 9, 10, 11, 12, 13}.

But as follows from Wajsberg’s work [5, § 5] the addition of ⊥ → p
to the axiomatization of implicative fragment of classical logic gives
the full classical propositional logic. Thus 10 natural three-valued
logics, considered above, verify all tautologies of classical proposi-
tional logic.
Remark. In [1, p. 54] by using a computer program it was cal-
culated that there are 18 C-extending isomorphs of classical logic,
which verify modus ponens. So, it was found that in matirces corre-
sponding to these isomorphs one of the basic functions — implicative
function, is defined precisely by the same truth-tables of natural im-
plications, as in 18 natural three-valued logics mentioned above.
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Appendix. Truth-tables for natural implications
Let us give truth-tables for natural implications according to the
definition 4.

There are 6 implications with D = {1} and 24 implications with
D = {1, 1/2}. Note, that 2 paires of implications (→1 and →4 in the
proposed list below) are the same with D = {1} and D = {1, 1/2}.
D = {1}

→1 1 1/2 0

1 1 1/2 0
1/2 1 1 0
0 1 1 1

→2 1 1/2 0

1 1 1/2 0
1/2 1 1 1
0 1 1 1

→3 1 1/2 0

1 1 1/2 0
1/2 1 1 1/2

0 1 1 1

→4 1 1/2 0

1 1 0 0
1/2 1 1 0
0 1 1 1

→5 1 1/2 0

1 1 0 0
1/2 1 1 1
0 1 1 1

→6 1 1/2 0

1 1 0 0
1/2 1 1 1/2

0 1 1 1

D = {1, 1/2}

→7 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1 1

→8 1 1/2 0

1 1 1 0
1/2 1/2 1 0
0 1 1 1

→9 1 1/2 0

1 1 1 0
1/2 1/2 1 0
0 1 1/2 1
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→10 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1/2 1

→11 1 1/2 0

1 1 1/2 0
1/2 1/2 1 0
0 1 1 1

→12 1 1/2 0

1 1 1/2 0
1/2 1/2 1 0
0 1 1/2 1

→13 1 1/2 0

1 1 1/2 0
1/2 1 1 0
0 1 1/2 1

→14 1 1/2 0

1 1 0 0
1/2 1/2 1 0
0 1 1 1

→15 1 1/2 0

1 1 0 0
1/2 1 1 0
0 1 1/2 1

→16 1 1/2 0

1 1 0 0
1/2 1/2 1 0
0 1 1/2 1

→17 1 1/2 0

1 1 1 0
1/2 1 1/2 0
0 1 1 1

→18 1 1/2 0

1 1 1 0
1/2 1/2 1/2 0
0 1 1 1

→19 1 1/2 0

1 1 1 0
1/2 1 1/2 0
0 1 1/2 1

→20 1 1/2 0

1 1 1 0
1/2 1/2 1/2 0
0 1 1/2 1

→21 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1 1

→22 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 1 1 1

→23 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1/2 1

→24 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 1 1/2 1

→25 1 1/2 0

1 1 0 0
1/2 1 1/2 0
0 1 1 1

→26 1 1/2 0

1 1 0 0
1/2 1/2 1/2 0
0 1 1 1

→27 1 1/2 0

1 1 0 0
1/2 1 1/2 0
0 1 1/2 1

→28 1 1/2 0

1 1 0 0
1/2 1/2 1/2 0
0 1 1/2 1



Dialogue games for Dishkant’s
quantum modal logic
Vladimir L. Vasyukov1

abstract. Recently some elaborations were made concerning
the game theoretic semantic of  Lℵ0 and its extension. In the paper
this kind of semantics is developed for Dishkant’s quantum modal
logic  LQ which is also, in fact, the specific extension of  Lℵ0 . As
a starting point some game theoretic interpretation for the S L
system (extending both  Lukasiewicz logic  Lℵ0 and modal logic S5)
was exploited which has been proposed in 2006 by C. Fermüller
and R. Kosik. They, in turn, based on ideas already introduced
by Robin Giles in the 1970th to obtain a characterization of  Lℵ0

in terms of a Lorenzen style dialogue game combined with bets on
the results of binary experiments that may show dispersion.

Keywords:  Lukasiewicz’s logic, quantum loigic, dialogue games,
risk value

1 Introduction
In [4],[5] Robin Giles determines a logic for reasoning about physical
theories with dispersive experiments, meaning that repeated trials
of the same experiment may yield different results. Giles refers
to Lorenzen’s dialogue games for intuitionistic and classical logic
which systematically reduce arguments involving logically complex
assertions to arguments about atomic assertions.

In the issue Robin Giles formally defined a characterization of
infinite-valued Lukasiewicz logic in terms of a game that combines
dialogue rules for logical connectives with a scheme for betting on
results of dispersive experiments for evaluating atomic propositions.

1This study comprises research findings from the ‘Game-theoretical
foundations of pragmatics’ Project № 12-03-00528 carried out within The
Russian Foundation for Humanities Academic Fund Program.
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In this connection it is interesting that Herman Dishkant introduced
the modal extension of  Lukasiewicz’s infinite-valued logic which al-
lows to consider physical objects obeying to the rules of quantum
mechanics. This suggests to extend Giles’ method to Dishkant’s
logic for obtaining a characterization of that in terms of a dialogue
game too. The starting position and conditions in this case would
be as follows.

The main idea of H. Dishkant’s quantum modal logic ( LQ) [1] is
to include Mackey’s axioms for probabilities of quantum-mechanical
experiments [6] into the calculus of  Lukasiewicz’s infinite-valued
logic  Lℵ0 treating probabilities as truth-values. It is done not
directly and Mackey’s construction plays the role of a leading idea
only and resulting calculus is, in essence, a modal extension of
 Lukasiewicz logic where the last is enriched with the modal symbol
Q and four modal inference rules. The proposition QA expresses
such a property which can be observed and the presence of which
confirms A (‘A is confirmed by observation’).

The system  LQ contains four axioms and five rules of inference:

A1. A→ (B → A)

A2. (A→ B) → ((B → C) → (A→ C))

A3. ((A→ B) → B) → ((B → A) → A)

A4 (¬A→ ¬B) → (B → A)

B5.
A,A→ B

B

B6.
A

QA

B7.
A

¬Q¬A

B8.
A→ B

QA→ QB
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B9.
QA→ QB

(QB → QA) ↔ Q(QB ⊃ QA)

where A ⊃ B =def (¬A→ B) → B.

Semantically Dishkant’ system  LQ would be interpreted in the
following way. Usually a quantum object is described by a wave
function — by a unit vector of a complex Hilbert space HR. Let
Ψ be the set of all states of an object and besides these states we
consider also questions which are described by closed subspaces of
HR. Each such closed subspace p̂ determines a probability p(ψ) of
a positive answer to the question for any ψ ∈ Ψ. It is known that
this probability is equal to the squared modulus of the projection
of ψ on the subspace p̂, i.e. p(ψ) = |ψp̂|2.

Since p̂1 ̸= p̂2 ⇒ p1 ̸= p2 then we do not identify the question
with the corresponding function of HR but with the corresponding
function p : Ψ → [0, 1] for which there exists such p̂ that p(ψ) =
|ψp̂|2. Here [0, 1] is the closed segment of real numbers.

Let P be the set of all questions and for any p ∈ P let p̂ be the
corresponding subspace of HR. We call any function g : Ψ → [0, 1]
a generalized question and the set of all generalized questions will
be denoted by S. Obviously P ⊂ S. The set S is partially ordered
by the relation ≤ which is defined by

g ≤ h =def ∀ψ(q(ψ) ≤ h(ψ)) for any g, h ∈ S.

Now let us fix a function q : S → P satisfying the conditions

q1. g ≤ h⇒ q(g) ≤ q(h)

q2. q(p) = p

for any g, h ∈ S; p ∈ P. It is easy to see that there is at least such
a function q (e.g. one may take q(g) equal to that p for which p̂ is
the minimal subspace containing all ψ ∈ Ψ for which q(ψ) = 1).

Any function ID : W 0 → S is an interpretation of  LQ if it satisfy
the following conditions:

(I) ID(A→ B) = min(1, 1 − ID(A) + ID(B));
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(II) ID(¬A) = 1 − ID(A);

(III) ID(QA) = q(ID(A))

for any A,B ∈ W 0, where W 0 — a set of formulas of  LQ. Here 1 :
Ψ → {1}, where Ψ is a set of all states of an object. It is obvious that
ID may be defined on V (the infinite list of propositional variables)
arbitrarily and then extended uniquely on W 0, if q is fixed.

It seems that under such definition q plays for modal formules
the same role as Mackey’s function r which assigns to every triple
(A,α,E) (where A is an observable, α is a state and B is a Borel
subset of the real line) the number r(A,α,E), 0 ≤ r(A,α,E) ≤ 1.
So, we can treat W 0 as the set of observables, dom(S) as the set of
states and rng(S) as the set of all Borel subsets of the real line.

The following result holds for such an interpretation ID[1, p. 152]:

Theorem 1. For any A ∈ W 0, if ⊢ A then ID(A) = 1 for any
intepretation ID.

The weak completeness (semantic correctness) of  LQ was proved
just relative to the usual quantum propositional logic QPL (by em-
bedding QPL in  LQ). In view of this the problem was formulated
to construct semantic model like those of Kripke–Grzegorczyk but
for  LQ. In [7] such Kripke-type model for  Lℵ0 was yielded where an
accessibility relation is a ternary one and in [8, p. 67] such model
was extended to  LQ and the soundness and completeness of  LQ in
respect to those was proved.

According to [8] the ternary semantic of  LQ would be described
as follows.  L-frame is a quadruple ⟨O,K,R,∗ ⟩ where K is non-
empty set of observation points (states), O ∈ K, R is a ternary
accessibility relation on K and ∗ — a unary operation on K. The
following conditions for R and ∗ are satisfied:

(p1) ROaa

(p2) Raaa

(p3) R2abcd⇒ R2acbd

(p4) R2Oabc⇒ Rabc

(p5) Rabc⇒ Rac∗b∗
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(p6) a∗∗ = a

(p7) ROab⇒ ROba

(q1) Rabc⇒ Rbac

(d1) a < b =def ROab

(d2) R2abcd =def ∃x(Rabx&Rxcd&x ∈ K).

A valuation v is defined as a mapping assigning the truth value
from truth-value matrix for  LQ to propositional variables in every
point of K accounting the binary relation < from (d1). An inter-
pretation I is a natural extending of v on all formulas of  Lℵ0 under
condition that in any point of K the usual explication of connectives
takes place. The formal definition is as follows:

a) v is a valuation in  L-frame, i.e. v is a function v : V × K →
M[0,1] (where M[0,1] is a logical matrix for  Lℵ0 i.e. M[0,1] =
⟨[0, 1], ¬̄, 7→, {1}⟩ where ¬̄x = 1−x, x 7→ y = min(1, 1−x+y).
For any p ∈ V and any a, b ∈ K the following condition is
satisfied:

(1) a < b&v(p, a) ̸= 0 ⇒ (p, b) ̸= 0;

b) I is an interpretation associated with v, i.e. I is a function I :
W 0 ×K →M[0,1] satisfying for any p ∈ V , A,B ∈W 0, a ∈ K
the following conditions:

(i) I(p, a) = v(p, a);

(ii) I(¬A, a = 1 − x iff I(A, a∗) = x;

(iii) I(A→ B, a) = inf(1, 1− x+ y) iff for any b, c ∈ K, Rabc and

I(a, b) = x⇒ I(B, c) = y.

(iv) I(QA, a) = 1 iff for any b ∈ K(ROab ⇒ ∃c ∈ K(RObc ⇒
I(A, c) ̸= 0)).

The following theorem was proved [8, p. 67]:

Theorem 2. The system  LQ is complete in respect to the ternary
semantic that is for any A ∈W 0, if I(A) = 1 for any intepretation
I then ⊢ A.
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We have the following finite model property.
The junction of both semantics of  LQ can be achieved via putting

for any A ∈ W 0, dom(ID(A)) ⊆ K and rng(ID(A)) ⊆ {I(A, a) :
a ∈ K}, that is, treating the set Ψ as K.

Proposition 1. A formula F is valid in  LQ if and only if F is
valid in all those  L-frames ⟨O,K,R,∗ ⟩ where K is finite.

Proof. Let Π = ⟨O,K,R,∗ , I⟩ and let VF = {p1, ..., pn} be the
propositional variables occurring in F . Moreover, let BF be the set
of all bi-valued assignments IF : VF → {0, 1}. We write IaF if ∀p ∈
V : IF (p) = I(p, a) and define a new model Πf = ⟨O′,Kf , R

′,∗′ , I ′⟩
as follows:

• Kf = {IF ∈ BF : ∃a ∈ K : IF = IaF }

• I ′(p, IF ) = I(p, a),where IF = IaF

• R′ ⊆ Kf × Kf × Kf where we take R′I(a)I(b)I(c) as corre-
sponding to Rabc.

We can uniquely extend this to all subsets of Kf . It is straightfor-
ward to check that I(F,O) = I ′(IOF , F ). Thus we have shown that
in evaluating F it suffices to consider Πf with at most 2p(F ) where
p(F ) is the number of different propositional variables occurring
in F . 2

The analysis shows that we can replace the rule (iv) with the rule
(iv)′ without the loss of the generality :

(iv)′ I(QA, a) = inf{I(A, c) : for any b ∈ K(ROab ⇒ ∃c ∈
K(RObc⇒ I(A, c) ̸= 0}.

Turning back to the game theoretic semantic of  Lℵ0 it is worth
to denote that recently some its extensions were obtained (cf. [2],
[3]). It seems natural to adopt such an approach for producing this
kind of semantics for  LQ which is also, in fact, the specific extension
of  Lℵ0 .
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2 Dialogue Game for  LQ

In 2006 C. Ferműller and R. Kosik [2] proposed some game theoretic
interpretation for the S  L system that extends both Lukasiewicz logic
 Lℵ0 and modal logic S5. It was builded on ideas already introduced
by Robin Giles in the 1970th to obtain a characterization of  Lℵ0

in terms of a Lorenzen style dialogue game combined with bets on
the results of binary experiments that may show dispersion. In [2]
the experiments were replaced by random evaluations with respect
to a given probability distribution over permissible precisifications.
We will try to implement main ideas of interpretation proposed
(respectively modifying it) for obtaining game theoretical semantic
for the  LQ.

Assume that two players agree to pay 1e to the opponent player
for each assertion of an atomic statement, which is false in any
a ∈ K according to a randomly chosen set of observation points.
More formally, given a set of all observation points K the risk value
⟨x⟩K associated with a propositional variable x is defined as ⟨x⟩K =
ID(x). In fact, ⟨x⟩K corresponds to the probabilities of having to
pay 1e, when asserting x.

Let x1, x2, ..., y1, y2... denote atomic statements, i.e. propositional
variables. By [x1, ..., xm||y1, ..., yn] we denote an elementary state in
the game where the 1st — the first player — asserts each of the yi in
the multiset {y1, ..., yn} of atomic statements and the 2nd — the sec-
ond player — asserts each atomic statement xi ∈ {x1, ..., xm}. The
risk associated with a multiset X = {x1, ..., xm} of atomic formu-

las is defined as ⟨x1, ..., xm⟩K =
m∑
i=1

⟨xi⟩K . The risk ⟨⟩K associated

with the empty multiset is 0. ⟨V ⟩K respectively denotes the average
amount of payoffs that the 1st player expects to have to pay to the
2nd player according to the above arrangements if he/she asserted
the atomic formulas in V . The risk associated with an elementary
state [x1, ..., xm||y1, ..., yn] is calculated from the point of view of the
1st player and therefore the condition ⟨x1, ..., xm⟩K ≥ ⟨y1, ..., yn⟩K
(success condition) expresses that the 1st player does not expect any
loss (but possibly some gain) when betting on the truth of atomic
statements.

Now we accept the following dialogue rule for implication (cf. [2]):



360 Vladimir L. Vasyukov

(R→) If the 1st player asserts A→ B in point a then, whenever the
2nd player chooses to attack this statement by asserting A in
point b, the 1st has to assert also B in point c (the points are
choosing according to the condition (iii) above). (And vice
versa, i.e., for the roles of 1st and the 2nd player switched.)

A player may also choose not to attack the opponent’s assertions
of A→ B. The rule reflects the idea that the meaning of implication
entails the principle that an assertion of ‘If A then B’ obliges one to
assert also B if the opponent in a dialogue grants (i.e. asserts) A.

The dialogue rule for the negation involves a relativization to
specific observation points:

(R¬) If the 1st player asserts ¬A in point a then the 2nd player
chooses to attack this statement by asserting A in point a∗(the
points are choosing according to the condition (iii) above).
(And vice versa, i.e., for the roles of 1st and the 2nd player
switched.)

The dialogue rule for the Q-modality also involves a relativization
to specific observation points:

(RQ) If the 1st player asserts QA then the 1st also have to assert
that A holds (its interpretation differs from 0) at any point
that the 2nd may choose using the condition (iv) above (And
vice versa, i.e., for the roles of the 1st and the 2nd switched.)

Henceforth we will use Aa as shorthand for ‘A holds at the obser-
vation point a’ and speak of A as a formula indexed by a, accord-
ingly. Thus using rule (RQ) entails that we have to deal with in-
dexed formulas also in rule (R→). However, we don’t have to change
the rule itself, which will turn out to be adequate independently of
the kind of evaluation that we aim at in a particular context. We
only need to stipulate that in applying (R→) the observation point
index of A→ B (if there is any) is used for defininig the respective
indexes for the subformulas A and B. If, on the other hand, we
apply rule (RQ) to an already indexed formula (QA)a then the in-
dex a is overwritten by whatever index b is chosen by the opponent
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player; i.e., we have to continue with the assertion Ab and, of course,
we also have to account for indices of formulas in elementary states.
We augment the definition of risk by ⟨xa⟩K = 1 − I(x, a). In other
words, the probability of having to pay 1e for claiming that x holds
at the observation point a is 0 if x is true at a and 1 if x is false
at a.

We use [Aa1
1 , ..., A

am
m ||Bb1

1 , ..., B
bn
n ] to denote an arbitrary (not nec-

essarily elementary) state of the game, where {Aa1
1 , ..., A

am
m } is the

multiset of formulas that are currently asserted by the 2nd player,
and {Bb1

1 , ..., B
bn
n } is the multiset of formulas that are currently as-

serted by the 1st player. (We don’t care about the order in which
formulas are asserted.)

A move initiated by the1st player (1st-move) in state [Γ||∆] con-
sists in his/her picking of some non-atomic formula Aa from the
multiset Γ and proceeding as follows:

• If Aa = (A1 → A2)
a then the 1st may either attack by assert-

ing Ab
1 in order to force the 2nd to assert Ac

2 in accordance
with (R→), or admit Aa. In the first case the successor state
is [Γ′, Ac

2||∆, Ab
1], in the second case it is [Γ′||∆], where Γ′ =

Γ − {Aa}.

• If Aa = (¬A1)
a then the 1st chooses the point a∗ thus forcing

the 2nd to assert Aa∗
1 . The successor state is [Γ, Aa∗

1 ||∆′],
where ∆′ = ∆ − {Aa}.

• If Aa = QBa then the 1st chooses an arbitrary b ∈ K using
the condition (iv) above thus forcing the 2nd to assert Bc.
The successor state is [Γ′, Bc||∆], where Γ′ = Γ − {Aa}.

A move initiated by the 2nd player (2-move) is symmetric, i.e. with
the roles of the 1st and the 2nd players interchanged. A run of the
game consists in a sequence of states, each resulting from a move in
the immediately preceding state, and ending in an elementary state
[xa11 , ..., x

am
m ||yb11 , ..., ybnn ]. The 1st player succeeds in this run if this

final state fulfills the success condition, i.e., if

n∑
j=1

⟨ybjj ⟩K −
m∑
i=1

⟨xaii ⟩K ≤ 0.
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The term at the left hand side of inequality is an expected loss of
the 1st player at this state. In other words, the 1st succeeds if its
expected loss is 0 or even negative, i.e., in fact a gain. The other
connectives can be reduced to implication and negation.

3 Adequacy of the game
To show that the considered game indeed characterizes logic  LQ,
we have to analyse all possible runs of the game starting with some
arbitrarily complex assertion by the 1st player. A strategy for the
1st player will be a tree-like structure, where a branch represents
a possible run resulting from particular choices made by the 1st
player, taking into account all possible choices of the 2nd player
in (2- or 1-moves) that are compatible with the rules. We will
only have to look at strategies for the 2nd player and thus call a
strategy winning if the 1st player succeeds in all corresponding runs
(according to condition (2)).

Taking into account that by Theorem (2) we can assume that the
set K of observation points (states) is finite. The construction of
strategies can be viewed as systematic proof search in an analytic
tableau calculus with the following rules:

[Γ||∆, (A1 → A2)
a]

[Γ, Ab
1||∆, Ac

2] | [Γ||∆]
(→2nd)

[Γ, (A1 → A2)
a||∆]

[Γ, Ac
2||∆, Ab

1]
(→1

1st)
[Γ, (A1 → A2)

a||∆]

[Γ||∆]
(→2

1st)

[Γ||∆, (¬A)a]

[Γ, Aa∗ ||∆]
(¬2nd)

[Γ, (¬A)a||∆]

[Γ||∆, Aa∗ ]
(¬1st)

[Γ||∆, (QA)a]

[Γ||∆, Ac1 ]|...|[Γ||∆, Acn ]
(Q2nd)

[Γ, (QA)a||∆]

[Γ, Ac||∆]
(Q1st)

In all rules a can denote any index. In the rule (Q2nd) as well as
in the rule (Q1st) we assume that indexes c1, ..., cn and c are defined
by means of the condition (iv) above. Note that, in accordance with
the definition of a strategy for the 2nd player, his/her choices in the
moves induce branching, whereas for the 1st player choices a single
successor state that is compatible with the dialogue rules is chosen.
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Theorem 3. A formula F is valid in  LQ if and only if for every
set K of observation points (states) the 1st player have a winning
strategy for the game starting in game state [||F ].

Proof. Every run of the game is finite. For every final elemen-
tary state [xa11 , ..., x

am
m ||yb11 , ..., ybnn ] the success condition says that

we have to compute the risk
n∑

j=1
⟨ybjj ⟩K −

m∑
i=1

⟨xaii ⟩K , where ⟨ra⟩K =

I(r, a) if a /∈ dom(ID(r)) and ⟨ra⟩K = 1 − ID(r)(a) otherwise,
and check whether the resulting value (in the following denoted by
⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩) is ≤ 0 to determine whether the 1st player
‘win’ the game. To obtain the minimal final risk of the 1st player
(i.e., his/her minimal expected loss) that the 1st can enforce in any
given state S by playing according to an optimal strategy, we have
to take into account the supremum over all risks associated with the
successor states to S that you can enforce by a choice that you may
have in a (2nd- or 1st-)move S. On the other hand, for any of the
1st player choices the 1st can enforce the infimum of risks of cor-
responding successor states. In other words, we prove that we can
extend the definition of the 1st expected loss from elementary states
to arbitrary states such that the following conditions are satisfied:

(3.1) ⟨Γ, (A→ B)a||∆⟩K = inf{⟨Γ||∆⟩K , ⟨Γ, Bc||Ab,∆⟩K}

(3.2) ⟨Γ, (¬A)a||∆⟩K = sup{⟨Γ||∆, Aa∗⟩K}

for assertions by the 2nd player and, for assertions by the 1st player:

(3.3) ⟨Γ||(A→ B)a,∆⟩K = sup{⟨Γ, Ab||Bc,∆⟩K , ⟨Γ||∆⟩K}

(3.4) ⟨Γ||∆, (¬A)a⟩K = inf{⟨Γ, Aa∗ ||∆⟩K⟩}

Furthermore we have

(3.5) ⟨Γ||∆, (QA)a⟩K = sup
c∈K

ROab⇒RObc

{⟨Γ||∆, Ac⟩K}

(3.6) ⟨Γ, (QA)a||∆⟩K = inf
c∈K

ROab⇒RObc

{⟨Γ, Ac||∆⟩K}
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We have to check that ⟨.||.⟩K is well-defined; i.e., that conditions
above together with the definition of my expected loss (risk)
for elementary states indeed can be simultaneously fulfilled and
guarantee uniqueness. To this aim consider the following generalisa-
tion of the truth function for  LQ to multisets G of indexed formulas:

I(Γ)K =def
∑
A∈Γ

a/∈dom(ID(A))

I(A, a) +
∑
A∈Γ

a∈dom(ID(A))

ID(A)(a)

Note that

I({A})K = I(A)K =
∑

a/∈dom(ID(A))

I(A, a) +
∑

a∈dom(ID(A))

ID(A)(a) = 1 iff ⟨||A⟩K ≤ 0,

that is, A is valid in  LQ iff my risk in the game starting with my as-
sertion of A is non-positive. Moreover, for elementary states we have

⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩K = n − m + I(xa11 , ..., x
am
m )K − I(yb11 , ...,

ybnn )K .

We generalize the risk function to arbitrary observation states
by

⟨Γ||∆⟩∗K =def |∆| − |Γ| + I(Γ)K − I(∆)K

and check that it satisfies conditions (3.1)–(3.6). We only spell out
two cases. In order to avoid case distinctions let I(Aa)K = I(A, a).
For condition (3.1) we have
⟨Γ, (A → B)a||∆⟩∗K = |∆| − |Γ| − 1 + I(Γ)K + I(A → B, a)K −
I(∆)K = ⟨Γ||∆⟩∗K − 1 + I(A → B, a) = ⟨Γ||∆⟩∗K − 1 + inf{1, 1 −
I(A, b)+I(B, c)} = ⟨Γ||∆⟩∗K−1+inf{1, 1+⟨Bc||Ab⟩∗K} = ⟨Γ||∆⟩∗K+
inf{0, ⟨Bc||Ab⟩∗K} = inf{⟨Γ||∆⟩∗K , ⟨Γ, Bc||Ab,∆⟩∗K}.

For condition (3.5) we have
⟨Γ||∆, (QA)a⟩∗K = |∆| − |Γ| − 1 + I(Γ)K − I(∆)K − I((QA)a)K =
⟨Γ||∆⟩∗K + 1 − I(QA, a) = ⟨Γ||∆⟩∗K + 1 − inf{I(A, c) : for any
b ∈ K(ROab ⇒ ∃c ∈ K(RObc ⇒ I(A, c) ̸= 0} = ⟨Γ||∆⟩∗K +
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sup{I(A, c) :for any b ∈ K(ROab⇒∃c ∈ K(RObc⇒ I(A, c) ̸=0} =
sup
c∈K

ROab⇒RObc

{⟨Γ||∆, Ac⟩∗K} 2

Let us define a regulation as assignment of labels ‘the 2nd player
moves next ’ and ‘the 1st player moves next ’ to game states that
obviously constrain the possible runs of the game. A regulation is
consistent if the label ‘2nd(Ist) move next ’ is only assigned to states
where such a move is possible, i.e., where 1st player (2nd player)
have asserted a non-atomic formula. As a corollary to our proof of
Theorem (3), we obtain:

Corollary 1. The total expected loss ⟨Γ||∆⟩∗K that the 1st player
can enforce in a game over K starting in state [Γ||∆] only depends
on Γ,∆ and K. In particular, it is the same for every consistent
regulation that may be imposed on the game.
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Karpenko A.S.
Von Wright’s truth-logic and around . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Khomenko I.V.
The path of logic in Ukraine: a history of concepts . . . . . . . . . . . . 51

Kotikova E.A., Rybakov M.N.
First-order logics of branching time:
on expressive power of temporal operators . . . . . . . . . . . . . . . . . . . . 68

Lisanyuk E.N.
Deontic ‘cocktail’ according to E. Mally’s receipt . . . . . . . . . . . . 100

Markin V.I.
What trends in non-classical logic were anticipated
by Nikolai Vasiliev? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



372

Mikirtumov I.B.
The laws of reason and logic in Nikolai Vasiliev’s system . . . . . 136

Nepeivoda A.N.
Technical systems in logic: questions of formalization
and automatic verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Nepeivoda N.N.
Abstract Chaitin’s theorem and
its methodological consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Niiniluoto I.
Successful science without miracles . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Popov V.M.
Between Int<ω,ω> and intuitionistic propositional logic . . . . . . . 197

Sandu G.
Dynamic logic versus GTS: A case study . . . . . . . . . . . . . . . . . . . . 200

Shalack V.I.
Semiotic foundations of logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Smirnova E.D.
An approach to the interpretation on intensional contexts . . . . 238

Strollo A.
A case for satisfaction classes: model theoretic vs
axiomatic approaches to the notion of truth . . . . . . . . . . . . . . . . . 246

Zaitsev D.V.
Proto-Entailment in RS logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Addition

Devyatkin L.Yu.
Equality of consequence relations in finite-valued
logical matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Ivlev Yu.V.
Generalization of Kalmar’s method for quasi-matrix logic . . . . 281

Karpenko I.A.
The concept of ‘Translation’: history and theory . . . . . . . . . . . . . 308



Table of contents 373

Popov V.M., Shangin V.O.
Syntax and semantics of simple paracomplete logics . . . . . . . . . . 325

Prelovskiy N.N.
Cardinality of sets of closed functional classes in
weak 3-valued logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Tomova N.E.
Natural three-valued logics and classical logic . . . . . . . . . . . . . . . . 344

Vasyukov V.L.
Dialogue games for Dishkant’s quantum modal logic . . . . . . . . . 353

Our authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Information for authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369



Научное издание

Логические исследования
Вып. 19

Утверждено к печати
Ученым Советом

Института философии РАН

Компьютерный набор выполнен
в Интитуте философии РАН

Компьютерная верстка
Н.Е. Томова

Редактор
Е.А. Жукова

Художник
Н.Н. Попов

Фото
В. Сомерпуро

Издательство «Центр гуманитарных инициатив»
190031, г. Санкт-Петербург, Столярный переулок, дом 10-12,
e-mail: unikniga@yandex.ru, unibook@mail.ru
Руководитель центра Соснов П.В.

Подписано в печать 09.04.2013
Гарнитура Таймс. Формат 60х90 1/16. Бумага офсетная. Печать оф-
сетная. Усл.печ.л.14. Уч.-изд.л. 13. Тираж 1000 экз. Заказ

Отпечатано в типографии «Галерея печати»
(ООО «Студия») «НП-Принт»
Санкт-Петербург, Измайловский пр., д. 29
тел.: (812) 324-65-15, mail@npprint.com

Подписной индекс в каталоге «Пресса России» 42046.
2-е полугодие 2013 г.






	1-4
	1orfic
	2rust
	3engt
	4annotnew

	LI-19_04.05.13_net4
	1-121
	1orfic
	2rust
	3engt
	4annot
	5-9pr
	57
	89

	10-22черноскутов
	23-32драгалина
	33-38хинтика
	39-50карп
	51-67хоменко
	68-99котикова
	100-121лисанюк

	122-270
	122-135маркин
	136-147микирт
	148-165непейа
	166-183непейн
	184-196ниинил
	197-199попов
	200-224санду
	225-237шалак
	238-245смирнова
	246-259строло
	260-270зайцев

	271-final
	271-370new
	271addition
	272pusto
	273-280dev
	281-307ivlev
	308-324karpiv
	325-333popovsh
	334-343prel
	344-352tom
	353-365vasukov
	366-368авторы
	369-370inform
	371-373soderganie
	выходные дан

	371-373sodnew
	выходные дан
	rekl
	reklama2
	reklama




