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Александр Степанович
КАРПЕНКО

Alexander Stepanovich
KARPENKO

(07.04.1946 – 07.02.2017)

От Редколлегии

Прошло вот уже более трех лет с тех пор, как 7 февраля 2017 года умер
Александр Степанович Карпенко, наш коллега и товарищ. Он совмещал
в себе высокий профессионализм в области логики с заразительным жизне-
любием, что привлекало к нему многих логиков как у нас в стране, так
и за рубежом. С 1993 начал выходить ежегодник «Логические исследова-
ния». В 2015, благодаря организаторским усилиям А. Карпенко, ежегодник
стал журналом и теперь выходит два раза в год. В нем публикуют свои
работы отечественные и зарубежные авторы, что позволяет поддерживать
нашу логическую жизнь и коммуникацию. Мы решили посвятить насто-
ящий номер памяти А. Карпенко, пригласив к публикации своих работ
известных логиков, которые не только знали его, но и могут быть названы
его друзьями. Наш призыв получил живой отклик, чему мы не были удив-
лены. Предлагаем вашему вниманию работы на актуальные темы столь
любимой нами и А. Карпенко науки.

Editor’s note

More than three years have passed since the death of Alexander Stepanovich
Karpenko, our colleague and friend, on February 7, 2017. He combined high
professionalism in the field of logic with an infectious love of life, which attracted
many logicians both in our country and abroad. Since 1993, volumes of the
yearbook “Logical Investigations” began to come out. In 2015, thanks to the
organizational efforts of A. Karpenko, the yearbook became a journal which
now comes out twice a year. Russian and foreign authors publish their works
in it, which allows us to maintain our logical life and communication. We
decided to devote the present issue to the memory of A. Karpenko by inviting
famous logicians who not only knew him, but who could be called his friends,
to publish their works. Unsurprisingly, our call received a lively response. We
bring to your attention works on current topics of the science so beloved by us
and A. Karpenko.
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Философия и логика
Philosophy and logic

Diderik Batens

Devising the set of abnormalities
for a given defeasible rule

Diderik Batens
Centre for Logic and Philosophy of Science, Universiteit Gent,
Blandijnberg 2, 9000 Gent, Belgium.
E-mail: Diderik.Batens@UGent.be

Abstract: Devising adaptive logics usually starts with a set of abnormalities and a deductive
logic. Where the adaptive logic is ampliative, the deductive logic is the lower limit logic, the
rules of which are unconditionally valid. Where the adaptive logic is corrective, the deductive
logic is the upper limit logic, the rules of which are valid in case the premises do not require
any abnormalities to be true. In some cases, the idea for devising an adaptive logic does
not relate to a set of abnormalities, but to one or more defeasible rules, and perhaps also
to one of the deductive logics. Defeasible rules are not universally valid, but are valid in
‘normal situations’ or for unproblematic parts of premise set. Where the idea is such, the
set of abnormalities has to be delineated in view of the rules. The way in which this task
may be tackled is by no means obvious and is the main topic studied in the present paper.
The outcome is an extremely simple and transparent recipe. It is shown that, except for very
special cases, the recipe leads to an adequate result.

Keywords: adaptive logics, defeasible reasoning, defeasible rules, conditional derivation,
dynamic proofs, abnormalities, falsehood, content guidance

For citation: Batens D. “Devising the set of abnormalities for a given defeasible rule”,
Logicheskie Issledovaniya / Logical Investigations, 2020, Vol. 26, No. 1, pp. 9–35. DOI:
10.21146/2074-1472-2020-26-1-9-35

Envoi

This paper is dedicated to the memory of Alexander Karpenko. We got
to know each other better when Alexander was responsible for three Moscow
institutes in a European project ran by me on behalf of my home university,
Ghent, and Salzburg, and Brussels (VUB). I still treasure a booklet with poems
by Bielo Cardinal — the White Cardinal, an allusion on Alexander’s home
country Belarus. I cannot read the poems, let alone understand them. Yet, at

c© Batens D.
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10 Diderik Batens

a dinner party in his home, the poet read some of them to me, and I associated
them with the poems of one of my favourite writers in my home tongue, Willem
Elsschot, who, apart from a fat volume of novels, left us some twenty impressive
poems.

While Sasha declaimed his poems, he became for me the symbol of man
reaching for what cannot be attained. That we reach anyway may, more than
anything else, makes our lives meaningful. It incites and motivates us to stand
by our fellow humans, to build a better world and to create beauty.

1. Aim Of This Paper

When awake, humans are in a conscious or semi-conscious state. In that
state, their brain activity leads to results of many sorts: perceptions, observa-
tions, goals, plans, decisions, etc. Philosophers try to explicate most of that
brain activity in terms of reasoning. The bulk of this reasoning is defeasible,
not deductive.

Allow me to list1 some reasoning forms that are unavoidably defeasible.
One first thinks of all kinds of inductive reasoning [Batens, 2004; Batens,
2005; Batens, 2011; Batens, Haesaert, 2003; Meheus, 2004], including induct-
ive generalization as well as all predictions derived from the obtained gener-
alizations. There is also abductive reasoning, with its ties to explanations of
sorts [Batens, 2017; Beirlaen, Aliseda, 2014; Lycke, 2012; Meheus, 2007; Me-
heus, 2011; Meheus, Batens, 2006; Meheus et al., 2002; Gauderis, Van De Putte,
2012]; but just as well approaches to explanation that do not rely on abduc-
tion [Batens, 2005; Batens, Meheus, 2001; Weber, De Clercq, 2002; Weber, Van
Dyck, 2001]. A very different topic is compatibility, including inconsistent com-
patibility. Even finding out whether, in general, a predicative set of statements
is inconsistent or not, or whether two predicative sets are incompatible with
each other or not requires defeasible reasoning [Batens, Meheus, 2000; Meheus,
2003; Meheus, Provijn, 2004]. Further examples concern the logic of ques-
tions [De Clercq, Verhoeven, 2004; Meheus, 2001], handling deontic conflicts
[Beirlaen, Straßer, 2013a; Beirlaen, Straßer, 2013b; Goble, 2014; Meheus et al.,
2010a; Meheus et al., 2010b; Straßer, 2010; Straßer et al., 2012; Van De Putte
et al., in press; Van De Putte, Straßer, 2012] and many more. A whole different
family are corrective adaptive logics, like the one for handling inconsistency,
started in the 1980s [Batens, 1985; Batens, 1986; Batens, 1989] and having
resulted in too many papers to refer to in the present context, and those hand-
ling ambiguity [Batens, 2002; Vanackere, 1999a; Vanackere, 1999b; Vanackere,
2000; Vanackere, 2001].

1The interspersed references are incomplete, even with respect to adaptive logics proposed
for handling the topics.
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The adaptive logics programme is one of the attempts to unify all sensible
and useful defeasible reasoning. It is rather easy to devise a manifold of model-
theoretic, procedural, and other systems that define defeasible reasoning forms
that no one could possibly unify. All those systems may prove to be interesting
and even useful mathematical structures in some more or less distant future.
They may also turn out idle tea table talk. So I propose to spend a reasonable
part of our efforts to defeasible reasoning forms that are known to be sensible
and useful.

Adaptive logics in standard format — see Section 2. — form a unifying
structure that is simple and formal. This requires some comments. The
relation between the premises and the conclusion of defeasible reasoning is
known to be complex. If the explication in terms of adaptive logics is right,
as present insights suggest, the complexity of the consequence relation if up to
Π1

1-complex [Batens et al., 2009; Horsten, Welch, 2007; Odintsov, Speranski,
2012; Odintsov, Speranski, 2013; Verdée, 2009]. Yet the ideas behind the se-
mantics are transparent and unsophisticated. Moreover, there are dynamic
proofs. In some cases, the proofs only stabilize at an infinite point — an un-
avoidable effect of the complexity of the consequence relation. Yet the finite
proof stages offer arguably a sensible estimate, in view of the information re-
vealed by the stage, of the result obtained when the proof stabilizes — this is
called final derivability. And indeed, proof stages are constructed by simple
means. All rules are finitary — unlike for, for example, second order logic.
And which lines are IN or OUT in the any given stage of the dynamic proof
is decidable. So this basically reflects the human condition: drawing conclu-
sions from the available information is rather unproblematic, but we know this
information to be partial and presumably misguided.

I stated that adaptive logics form a formal unifying structure. This means
what it always meant: that inferences are correct in view of their form. This
does not entail, as some simpletons actually expect, that Uniform Substitution
(US) holds. US does not even work for full Classical Logic, CL.2 But a different
formal criterion strictly obtains; my preferred name for it is bijective uniformity.
Technicalities aside, two inference statements Γ ` A and ∆ ` B have the
same characteristic form iff each of them can be obtained from the other by
systematically replacing a referring term by another referring term of the same
sort — an individual constant by an individual constant, a predicate of rank
r by a predicate of rank r, etc. The result is that, for example, even the
propositional inference statements ¬p∧ q, p∨ r ` r and ¬p∧ p, p∨ r ` r do not

2The closest that comes to it is, to the best of my knowledge, still reported by Witold
Pogorzelski and Tadeusz Prucnal [Pogorzelski, Prucnal, 1975]; enjoy.
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have the same characteristic form because the former cannot be obtained from
the latter by any such systematic replacement.

Given the importance of defeasible reasoning, and hence of adaptive logics
in standard format as candidates for the unification, it is essential to delineate
ways to devise adaptive logics. A general feature about defeasible reasoning is
that it capitalizes on the fact that a certain feature or situation is normal in
the sense of frequently occurring, whereas abnormal features or situations are
exceptional. This leads to the idea to consider certain conclusions are justified in
view of the presumed absence of abnormality. Most studied adaptive logics were
obtained by first delineating the set of abnormalities, which is characterized by
a certain logical form. Thus, even if it turns out that a theory (or data set)
requires ∃x(Px ∧Qx) ∧ ∃x(Px ∧ ¬Qx) to be true, one may still presume that
∃x(Px ∧Rx) ∧ ∃x(Px ∧ ¬Rx) is false.

Next, one studies which inferences are defeasibly correct, that is cor-
rect in view of the presumed falsehood of certain abnormalities. Clearly,
∃x(Px ∧ Rx) `CL ∀x(Px ⊃ Rx) ∨ (∃x(Px ∧ Rx) ∧ ∃x(Px ∧ ¬Rx)). So if
one may, reasoning systematically, consider ∃x(Px ∧ ¬Rx) as false, and one
knows that ∃x(Px ∧ Rx) is true, one may conditionally derive ∀x(Px ⊃ Rx).
The justification will go as follows. From the true ∃x(Px ∧ Rx) follows
∀x(Px ⊃ Rx) ∨ (∃x(Px ∧ Rx) ∧ ∃x(Px ∧ ¬Rx)). The second disjunct of the
conclusion is an abnormality, which we presume to be false and this presump-
tion can be upheld. So, in the light of present insights, ∀x(Px ⊃ Rx) is true.
Needless to say, this is merely an intuitive description. The matter will be
phrased precisely in Section 2. and references to proofs will be given there.

So the traditional approach was to start from a set of abnormalities and
next to study which defeasible inferences are correct if certain abnormalities
may be presumed to be false. As becomes clear in the next section, once we
know what the abnormalities are, the relevant adaptive logic is easily defined.
Adaptive logics consider abnormalities as false in ‘normal’ situations; as false
until and unless proven otherwise.

Often, however, in devising an adaptive logic, one does not know from the
beginning which are the abnormalities. Rather, one knows that the reasoning
step A/B3 is correct when ‘nothing is wrong ’, when the situation is normal.
Here “normal” points to a further unknown situation, the situation in which
the rule A/B is valid.

Concrete examples follow in subsequent sections, but the problem is to
collect general insights on the relation between the abnormalities and such a
defeasible rule. Does the rule determine the set of abnormalities? Do several

3Rules are phrased in metalinguistic terms. So I use meta-metalinguistic variables for
formulas to describe a rule.
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sets of abnormalities make the rule valid as a defeasible rule? If so, what are
the effects of different choices?

2. Preliminaries

Many introductions to adaptive logics are available — the most recent one
is always the best [Batens, 2015]. So I shall be very brief here. Moreover, the
reader may skip this section and look up things in it as she or he needs them
to understand subsequent sections.

An adaptive logic, AL, in standard format is a triple:

(i) a lower limit logic LLL: a logic that has static proofs and has a nice
semantics;4

(ii) a set of abnormalities Ω : a decidable set of formulas characterized by a
(possibly restricted) logical form F; or a union of such sets;5

(iii) an adaptive strategy : Reliability or Minimal Abnormality.6

The upper limit logic ULL is obtained by extending the lower limit lo-
gic LLL with an axiom stating that all abnormalities cause triviality. Where
a premise set Γ does not require any abnormalities to be true, the AL-
consequences of Γ provably coincide with its ULL-consequences. One of the
effects is that the inconsistency-adaptive consequences of a consistent premise
set coincide with the set’s CL-consequences.

In a ‘Dab-formula’ Dab(∆), ∆ is a finite subset of Ω and Dab(∆) denotes
the classical disjunction of the members of ∆. So classical disjunction needs to
be present in the language or has to be added.7

Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆) whereas
Γ 0LLL Dab(∆′) for any ∆′ ⊂ ∆. A choice set of Σ = {∆1,∆2, . . .} is a
set that contains an element out of each member of Σ. A minimal choice
set of Σ is a choice set of Σ of which no proper subset is a choice set of Σ.
Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences of Γ, U(Γ) =
∆1 ∪∆2 ∪ . . . and Φ(Γ) is the set of minimal choice sets of Σ = {∆1,∆2, . . .}.

4Read this as a compact Tarski logic with a characteristic semantics. The idea of a nice
semantics [Verdée, Batens, 2016] is more sophisticated than that of a characteristic semantics
and is fascinating in view of its implications for embedding. Unfortunately, explaining it here
would require too long a digression.

5Where Fa is the set of atomic formulas (those containing no logical symbols other than
=), {A ∧ ¬A | A ∈ Fa} is an example of a restricted logical form.

6There are the most important strategies.
7As Sergei Odintsov and Stanislav Speranski first pointed out [Odintsov, Speranski, 2013],

an alternative is to phrase adaptive logics in multiple conclusion terms.
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Definition 1. A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 2. Γ �ALr A iff A is verified by all reliable models of Γ.

Definition 3. A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 4. Γ �ALm A iff A is verified by all minimally abnormal models
of Γ.

It can be shown that a LLL-model M of Γ is minimally abnormal iff
Ab(M) ∈ Φ(Γ).

Although I started with their semantics, adaptive logics were discovered by
reflecting on dynamic proofs — the theorizing on dynamic proof theories came
much later [Batens, 2009]. An annotated AL-proof consists of lines that have
four elements: a line number, a formula, a justification (at most referring to
preceding lines) and a condition. Where

A ∆

abbreviates that A occurs in the proof as the formula of a line that has ∆ as
its condition, the (generic) inference rules are — ∨̌ is a classical disjunction:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

A proof stage is a list of lines obtained by applications of the generic rules
PREM, RU and RC. Let the empty list be stage 0. Where s is a stage, s′ is
an extension of s iff all lines that occur in s occur in the same order in s′. A
(dynamic) proof is a chain of stages. That A is derivable on the condition ∆
may be interpreted as: it follows from the premise set that A or one of the
members of ∆ is true. Because the members of ∆, which are abnormalities, are
presumed to be false, A is considered as derived, unless and until it shows that
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the presumption cannot be upheld. The precise meaning of “cannot be upheld”
depends on the strategy, which determines the marking definition (see below)
and hence determines which lines are marked at a stage. If a line is marked at
a stage, its formula is considered as not derived at that stage.

Dab(∆) is a minimal Dab-formula at stage s of an AL-proof iff Dab(∆) was
derived at s on the condition ∅ whereas for no ∆′ ⊂ ∆ was Dab(∆′) derived on
the condition ∅. Where Dab(∆1), . . . ,Dab(∆n) are the minimal Dab-formulas
at stage s of a proof from Γ, Us(Γ) = ∆1 ∪ . . . ∪ ∆n and Φs(Γ) is the set of
minimal choice sets of {∆1, . . . ,∆n}.

Definition 5. Marking for Reliability: Line l is marked at stage s iff, where ∆
is its condition, ∆ ∩ Us(Γ) 6= ∅.

Definition 6. Marking for Minimal Abnormality: Line l is marked at stage s
iff, where A is derived on the condition ∆ on line l, (i) there is no ϕ ∈ Φs(Γ)
such that ϕ ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line on which A is
derived on a condition Θ for which ϕ ∩Θ = ∅.

Let me rephrase this: where A is derived on the condition ∆ on line l, line l
is unmarked at stage s iff (i) there is a ϕ ∈ Φs(Γ) for which ϕ ∩ ∆ = ∅ and
(ii) for every ϕ ∈ Φs(Γ), there is a line at which A is derived on a condition Θ
for which ϕ ∩Θ = ∅.

A formula A is derived at stage s from Γ iff it is the formula of a line that is
unmarked in s. Marks may come and go as the proof proceeds. Yet there also
is a stable notion of derivability, called final derivability.

Definition 7. A is finally derived from Γ on line l of stage s iff (i) A is the
second element of line l, (ii) line l is not marked at stage s, and (iii) every
extension of the stage in which line l is marked may be further extended in
such a way that line l is unmarked.

Definition 8. Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived on a line of a proof stage from Γ.

There are three comments in conclusion of the preliminaries. First, ad-
aptive logics are not competitors of deductive logics, but means to arrive at
formal characterizations of methods. Next, one typically needs adaptive lo-
gics (and, more generally, defeasible reasoning) when a positive test is absent.
Consider any of the examples mentioned before. At the predicative level, the
consequence set of the adaptive logics is not semi-recursive. The final comment
is that adaptive logics have an impressive metatheory which required the de-
velopment of novel proof methods. The metatheory includes Soundness and
Completeness proofs, but also the proofs of many features that are entirely
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foreign to deductive logics. I refer to [Batens, 2007] for the metatheory and
to [Batens, 2015] for a revised formulation of the theorems, often leaving the
straightforward reformulation of the proofs to the reader.

3. The Problem

Consider a defeasible rule A1, . . . ,An/B that we consider as valid in normal
situations. In rather exceptional cases we have no precise idea of the lower
limit logic LLL, but let us neglect that problem and suppose that the strategy
as well as LLL are given.8 The task is to find the form of a formula C that
may serve as the abnormality for the rule, viz. such that A1, . . . ,An `LLL B∨̌C.
Once this C is found, the corresponding conditional rule CR will be: “from
A1, . . . ,An on the condition ∆ to derive B on the condition ∆ ∪ {C}”.

The reader may wonder whether a single abnormality C is introduced rather
than a Dab-formula, as was suggested by the way the generic rule RC was
phrased in the previous section. This is an interesting point. Let us leave
open whether C will be the form of the abnormalities or whether C may indeed
be itself a disjunction of abnormalities. Let us also leave open whether the
problem is to find a unique C or several — the latter case refers to the second
alternative in the description of the set of abnormalities Ω: “or a union of such
sets”. The first sentence of the present paragraph moreover reminds us of an
important matter. We want to delineate Ω in function of the defeasible rule
A1, . . . ,An/B. Yet, we are after an adaptive logic in standard format. In other
words, the generic rule RC will by no means be restricted to the defeasible
rule A1, . . . ,An/B. The generic rule RC will solely depend on LLL and Ω as
is obvious from Section 2. We shall see that this consideration will play an
important role in subsequent pages.

Consider some examples of defeasible rules in the domain of inductive gen-
eralization. There are many adaptive logics in that domain. Each of them
characterizes a way to defeasibly infer generalizations. A generalization is a for-
mula ∀xA(x) in which A(x) is a truth function of literals in which no individual
constants occur.9 One of the logics allows one to introduce generalizations as
Popperian hypotheses, the defeasible rule then becoming −/∀xA(x) — given
whatever, one may conditionally introduce a generalization. Other such logics
require an instance and hence need a defeasible rule A(α)/∀xA(x), in which α
may be any individual constant. Still, other logics require a ‘positive instance’

8When we are after an ampliative adaptive logic, LLL will be the deductive logic we
consider suitable in the given context. For many this will be CL when the context concerns
empirical or classical mathematical theories.

9The precise formulation was published elsewhere [Batens, 2011], but is not terribly im-
portant in the present context.
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as in B(α) ∧ C(α)/∀x(B(x) ⊃ C(x)). In all of these A and C are disjunctions
of one or more literals and B is a conjunction of literals — conjunctions of two
generalizations are derived by RU from generalizations derived by RC. So, for
each such defeasible rule, the task is to pinpoint an abnormality, which then
will determine the set of abnormalities Ω for that logic.

The sets of abnormalities for those inductive generalization rules were de-
lineated a long time ago by tinkering. This was not difficult and they agree
nicely with the recipe that will be presented in the present paper. This is a
good reason to consider a different type of adaptive logics.

It is desirable to refer to a case where the matter becomes slightly more
difficult as well as slightly more interesting. While working on adaptive set
theories [Batens, 2019], I came about a case that I never met before. That we
are dealing with a corrective adaptive logic is a difference with the logics from
the previous paragraphs. Yet, something is more important. The lower limit
logic of the set theories is the paraconsistent CLuNs, which is specified be-
low, and the strategy is Minimal Abnormality. The well-studied inconsistency-
adaptive logic CLuNsm is obtained by specifying the set of abnormalities as
{Q(A ∧ ¬A) | A ∈ Fa}, in which Fa is the set of (open and closed) atomic
formulas and Q(A) is (A) preceded by a quantifier over every formula free in A.
I give this set a specific name for future reference. It turns out that certain
premise sets require a different adaptive logic, one that has a more embracing
set of abnormalities and hence assigns a richer consequence set to the premise
sets.

While adaptive logics were originally devised as ways to formally charac-
terize methods, it turned out that they may also be profitably invoked to char-
acterize complex theories — viz. theories that are not semi-recursive. Partly
relying on work by others, I made attempts to devise adaptive theories for
Peano Arithmetic and for Frege’s notion of a set. It is the latter that led to
the case I now shall outline. I’ll just mention some ideas, as the paper will
soon be available in print. However, there are some details I have to report
explicitly in order to clarify the problem. Readers who are in a hurry may skip
to the beginning of Section 4. and return here later if they get interested in the
significant example.

As Frege’s notion of a set makes inconsistent sets unavoidable, the lower
limit logic of the adaptive logic needs to be paraconsistent. For reasons not
discussed here, I choose the (very popular) paraconsistent logic (which I prefer
to call)CLuNs [Batens, Clercq, 2004]. Apart from negation, all logical symbols
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are exactly as inCL and RoI (Replacement of Identicals) holds unrestrictedly.10

The negation ¬ is strictly paraconsistent11 and reduces complex negations to
simpler ones in the usual way: ¬¬A ≡ A, ¬(A ∧ B) ≡ (¬A ∨ ¬B), . . . and
¬∃xA ≡ ∀x¬A.

The set theory obtained by CLuNs from (a version of) the Fregean axiom
schema Abs and axiom Ext will be called PFS (paraconsistent Fregean set
theory).12 Obviously, one wants to move from the paraconsistent theory to
an adaptive one, call it AFS. While one has unavoidably to allow for some
inconsistent sets — sets of which some members are also non-members — one
wants that sets are only inconsistent when this is unavoidable, and one wants
even inconsistent sets to behave as consistently as possible. For example, one
wants ∅ to be consistent and, while the Russell setR is unavoidably inconsistent,
one wants ∅ /∈ R in view of ∅ /∈ ∅ and one does not want ∅ ∈ R.

Just like the language of most mathematical theories, the language of set
theory is extremely simple. Apart from the logical symbols and the variables
of the standard predicative language, it has one binary predicate ∈ and of-
ten abstracting terms of the form {α | A(α)}. Where the underlying logic
is CLuNs, some formulas of this language express triviality,13 for example
∀x∀y(x = y ∧ x 6= y ∧ x ∈ y ∧ x /∈ y), which I shall abbreviate as ⊥.14 Literally
every formula of the set theoretical language is CLuNs-derivable from this (as
well as from some other formulas).15 Given that material implication is present
with all its CL-properties, classical negation can be defined: ¬̌A =df A ⊃ ⊥.

The presence of classical negation has the unexpected consequence that the
Abs axiom requires the existence of R∗ =df {x | ¬̌x ∈ x}. While inconsistency
results, R∗ ∈ R∗ ∧ R∗ /∈ R∗, it is provable that R∗ ∈ R∗ ∧ ¬̌R∗ ∈ R∗ is not
derivable and that the inconsistency-adaptive theory is non-trivial, just like
the paraconsistent theory. Yet, the fact that R∗ ∈ R∗ is a theorem of the

10RoI: a = b ⊃ (A ≡ Aa/b) in which Aa/b is the result of replacing in A an occurrence of
a by b or vice versa. In some paraconsistent logics, RoI does not hold within the scope of a
negation.

11A negation ¬ is paraconsistent iff A,¬A ` B does not hold for all A and B; it is strictly
paraconsistent iff there is no A such that A,¬A ` B holds for all B.

12Within CLuNs there are three different implications that coincide in CL: A ⊃ B is
detachable but not contraposable, A = B =df ¬A ∨ B is not detachable but contraposable,
A→ B =df (A ⊃ B)∧ (¬B ⊃ ¬A) is both detachable and contraposable; similarly, there are
16 different equivalences that coincide in CL. So choices have to be made as one moves from
Frege’s trivial theory to the provably non-trivial CLuNs-theory PFS.

13Several other paraconsistent logics have the same property.
14The abbreviations t1 6= t2 =df ¬t1 = t2 and t1 /∈ t2 =df ¬t1 ∈ t2 occur for readability.
15The formula does not express triviality in some extensions of the language of set theory.

So it is a remarkable case of expressing local triviality, a feature that also occurs in other
mathematical theories — I shall soon publish a brief study of the remarkable phenomenon
and its epistemic potential.
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paraconsistent theory, and hence also of the adaptive one, reveals a perhaps
unpleasant but interesting phenomenon: R∗ has members that do not fulfil the
touchstone of R∗. Indeed, R∗ ∈ R∗ is a theorem of the paraconsistent theory,
but R∗ does not fulfil the touchstone, which is ¬̌R∗ ∈ R∗; and it cannot fulfil
the touchstone — the theory is non-trivial. I shall say that R∗ is clean iff
∀y(y ∈ {x | A(x)} ↔ A(y)), in which A ↔ B =df (A ≡ B) ∧ (¬B ≡ ¬A).
It turns out that both ∀y(A(y) ⊃ y ∈ {x | A(x)}) and ∀y(¬A(y) ⊃ y /∈ {x |
A(x)}) can be required to hold, but not their converses, precisely because some
sets, for example R∗ are unavoidably unclean. The converses have to read
∀y(y ∈ {x | A(x)} = A(y)) and ∀y(y /∈ {x | A(x)} = ¬A(y)) — remember that
= is not detachable.16

This situation reveals a problem that requires a solution. Indeed, R =df

{x | x /∈ x} is inconsistent but there is no need for it to be unclean. Let
Ω1 =df {Q(A ∧ ¬A) | A ∈ Fa}, in which Fa is the set of (open and closed)
atomic formulas and Q(A) is (A) preceded by a quantifier over every formula
free in A. Consider a PFS-model M that is minimally abnormal with respect
to Ω1. Obviously, the domain D of M is uncountable17 whence some elements
of D have no name — are not named by an abstracting term. It turns out that
some sets are clean in some PFS-models that are minimally abnormal with
respect to Ω1, but are unclean in other PFS-models that are also minimally
abnormal with respect to Ω1. A typical example is precisely R. Consider
a minimally abnormal PFS-model M1 in which R is clean and consider an
element o ∈ D that stands in the ∈-relation to R and not also in the /∈-relation
to R — technically this will be expressed for example by 〈o, v(R)〉 ∈ vT (∈).18

Next consider a model M2 that is exactly like M1 except in that o is not only
a member but also a non-member of R. So, in M2, the set R is unclean as well
as inconsistent. Yet, given that no individual constant of the language refers
to o, the inconsistency can only be stated as ∃x(x ∈ R ∧ x /∈ R). But this
formula is also verified by M1, because all PFS-models verify R ∈ R ∧R /∈ R.
So R is clean in M1 and is unclean in M2, but both are minimally abnormal
and actually Ab(M1) = Ab(M2). This is not as we want it. The axioms do
not require R to be unclean. They do not even require that R is a member

16It is not really essential to this paper, but Abs comes to the conjunction of the four
implications mentioned in the text, two detachable ones and two non-detachable ones.

17Many uncountable ZF-hierarchies can be defined in exactly the same way in PFS and
if their members were countable in PFS, then they would be inconsistent. It can be argued
that they are consistent in minimally abnormal models of PFS if they are consistent in ZF.

18In this semantic style, the extension of a predicate π of rank n is a triple 〈Σ1,Σ2,Σ3〉
with Σ1,Σ2,Σ3 ⊇ Dn and Σ1∪Σ2∪Σ3 = Dn. Next, for convenience, the assignment function
v(π) is seen as three functions: vT (π) = Σ1, vB(π) = Σ2 and vF (π) = Σ3.
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of a minimal set of sets one of which is bound to be unclean. So R should be
clean.19

What does this come to? We want the non-detachable ∀y(y ∈ {x | A(x)} =
A(y)) to have the strength of the detachable ∀y(y ∈ {x | A(x)} ⊃ A(y)) as
much as possible; and similarly for upgrading ∀y(y /∈ {x | A(x)} = ¬A(y))
to ∀y(y /∈ {x | A(x)} ⊃ ¬A(y)). Obviously, we do not want to interpret all
expressions A = B as much as possible as A ⊃ B. We only want instances
of schema Abs to be as much as possible detachable in all directions. Abs
was intended originally as detachable in all directions. This cannot be realized
completely because Frege’s notion of the extension of a predicate turned out
inconsistent. Nevertheless, the original intention can be realized as much as
possible. But this cannot be done by minimizing inconsistencies: remember
that M1 and M2 verify the same members of Ω1. We have a case where, for
ordered pairs 〈A,B〉 of certain forms, we want to derive A ⊃ B from A = B
on a certain condition. The task is to find the condition.

4. Solving the Problem

Let us concentrate first on rules with one local premise. The task then is,
starting from the defeasible rule A/B, to find a condition or conditions C such
that the three following hold:

A `LLL B∨̌C and A 0LLL B and A 0LLL C . (1)

If A `LLL B, then A/B is LLL-valid and not a defeasible rule. If A `LLL C, then
the condition C causes the rule A/B to have no sensible applications. Remember
indeed that, as stated in Section 3., the idea is to obtain the following particular
conditional rule: “from A on the condition ∆ to derive B on the condition
∆∪{C}”. If the defeasible rule A/B is to have sensible applications, there must
be a premise set Γ and a (empty or non-empty) ∆ ⊂ Ω such that (i) A is
finally derivable from Γ on the condition ∆ and (ii) B is finally derivable from
Γ on the condition ∆ ∪ {C}. In view of (i), Γ `LLL A∨̌Dab(∆) and there is
a ϕ ∈ Φ(Γ) such that ∆ ∩ ϕ = ∅. In view of (ii), Γ `LLL B∨̌Dab(∆ ∪ {C})
and there is a ϕ ∈ Φ(Γ) such that (∆ ∪ {C}) ∩ ϕ = ∅. The latter is impossible
because, if A `LLL C, then Γ `LLL A∨̌Dab(∆) is a sufficient condition for
Γ `LLL C∨̌Dab(∆), which is Γ `LLL Dab(∆∪ {C}). Whether Dab(∆∪ {C}) is
a minimal Dab-consequence of Γ or not, every ϕ ∈ Φ(Γ) contains at least one

19The difference between M1 and M2 cannot be expressed in the language by a formula
stating a contradiction, whether plain or quantified. Does this mean that the difference
betweenM1 andM2 cannot be expressed? By no means. We just need different abnormalities.
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member of Dab(∆ ∪ {C}). But then the line at which B is derived by A/B is
always marked. This ends the justification of the requirements in (1).20

Let us move to a concrete case, viz. the defeasible rule

A = B/A ⊃ B . (2)

We are looking for one or more conditions such that the three derivability
statements in (1) are fulfilled. I shall first consider the problem in the context
of the lower limit logic CLuNs, with the classical negation ¬̌ present or added,
and the Minimal Abnormality strategy, but neglecting for the moment that the
problem arose in connection with the set theory AFS.

In the previous section, (2) was considered in a situation in which the ab-
normalities were contradictions, as is usual for inconsistency-adaptive logics.
Some people will keep repeating that abnormalities of the form A ∧ ¬A justify
the defeasible rule (2). Indeed,

A = B `CLuNs (A ⊃ B)∨̌(A ∧ ¬A)

holds. Or, even more explicitly in view of CLuNs-equivalences,

¬A ∨B `CLuNs (¬̌A ∨B)∨̌(A ∧ ¬A) .

However, and as already explained in Section 3., this is not the point.21 The
point is that, for specific ordered pairs 〈A,B〉, we want (2) to be applied even
if A ∧ ¬A is true.22

We are in search of conditions C that fulfill (1) and, by their forms, de-
termine a set Ω that, together with the lower limit logic CLuNs and the Min-
imal Abnormality strategy, defines an adequate adaptive logic. We need a C
such that A `CLuNs B∨̌C. Given that CLuNs has a nice semantics and given
Soundness and Completeness, A `CLuNs B∨̌C is equivalent to A∧̌¬̌B `CLuNs C.
The strongest such C is obviously A∧̌¬̌B itself and every such C is a CLuNs-
consequence of A∧̌¬̌B.

Let us apply this at once to the defeasible rule (2). The strongest condition
C is (A = B) ∧ ¬̌(A ⊃ B), which is CLuNs-equivalent to (A ∧ ¬A ∧ ¬̌B) —
as the conjunction is classical in CLuNs, there is no need to write ∧̌. So
the defeasible rule phrased with its strongest condition reads: “from A on the
condition ∆ to derive B on the condition ∆ ∪ {A ∧ ¬A ∧ ¬̌B}”. Actually, the

20The justification considers only Minimal Abnormality. Where Reliability is the strategy,
the justification is much simpler and left to the reader.

21Moreover and concerning AFS, every unclean set is unavoidably inconsistent: if t ∈ {x |
A(x)} but ¬A(t), then t /∈ {x | A(x)}. However, this too is not the point.

22In AFS we want all sets to be as clean as possible, even inconsistent sets.
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logic CLuNs requires23 that the set of abnormalities contains all formulas of
the form A ∧ ¬A ∧ ¬̌B in which A is an atomic formula and B is a literal.24

Next, consider weaker conditions C for the defeasible rule (2). Let us have
a systematic look at ‘parts’ of A∧¬A∧ ¬̌B. The idea is not to find a C that in
itself gives us all we want, but to find conditions C that are acceptable, possibly
in the presence of other conditions. I neglect the fact that the local premise
may come on a condition itself; by now, the reader will have understood the
resulting complication. To the left is the CLuNs-inference, to the right the
effect on a dynamic proof.

A = B

(A ⊃ B) ∨ C

A = B

A ⊃ B {C}

Let us consider the possibilities systematically.

(i) We know already that the strongest C is A ∧ ¬A ∧ ¬̌B.

(ii) That C is A ∧ ¬A is all right provided one also wants all conditional
inferences that then are correct in view of the standard format, specifically
RC. An example is the effect of A ⊃ B,¬B `CLuNs ¬A∨ (B∧¬B): from
A ⊃ B and ¬B to derive ¬A on the condition {B ∧ ¬B}. So what this
comes to is that the choice A∧¬A is all right in case one agrees that ¬A
has actually the force of ¬̌A whenever A ∧ ¬A can be taken to be false.

(iii) That C is A ∧ ¬̌B is not acceptable. Indeed, this condition is simply
the classical negation of the conclusion of the defeasible rule. Once ¬̌
is added to CLuNs, (A ⊃ B) ∨ (A ∧ ¬̌B) is a CLuNs-theorem. So if
A ∧ ¬̌B is an abnormality, possibly with A restricted to atomic formulas
and B to literals, then A ⊃ B is derivable on the condition {A ∧ ¬̌B}
from any premise set. Unlike what the reader might expect, this would
not cause premise sets to have trivial consequence sets; most conditional
lines would be marked. Yet, there is no sensible idea behind this choice of
an abnormality and the choice does not seem to lead to anything sensible.
Nevertheless, I shall return to this choice below.

23The requirement is related to the avoidance of so-called flip-flop adaptive logics, which
are only desirable for specific applications [Batens, 2007]. The point need not further concern
us here.

24The set of literals is the set of non-equivalent formulas in which occurs an atomic formula
preceded by at most unary connectives. Where two negations, ¬ and ¬̌, are present in the
language of CLuNs, the notion of a literal is a trifle more sophisticated than in CL. While
this set is {A,¬A} (A a sentential letter) in CL, it is {A,¬A, ¬̌A, ¬̌¬A, ¬̌¬̌A, ¬̌¬̌¬A} (A a
sentential letter) in CLuNs.
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(iv) Somewhat unexpectedly, it seems all right at first sight to choose ¬A ∧ ¬̌B
as C. Indeed, when one concentrates on the defeasible rule we are con-
sidering here, the choice seems unobjectionable, both in case ¬A∧ ¬̌B is
true and in case it is false. In the latter case, for example, we obtain: if
¬A is false, the premise warrants that B is true; if ¬̌B is false, then B is
also true. As B is true, so is A ⊃ B. And yet this choice has consequences
we do not want. As ¬A `CLuNs B ∨ (¬A∧ ¬̌B), the choice would justify
that one would derive an arbitrary B from ¬A on the sole condition that
¬A ∧ ¬̌B can be taken to be false. As in the previous case, triviality
would not result25 but there is no idea behind this way of proceeding and
nothing sensible is expected to result.

(v) To choose A or ¬A or B as C is obviously unacceptable. That literals
would be abnormalities, would result in all kinds of turmoil, but in nothing
sensible.

(vi) I promised to return to (iii). Choosing (A = B)∧ (A∧ ¬̌B) as C prevents
one to introduce detachable implications from the blue. Moreover, these
abnormalities nicely express that the premise is true and the desired con-
clusion false. However, nothing new is arrived at along this road. The
chosen abnormality is CLuNs-equivalent to A ∧ ¬A ∧ ¬̌B, which is the
abnormality considered in (i).

No other choices are worth commenting upon. Yet it is still interesting
to consider combinations, viz. that formulas of different forms are counted as
abnormalities, for example A ∧ ¬A and A ∧ ¬A ∧ ¬̌B. Neglecting some com-
plications, a line is unmarked and its formula is not considered as derived iff
its condition can be considered to be false. Suppose that A ∧ ¬A cannot be
considered as false. Then it is nevertheless possible that A ∧ ¬A ∧ ¬̌B can
be considered as false: if A and ¬A are both true, but ¬̌B is false, then the
conjunction of the three formulas is false.26 So allowing for abnormalities of
both forms has the following effect — I keep restricting attention to crucial in-
sights. On the one hand, including formulas A∧¬A in the set of abnormalities
has the effect that a lot of further conditional inferences become valid, as was
explained in (ii). On the other hand, even if A ⊃ B cannot be seen as derived
on the condition A ∧ ¬A because this condition cannot be considered as false,

25Adaptive logics in standard format have the Strong Reassurance property (also called
Stopperedness or Smoothness): if a premise set has LLL-models, then it has minimally
abnormal models. Proofs were published long ago [Batens, 2000; Batens, 2007].

26Spelling the matter out in a precise way for Reliability and (especially) for Minimal
Abnormality is much more complicated, but the crucial insight is the one stated in the text.
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it is possible that A ⊃ B can be seen as derived on the condition A∧¬A∧ ¬̌B
because ¬̌B can still be considered as false.

The matter seems clarified, but there are still two little problems. I comment
on them in order to illustrate the complications involved in the systematisation
of defeasible reasoning. The easier problem is this: A ∧ ¬A ∧ ¬̌A obviously
has the form of A ∧ ¬A ∧ ¬̌B and is always false.27 That looks frightening.
As the line will never be marked, such an adaptive logic seems to extend the
lower limit logic with non-defeasible steps. However, this is a pseudo-problem.
Whenever A `CLuNs B ∨ C and C ∈ Ω is logically false, then A `CLuNs B. So
logically impossible abnormalities are harmless; they are obviously also useless.

The second problem is more interesting: if formulas of the form A∧¬A∧¬̌B
are abnormalities, does it then even make a difference whether formulas of the
form A ∧ ¬A are also abnormalities? While ¬A 0CLuNs ¬̌A ∨ (A ∧ ¬A ∧ ¬̌B),
it holds that ¬A, ¬̌B 0CLuNs ¬̌A ∨ (A ∧ ¬A ∧ ¬̌B). So, if any formula of the
form ¬̌B is derivable, even if only conditionally, an unexpected effect seems to
follow. Let me show this by presenting a little proof.
...

...
...

...
51 ¬̌s . . . ∆
52 ¬p PREM ∅
53 ¬̌p 51, 52; RC ∆ ∪ {p ∧ ¬p ∧ ¬̌s}

Supposing that line 51 is unmarked, line 53 will be unmarked just in case
p ∧ ¬p can be held to be false. If a formula of the form ¬̌B is derivable, even
conditionally, from the premises, then abnormalities of the form A ∧ ¬A are
redundant.

The matter becomes less surprising if one realizes that conditional transition
from ¬p to ¬̌p may be realized in a way that seems unobjectionable. Recall
that A = B abbreviates ¬A ∨B.
...

...
...

...
51 ¬̌s . . . ∆
52 ¬p PREM ∅
53 p = s 52; RU ∅
54 p ⊃ s 53; RC {p ∧ ¬p ∧ ¬̌s}
55 ¬̌p 51, 54; RU ∆ ∪ {p ∧ ¬p ∧ ¬̌s}

What happens here is that we apply the defeasible rule (2) at line 54 and next
apply Modus Tollens — this is correct as ⊃ is detachable and ¬̌ is classical
negation.

27Many will not care about the detail, but it is more correct to say that A ∧ ¬A ∧ ¬̌A has
no non-trivial models — in some semantic styles no models, in others only the trivial model.
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If a bottom constant ⊥ is present in the applied version of CLuNs, the
matter is even easier.

1 ¬p PREM ∅
2 ¬̌p 1; RC {p ∧ ¬p ∧ ¬̌⊥}

Here `CLuNs ¬̌⊥ whence p ∧ ¬p ∧ ¬̌⊥ is CLuNs-equivalent to p ∧ ¬p.
After discussing (2) independently of the set theoretical context, let us now

return to the problem in AFS. Two insights are important. (i) If, reasoning
systematically, it is possible to consider A ∧ ¬A as false, then it is possible to
consider A ∧ ¬A ∧ ¬̌B as false, but not conversely. So, given a premise set
Γ, the more complex condition allows for final consequences of Γ that are not
final consequences if all abnormalities have the form A ∧ ¬A. (ii) As noted in
Section 3., the aim is not to upgrade expressions A = B as much as possible to
A ⊃ B, but to do so only for specific formulas that are implicative parts of Abs,
viz. ∀y(y ∈ {x | A(x)} = A(y)) and ∀y(y /∈ {x | A(x)} = ¬A(y)). Consider the
formulas

Q(t ∈ {x | A(x)} ∧ ¬̌A(t)) and Q(t /∈ {x | A(x)} ∧ ¬̌¬A(t)) (3)

in which t is a set theoretical term and, if it is a variable, Q is a quantifier over
that variable. In view of Abs, the left formula PFS-entails Q(t /∈ {x | A(x)} ∧
t ∈ {x | A(x)}∧¬̌A(t)) and the right formulaPFS-entails Q(t ∈ {x | A(x)}∧t /∈
{x | A(x)} ∧ ¬̌¬A(t)). So a bit of calculation shows that formulas of the forms
in (3) may be safely taken as abnormalities. Proceeding thus, we obtain an
adaptive logic that minimizes inconsistencies in view of abnormalities of the
form A∧¬A and minimizes uncleanness in view of the abnormalities from (3).

The conclusion then is as follows. First, unless there are very special reasons
to refrain from applying the defeasible rule in its full generality, the recipe leads
to the following schema, considering multiple local premises (but still restricting
to the lower limit CLuNs).

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n ∪ {A1 ∧ . . . ∧ An ∧ ∗B}

(4)

Where ∗¬̌B = B and ∗B = ¬̌B in case the first symbol in B is not ¬̌. Call
A1 ∧ . . .∧An ∧ ∗B the typical abnormality for the defeasible rule A1, . . . ,An/B.
There is no reason to prefer abnormalities obtained by dropping one or more
conjuncts of A1∧ . . .∧An∧∗B because if the shorter formula can be considered
as false, then so can the longer one. When one wants to introduce several
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defeasible rules, each of them may be given its typical abnormality. Two points
of attention then are: (i) one should check which rules need to hold in their
formal generality and which should be restricted to specific formulas — the
AFS case illustrates this candidly — and (ii) one should study the effect of the
typical abnormality of a rule on other rules in view of the logical and conceptual
context — see the example discussed above.

The occurrence of the classical negation ¬̌ in the typical abnormality may
look like causing trouble in paraconsistent contexts, especially for dialetheists.
The matter will be discussed in Section 5.

When the lower limit logic is not CLuNs, the typical abnormality is easily
adjusted. Two adjustments may be required. (i) Sometimes restrictions on
the subformulas of abnormalities need to be modified or removed. Thus the
restriction A ∈ Fa needs sometimes to be replaced, for example by A ∈ F ,
in which F is the set of (open and closed) formulas of standard predicative
languages. (ii) Sometimes logical symbols are classical within the considered
lower limit logic, whence we do not need ¬̌ and ∗ — I actually applied this
already within the present paper. I do not enter this any further as the matter
is mainly technical.

Let us consider some typical abnormalities for other rules. I mentioned
three defeasible rules of inductive generalization. In each of them A, B and C
are disjunctions of literals and there are some further restrictions. The typical
abnormalities for each of the rules can be read off below in somewhat simplified
form — as the lower limit is CL, the standard negation is classical:

–
∀xA(x) {∃x¬A(x)}

∃xA(x) ∆

∀xA(x) ∆ ∪ {∃xA(x) ∧ ∃x¬A(x)}

∃x(B(x) ∧ C(x)) ∆

∀x(B(x) ⊃ C(x)) ∆ ∪ {∃x(B(x) ∧ C(x)) ∧ ∃x¬(B(x) ∧ ¬C(x))}

An inconsistency can be seen as a negation glut: that vM (A) = 1 justifies
vM (¬A) = 0 on the CL-semantics, but actually vM (¬A) = 1. A negation gap
is where vM (A) = 0, which justifies vM (¬A) = 1 on the CL-semantics, and
nevertheless vM (¬A) = 0. Along this line, one may consider gluts and gaps
for every logical symbol of the standard predicative language. Adaptive logics
minimizing gaps and gluts were studied [Batens, 2016]. Suppose that 99K is a
glutty implication, whereas ⊃ is the classical implication. A glutty implication
is obviously not detachable, as there are models in which vM (A 99K B) = 1 =
vM (A) and vM (B) = 0. This brings us to something very close to (2). In order
to minimize implication gluts, we want the following rule and abnormality:

A 99K B ∆

A ⊃ B ∆ ∪ {(A 99K B) ∧A ∧ ¬B}
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If glutty implications are combined with glutty negations (and possibly more
oddities), the negation needs to be replaced by ¬̌. All glutty and gappy logical
symbols may be given defeasible rules to minimize them and the insight gained
in this section will provide the rules with typical abnormalities.

5. A Puzzle In Inconsistency-Adaptive Logics

Classical negation occurs in the typical abnormalities from the previous
section. Some will see this as problematic in paraconsistent contexts. Of course,
if classical negation is not definable in a paraconsistent logic, one may add it,
possibly forbidding its occurrence in premises and conclusion. Yet especially
dialetheists will have objections to such move as they consider classical negation
as a tonk-like operator. This conclusion is related to the dialetheist view that
all true knowledge should form a single body, phrased within a single language
and organized by The True Logic and that this body is necessarily inconsistent
in view of the Liar paradox, paradoxes of set theory, etc. I shall not discuss
the dialetheist position here, but rather argue that, for two reasons, the typical
abnormalities do not lead to a situation that is at odds with dialetheism.

The first reason is that, due to the structural properties and functioning of
negation, the typical abnormalities do not require that classical negation ever
occurs either in them or elsewhere in a proof. First of all, look at two basic
defeasible rules for negation:28

¬A ∆

¬̌A ∆ ∪ {A ∧ ¬A}
A ∆

¬̌¬A ∆ ∪ {A ∧ ¬A} (5)

However, once the adaptive logic is characterized in terms of the Standard
Format, these rules need not be mentioned. Applications of the generic condi-
tional rule RC may be phrased completely in the standard language, without
ever writing a classical negation. Here are two examples, an application of
Disjunctive Syllogism and one of Modus Tollens.

A ∨B ∆
¬A Θ

B ∆ ∪Θ ∪ {A ∧ ¬A}

A ⊃ B ∆
¬B Θ

¬A ∆ ∪Θ ∪ {B ∧ ¬B}

The classical negation in (5) signifies that, provided the abnormality in-
troduced by the condition can be held to be false, A, respectively ¬A, can be
considered as consistently false; spelled out, ¬̌A signifies that A is consistently

28Sometimes the A in the abnormality is restricted, for example to atomic formulas, as is
required when CLuNs is the lower limit logic. Sometimes several defeasible rules are required
as in AFS.



28 Diderik Batens

false and ¬̌¬A that A is consistently true. In the application of Disjunctive
Syllogism, if the local premises are true and A is consistent, then B is bound to
be true. That A is consistent is nowhere stated. The fact that the conclusion
line is unmarked indicates that (the members of ∆∪Θ as well as) A∧¬A can be
held to be false, which means that A is consistent and in that case B is bound
to be true if the local premises are true.29 The reasoning is similar for the
application of Modus Tollens, except that here the consistency of B matters.
The situation is analogous for all applications of the generic conditional rule
RC in CLuNsm and similar inconsistency-adaptive logics.

There is a second reason why the dialetheist should not eschew adaptive
logics. The typical abnormality as defined in Section 4. works not only with
classical negation, but works equally well with a paraconsistent negation. So
where the symbol ¬̌ (defining ∗) in (4) is a negation that is paraconsistent and
not also paracomplete, (4) still works fine: if all members of the condition can
be held to be false, the conclusion follows from the premises.

This comment does not concern (5), the basic rule for negation. This rule,
or rather both of them, are still unacceptable for the dialetheist because in it the
symbol ¬̌ in the conclusion needs to be classical. As explained, however, there
is no need for ¬̌ to occur anywhere in inconsistency-adaptive logics. Yet there
still is a catch. Suppose that the dialetheist position gets generally recognized,
that the methodology of the sciences is spelled out in terms of, say, the LP-
negation [Priest, 1987], and that scientists would actually apply LP rather
than requiring, presupposing and sometimes pretending that their theories be
consistent, then the dialetheist might phrase the whole scientific methodology
in terms of adaptive logics based on LP. If the condition is false, the local
conclusion will follow from the local premises. A hindrance for dialetheists will
be that, in the preceding sentence, “false” needs to have the meaning with which
I use it: consistently false, not false as meant by Graham Priest [Priest, 1987].
The latter meaning is that A is false iff ¬A is true; this entails that A and
¬A are both false in case they are both true, as may happen in paraconsistent
contexts. The situation seems rather crucial. All instances of A ∧ ¬A and
all instances of A ∧ ¬A ∧ ¬̌B are false in the sense of Priest. There is no
point in asking whether they can be held to be false in view of the premises.
They are false in Priest’s sense, now, yesterday, tomorrow and always because
their negation is true, even logically true: ¬(A ∧ ¬A) is an LP-theorem; it is
LP-equivalent to ¬A ∨A. From here on I return to my use of false.

Just for the record, a comment on two related negation-like entities. A para-
complete negation, according to which A and its negation may be jointly false,

29Obviously, from ¬A ∨B and A follows B on the condition A ∧ ¬A.
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is insufficient for adaptive logics to work decently. If the ¬̌ in (4) is paracom-
plete, the falsehood of the condition is insufficient for the local conclusion to
follow from the local premises. The second negation-like entity is the arrow-
bottom construction, A→ ⊥, in which → is a detachable implication and ⊥ a
bottom operator.30 This is obviously a kind of negation of A. Dialetheists have
argued that A→ ⊥, for → a relevant implication,31 allows them, just as much
as the classical logician or intuitionist, to commit themselves to the falsehood
of a certain statement A in that A→ ⊥ connects the truth of A to triviality.

Some paragraphs ago, I argued that there is a problem for dialetheists to
apply adaptive logics. Quite unexpectedly, however, there seems to be a way
out. I am not a dialetheist, recently I even got doubts on the viability of
dialetheism. Yet, these doubts are not related to what follows. Consider the
following rules and their typical abnormalities:

¬A ∆

A→ ⊥ ∆ ∪ {¬A ∧ ¬(A→ ⊥)}
A ∆

¬A→ ⊥ ∆ ∪ {A ∧ ¬(¬A→ ⊥)} (6)

Dialetheists claim that true inconsistencies are exceptional. So, in non-
exceptional situations, that ¬A is given justifies one to defeasibly connect A to
triviality and that A is given justifies one to defeasibly connect ¬A to triviality.

The typical abnormality may look problematic, but it is not. For most
relevant implications, ¬(A → B) is derivable from A ∧ ¬B. Where this is the
case, A ∧ ¬A is sufficient to derive both ¬A ∧ ¬(A→ ⊥) and A ∧ ¬(¬A→ ⊥)
because ¬⊥ is a theorem of LP. To prevent readers from getting overoptimistic,
let me point out that the ‘negation’ 	, defined by 	A =df A → ⊥, is a
paracomplete negation. Clearly, A ∨ 	A is not a theorem unless the relevant
→ is downgraded to a detachable material implication.

It seems to me that the rules and abnormalities in (6) look extremely in-
teresting from a dialetheist point of view. They allow dialetheists to express
their commitment to the falsehood of a statement in the sense that the false-
hood of A connects the truth of A to triviality. Moreover, they may do so
without ever using classical negation — dialetheist may continue to catalogue
that as a tonk-like operator. So (6) seems to provide a means for dialetheists to
apply an inconsistency-adaptive logic without committing themselves to clas-
sical negation. Exploring the consequences of this insight obviously deserves
a careful study, but that goes beyond the present paper. Moreover, adaptive

30A bottom operator is characterized by the rule “from ⊥ to derive A”.
31The intended relevant implications are not those from the well-known and very rich

systems devised by Ackermann [Ackermann, 1956], Church [Church, 1951] and especially
Anderson and Belnap [Anderson, Belnap 1975; Anderson et al., 1992] but of much weaker
systems surveyed by Routley [Routley, 1982] and Brady [Brady, 2006].
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consequences derived on a condition ∆, remain to be justified in terms of the
joint falsehood, in the dialetheist sense, of the members of ∆.

6. In Conclusion

The problem I set out to solve concerned cases where one has an idea for
devising an adaptive logic in terms of a defeasible rule. The easier case was
where the set of abnormalities was given together with the lower limit logic for
ampliative adaptive logics or together with the upper limit logic for corrective
adaptive logics. If the idea for the adaptive logic comes in terms of a rule, the
set of abnormalities has to be delineated. I presented an extremely simple and
transparent recipe for doing so and argued that, except for very special cases,
the recipe leads to an adequate result.

A further important point deserves to be mentioned. I have shown that
there is a number of formerly unsolved difficulties for dialetheists who try to
invoke inconsistency-adaptive logics. For me logics are instruments. Instru-
ments may be independent of the philosophical and ideological views of those
who use them. So it seems an important feature that adaptive logics as well as
the proposed recipe work fine for dialetheists. Disagreements with dialetheists
is not an excuse for hiding that, unlike what one might expect, adaptive logics
turn out sensible and useful instruments for them.

A very different conclusion is not about generality but about specificity.
There is a huge number of different adaptive logics of inductive generalization.
This is not only required because of the many disagreements between philo-
sophers of science on inductive methods. It is also necessary in view of the
very different domains of application. To give just one example, the non-logical
terms of one language may be well entrenched technical terms and those of
another language may be taken straight from natural language. Further dif-
ferences will depend on the underlying conceptual framework, on the presence
of articulated observational criteria, and so on. Such differences may have an
effect on the suitability of a specific inductive method. The situation for other
ampliative adaptive logics is analogous.

Similar comments apply to corrective adaptive logics. The upper limit lo-
gic is known beforehand, but there are many ways to approach it: different
strategies, different lower limit logics, and for each combination of a strategy
and lower limit logic, different sets of abnormalities. Of course, not every spe-
cific circumstance determines a single adaptive logic. Nevertheless, the choice
of a suitable adaptive logic will be largely determined by properties of the the-
ory or domain to which it is applied. Mathematical theories have generally
conceptual structures that are much simpler that most empirical theories. So
they usually require a stronger lower limit logic, validating full Replacement
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of Identicals and reducing all statements to truth-functions of literals — truth-
functions in the broad sense including quantifiers. But apart from such rough
classifications, both mathematical and empirical theories will require careful
analysis in order to select the specific non-logical axioms in view of the lower
limit logic. Adaptive mathematical theories [Batens, 2014; Batens, 2019] are a
case in point.

Part of the importance of the present paper and of the recipe is related
to insights that have grown over the years. In the early days, adaptive logics
seemed to present an attractive approach to handle certain problems. Examples
were (i) inconsistencies coming up unexpectedly in a theory that was intended
as consistent or (ii) devising a precise formulation of a given method. By and
large, the impression was that adaptive logics were very general tools that
could be efficiently applied in nearly all circumstances. Only over the years did
it become clear that especially the choice of corrective adaptive logics depends
heavily on the context. When a problem is located, adaptive logics do not
provide one with a tool that in itself warrants success. One has to carefully
choose a language in which to formulate the problem. One has to carefully
select the way in which the theory or the data, in which the problem arises, are
phrased. Recently, especially with the application to Fregean set theories (sic),
it turned out that sometimes one even has to tailor the adaptive logic in view
of its application. On the one hand, this shows to what extend Dudley Shapere
was right in propagating content guidance and learning how to learn [Shapere,
2004]. On the other hand, it made necessary the search for the present recipe:
content guidance provokes more frequently the need for adaptive logics devised
in view of defeasible rules.
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References
Ackermann, 1956 – Ackermann, W. “Begründung einer strengen Implikation”, Journal

of Symbolic Logic, 1956, Vol. 21, pp. 113–128.
Anderson, Belnap 1975 – Anderson, A.R., Belnap, N.D. Entailment. The Logic of Rel-

evance and Necessity, Vol. 1. Princeton University Press, 1975.
Anderson et al., 1992 – Anderson, A.R., Belnap, N.D., Dunn, J.M. Entailment. The

Logic of Relevance and Necessity, Vol. 2. Princeton University Press, 1992.
Batens, 2019 – Batens, D. “Adaptive Fregean set theory”, Studia Logica, 2019. https:

//doi.org/10.1007/s11225-019-09882-1
Batens, 1985 – Batens, D. “Dynamic dialectical logics as a tool to deal with and partly

eliminate unexpected inconsistencies”, in: The Logic of Discovery and the Logic
of Discourse, J. Hintikka, F. Vandamme (eds.), Plenum Press, New York, 1985,
pp. 263–271.

https://doi.org/10.1007/s11225-019-09882-1
https://doi.org/10.1007/s11225-019-09882-1


32 Diderik Batens

Batens, 1986 – Batens, D. “Dialectical dynamics within formal logics”, Logique et Ana-
lyse, 1986, Vol. 114, pp. 161–173.

Batens, 1989 – Batens, D. “Dynamic dialectical logics”, in: Paraconsistent Logic. Es-
says on the Inconsistent, G. Priest, R. Routley, J. Norman (eds.), Philosophia
Verlag, München, 1989, pp. 187–217.

Batens, 2000 – Batens, D. “Minimally abnormal models in some adaptive logics”, Syn-
these, 2000, Vol. 125, pp. 5–18.

Batens, 2002 – Batens, D. “On some remarkable relations between paraconsistent lo-
gics, modal logics, and ambiguity logics”, in: Paraconsistency. The Logical Way
to the Inconsistent, W.A. Carnielli, M.E. Coniglio, and I.M.L. D’Ottaviano (eds.),
Marcel Dekker, New York, 2002, pp. 275–293.

Batens, 2004 – Batens, D. “The basic inductive schema, inductive truisms, and the
research-guiding capacities of the logic of inductive generalization”, Logique et
Analyse, 2004, Vol. 185–188, pp. 53–84. (Appeared 2005)

Batens, 2005 – Batens, D. “On a logic of induction”, in: Confirmation, Empirical
Progress, and Truth Approximation. Essays in Debate with Theo Kuipers. Vol. 1,
volume 83 of Poznan Studies in the Philosophy of the Sciences and the Humanities,
R. Festa, A. Aliseda, J. Peijnenburg (eds.). Rodopi, Amsterdam/New York, 2005,
pp. 221–242. (Contains uncorrected proofs; see [Batens, 2006] for correct version.)

Batens, 2005 – Batens, D. “The theory of the process of explanation general-
ized to include the inconsistent case”, Synthese, 2005, Vol. 143, pp. 63–88.
doi:10.1007/s11229-005-3114-3.

Batens, 2006 – Batens, D. “On a logic of induction”, L&PS – Logic & Philosophy of
Science, 2006, Vol. IV, No. 1, pp. 3–32. (Corrected version of [Batens, 2005].)

Batens, 2007 – Batens, D. “A universal logic approach to adaptive logics”, Logica Uni-
versalis, 2007, Vol. 1, pp. 221–242.

Batens, 2009 – Batens, D. “Towards a dialogic interpretation of dynamic proofs”, in:
Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman,
C. Dégremont, L. Keiff, H. Rückert (eds.). College Publications, London, 2009,
pp. 27–51.

Batens, 2011 – Batens, D. “Logics for qualitative inductive generalization”, Studia Lo-
gica, 2011, Vol. 97, No. 1, pp. 61–80. doi:10.1007/s11225-010-9297-8.

Batens, 2014 – Batens, D. “The consistency of Peano Arithmetic. A defeasible per-
spective”, in: Modestly Radical or Radically Modest. Festschrift for Jean Paul van
Bendegem on the Occasion of His 60th Birthday, P. Allo, B. Van Kerkhove (eds.),
Vol. 24 of Tributes, College Publications, London, 2014, pp. 11–59.

Batens, 2015 – Batens, D. “Tutorial on inconsistency-adaptive logics”, in: New Dir-
ections in Paraconsistent Logic, J.-Y. Béziau, M. Chakraborty, S. Dutta (eds.),
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1. Introduction

After discovering model sets in 1955 and (simultaneously with Stig Kanger)
the possible worlds semantics in 1957, Jaakko Hintikka published his pioneering
work Knowledge and Belief in 1962. This study formulated, by using the frame-
work of model sets (as partial descriptions of possible worlds), the fundamental
ideas of epistemic and doxastic logic. In Models for Modalities (1969) Hintikka
then generalized his approach from knowledge and belief to a general theory of
propositional attitudes (see also [Hintikka, 1980]). This book includes an art-
icle “On the Logic of Perception” [Hintikka, 1969], where Hintikka proposes to
analyze perceptual statements (with seeing, hearing, and feeling) within modal
logic in a similar way as knowing and believing. This paper used as its tool
the distinction between two ways of cross-identifying individuals in alternative
possible worlds. In a subsequent article “Information, Causality, and the Logic

c© Niiniluoto I.

http://dx.doi.org/10.21146/2074-1472-2020-26-1-36-47
mailto:ilkka.niiniluoto@helsinki.fi
http://dx.doi.org/10.21146/2074-1472-2020-26-1-36-47
http://dx.doi.org/10.21146/2074-1472-2020-26-1-36-47


Perception, memory, and imagination as propositional attitudes 37

of Perception” [Hintikka, 1975a] Hintikka incorporated causal aspects to his
logic of perception.

The logic of perception is an important part of Hintikka’s legacy within
intensional logic. It became an actively studied field in the 1970s and 1980s,
with contributions (among others) by Robert Howell [Howell, 1972], Richmond
Thomason [Thomason, 1973], John Bacon [Bacon, 1979], Jon Barwise [Bar-
wise, 1981] and James Higginbotham [Higginbotham, 1983] — and from Finland
Ilkka Niiniluoto [Niiniluoto, 1979; Niiniluoto, 1982] and Esa Saarinen [Saarinen,
1983]. But it is fair to say that, while epistemic and doxastic logics have become
more and more popular within philosophical logic and artificial intelligence (see
e.g. Hintikka [Hintikka, 2013] and the important collection edited by van Dit-
marsch and Sandu [van Ditmarsch, Sandu, 2018]), the logic of perception has
received relatively little attention (see, however, Rantala [Rantala, 2007] and
Bourget [Bourget, 2017]). Apart from some scattered examples by Hintikka,
the article by Aho and Niiniluoto [Aho, Niiniluoto, 1990] has remained the
only systematic investigation of the logic of memory. On the other hand, the
logic of imagination, introduced by Niiniluoto [Niiniluoto, 1983; Niiniluoto,
1985a; Niiniluoto, 1985b] along Hintikka’s lines (see also [Aho, 1994]), has ex-
perienced a recent renaissance with several new contributions (see [Costa-Leite,
2010; Wansing, 2017; Berto, 2017]).

2. Hintikka on Propositional Attitudes

Let a be a person or agent (a proper name in language) and p a proposition
(a factual statement in language). Then examples of propositional attitudes,
which are relations between a and p, include

Kap = a knows that p
Bap = a believes that p
Sap = a sees that p
Rap = a remembers that p
Iap = a imagines that p.

According to Hintikka, a general truth condition for an attitude ∅ can be
formulated as follows:

Sentence ‘a ∅s that p’ is true in world w if and only if p is true in all
possible worlds which are compatible with what a ∅s in world w.

Similarly,

Sentence ‘a ∅s that p’ is false in world w if and only p is false in some
possible world which is compatible with that a ∅s in world w.
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Here the condition

w′ is compatible with what a ∅s in w

defines an alternativeness relation for ∅ in the sense of possible worlds
semantics. Thus, ‘a ∅s that p’ is true in w if and only if p is true in all
∅-alternatives of w.

Immediate consequences of the truth condition for any attitude ∅ include

(∅1) ∅a(A→ B)→ (∅aA→ ∅aB)

(∅2) ∅a(A&B) ≡ (∅aA&∅aB)

(∅3) ∅aT , if T is a tautology

(∅4) ∅aA→ ∅a(A ∨B).

When ∅ is replaced by K,B, S,R, or I, we obtain basic principles for these
specific propositional attitudes. Besides these principles[Hintikka, 1962] argued
that knowledge K (unlike belief B) satisfies the success condition

(K5) KaA→ A

and the KK-principle

(K6) KaKaA ≡ KaA.

Hintikka’s truth definition for propositional attitudes leads to a problem
which is called logical omniscience in epistemic logic: an agent knows all tau-
tologies and all logical consequences of her knowledge. This is unrealistic, if
knowledge is understood as an actual mental state of a person. Similar prob-
lems arise for “logical omniperception” (in watching an ice hockey match, do
I see that Lionel Messi is playing or Lionel Messi is not playing?) or “logical
omnimemory” (do I remember all logical and mathematical truths as Plato’s
slave boy in Meno?). One solution is to accept that we in fact know and see
tautologies: when Sap means that according to the perceptions of a it is the
case that p, then trivially a tautology T is true in the actual world and all of its
S-alternatives. But there are also many other more technical solutions to logical
omniscience. Hintikka himself proposed in 1975 the use of “impossible worlds”,
which were developed as “urn models” by Veikko Rantala [Rantala, 1982]. If
one allows non-normal possible worlds, where ordinary laws of logic are not sat-
isfied, then propositional attitudes do not satisfy closure conditions for logical
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consequence. This proposal has been recently applied in the logic of imagination
as “hyperintensionality” (see [Berto, 2017]). Hintikka also argued that one can
use “small worlds”, which need not include all possible individuals (like Lionel
Messi), and the same restriction can be obtained by Barwise’s “situations” [Bar-
wise, 1981]. Fagin and Halpern proposed an “awareness logic” [Fagin, Halpern,
1985], where explicit knowledge concerns only such propositions about which
the agent is aware, but this is a very strong restriction, since actual awareness
need not satisfy even the closure condition for conjunctions (cf. (∅2)).

3. The Logic of Perception

Hintikka’s proposal to treat perception as a propositional attitude
([Hintikka, 1969]) was inspired by Elizabeth Anscombe’s thesis about the in-
tensionality of perceptual ascriptions. It is also related to Edmund Husserl’s
phenomenological approach to intentionality as directness. At the same time
this choice reflects Hintikka’s “neo-Kantian” conviction that perception is thor-
oughly conceptual, always mediated by conceptual schemes. He even blames
Husserl for assuming that in our sensuous experience there exists a non-
conceptual ingredient or hyle, which is changed into an experience about an
object by the act of noesis (see [Hintikka, 1975b, p. 198]). By the same
argument, Hintikka would reject the idea of non-conceptual content in exper-
ience (see e.g. [Crane, 1992]). Perception differs from imagination by the fact
that it involves causal interaction with external objects. With reference to the
psychologist James Gibson’s view of senses as information systems, Hintikka
characterizes perception as a method of reaching information about the world.

The logic of perception can be understood as an attempt to develop an
explicit semantics for sentences containing perceptual terms [Niiniluoto, 1982].
But the truth conditions of perceptual sentences provide also a formal syntax
which exhibits the systematic interconnections between different grammatical
constructions with perceptual terms. Just like epistemic logic shows how ex-
pressions like ‘know who’, ‘know where’, ‘know when’ etc. can be reduced to
propositional ‘know that’(see [Hintikka, 1962]), the logic of perception shows
that ‘seeing that’ is the basic form of perceptual statements. In particular, the
propositionality of perception is reflected in the result that all direct object de
re constructions (about things or events) are reduced to sentences with seeing
that. And, by the intensionality of perception, the truth conditions for state-
ments of the form Sap have to refer to several alternative possible worlds of
states of affairs at the same time.

Perception is usually understood as a species of knowledge, even though
errors of observation are common (illusions, hallucinations). Evolutionary ar-
guments suggest that human perception is relatively reliable in ordinary cir-
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cumstances. Some early attempts to develop logics of perception imitated epi-
stemic logic. For example, Richmond Thomason [Thomason, 1973] assumed
that seeing satisfies the success condition

(S5) SaA→ A

and John Bacon [Bacon, 1979] suggested an SS-principle

(S6) SaSaA ≡ SaA

But Hintikka realized that it is better to start from a weaker interpretation,
where Sap means something like ‘it appears to a that p’, ‘it looks to a that
p’ or ‘a seems to see that p’. In this sense, the S-operator does not satisfy
the success condition S5, so that it belongs to the same group of propositional
attitudes as belief. A stronger notion of veridical seeing ∗S, which satisfies the
success principle ∗Sap −→ p, can be obtained from the weaker S by adding
conditions which are sufficient to guarantee the truth of the perceived p. It is
also interesting to investigate the interplay of the operators K and S [Hintikka,
1975a; Niiniluoto, 1979].

Similar remarks apply the notion of memory [Aho, Niiniluoto, 1990]. As a
propositional attitude, memory is more complex than perception, since ‘a re-
members that p’ allows for many temporal alternatives, where p may be an
eternal, past tense, present tense, or future tense sentence. For example, ‘I re-
member that 5 + 6 = 11’, ‘I remember that Jaakko was lecturing on information
in 1967’, ‘I remember that today is my daughter’s birthday’, and ‘I remember
that tomorrow is my wife’s birthday’. Again memory is relatively reliable, but
mistakes are common. So in the logic of memory one should start from a weak
interpretation of R, which does not satisfy the success principle

(R5) RaA→ A,

but a strong notion of remembering ∗R can be obtained by adding conditions
so that ∗RaA → A is satisfied. At least for the strong notion we have the
principle that ∗Rap at t implies (Et′ < t)Sap at t′, i.e. reliable memories are
based on earlier perceptions. Instead of the RR-thesis (R6) it is plausible to
assume that KaRaA ≡ RaA.

For imagination, which a mental faculty of creating fictional worlds, it
is even more straightforward to observe that the principle IaA → A is not
valid [Niiniluoto, 1983; Niiniluoto, 1985a]. Still, it would be too strong to
assume an anti-success principle IaA → ¬A, since our imagination may be
accidentally true. It can be debated whether it is possible to imagine phys-
ically impossible or logically contradictory states of affairs (see [Niiniluoto,
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1985b; Costa-Leite, 2010; Berto, 2017]). Berto, whose dialetheism accepts
the conceivability of real contradictions, gives an affirmative answer to this
question. In order to emphasize imagination as an activity, Wansing analyses
imagination by combining a neighbourhood semantics with a modal logic of
agency [Wansing, 2017].

4. Quantifiers and Propositional Attitudes

The expressive force of Hintikka’s treatment of propositional attitudes is
seen only when we move from propositional logic to a framework with exist-
ential and universal quantifiers. This requires a solution to the problem of
quantifying into an intensional context, i.e. a method of identifying the same
individual in different possible worlds. In Hintikka’s approach, identified indi-
viduals constitute world lines, which as intensional entities serve as interpret-
ations of quantified variables (cf. [Tulenheimo, 2017]). The cross-identification
of individuals can be achieved by two different method: physical (descriptive)
world lines rely on physical properties of individuals, such as their permanent
public attributes and spatio-temporal continuity, while perspectival world lines
depend on the role of individuals in the agent’s perspective. In the case of
perception, the perspectival method identifies those individuals who play the
same role in the visual field of the percipient (cf. [Rantala, 2007]). These two
methods of cross-identification are correlated with two different quantifiers: the
physical existence quantifier is denoted by (Ex) and the perspectival by (∃x).
Then the truth conditions for quantified sentences with the S-operator can be
formulated as follows:

1. (Ex)SaA(x) is true at world w if and only if there is a physical world line
f which picks out an individual in each S-alternative w′ of w such that
f(w′) satisfies A(x) at w′;

2. (∃x)SaA(x) is true at world w if and only if there is a perspectival world
line f which picks out an individual in each S-alternative w′ of w such
that f(w′) satisfies A(x) at w′.

For example, assume that I meet on the road two familiar brothers, Ville
and Kalle, but I am not able to recognize who is who of them. The worlds
compatible with by perception are two:

V K K V
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Then the perspectival world line picks out the brother on the left side, i.e.
V and K, while the physical word line identifies Kalle (resp. Ville) in the two
alternative worlds.

According to the causal theory of perception, sense experience is normally
caused by external objects and events in the real world. Hintikka (see [Hintikka,
1975a]) complemented his logic of perception by requiring that perspectival
world lines are extended to the actual world by means of a causal connection.
For example, the line connecting the brother on the left is continued to the
individual who in the actual world has caused the observation. Memory involves
typically two causal processes: first learning that p by perception and then
maintaining this memory content in the mind over time. Due to their temporal
dimension, the world lines for memory are more complex, since they may pick
out temporally extended individuals from possible world histories (see [Aho,
Niiniluoto, 1990]).

With this machinery, we can formalize a variety of different epistemic and
perceptual statements (see [Niiniluoto, 1982]). Examples of sentences with a
direct reference to the object of perception include the following:

(∃x)Ka(x = b) a knows b

(∃x)Sa(x = b) a sees b

(∃x)(x = b&Sa(∃x)(y = x)) a looks at b

The sentence ‘a sees b’ is intensional in the sense that the object b may
be misidentified or a mere illusion. But instead ‘a looks at b’ implies that
(∃x)(x = b), i.e. b exists. The construction of seeing as, which was important
to Ludwig Wittgenstein, has a natural formalization (see [Howell, 1972]):

(∃x)(x = b&Sa(x = c)) a sees b as c

(∃x)(x = b&SaFx) a sees b as an F

Additional examples with a physical quantifier include

(Ex)Ka(x = b) knows who b is

(Ex)Sa(x = b) a sees who b is

Besides perceiving things and states of affair, one may speak about per-
ceiving events, when we allow quantifiers to range over events (or world-line
connecting events in alternative possible worlds). For example, we may distin-
guish between

Sa(Esa runs) a sees that Esa runs

(∃e)(e = Esa’s running &Sa(∃x)(x = e)) a sees Esa run
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(see [Niiniluoto, 1982]). The former sentence is intensional, so that I can be
mistaken by the observed person or his activity. The latter sentence ‘I see Esa
run’ is known in English as “naked infinitive”. Jon Barwise (see [Barwise, 1981])
proposed in his situation semantics that the sentence ‘I see Esa run’ is true, if
there is a situation which I see and which supports the truth of the sentence ‘Esa
runs’. Seeing a situation is a purely extensional relation for Barwise. Thus, such
extensional perceptual statements are associated with a success condition: if I
see Esa run, then Esa runs. This holds also of the Hintikka style formalization,
which implies that (∃e)(e = Esa’s run). In the same way, the statement ‘I see
the birch tree blowing in the wind’ can be formalized by the formula

(∃e)(e = the tree is blowing in the wind &Sa(∃x)(x = e)).

Here Barwise’s extensional success condition is satisfied, but the problem
of his situation semantics is its inability to treat the intensionality of percep-
tion (cf. [Saarinen, 1983; Higginbotham, 1983; Niiniluoto, 1985a; Niiniluoto,
1985b]).

In Hintikka’s formalism, one may distinguish the epistemologically import-
ant cases ([Niiniluoto, 1979]):

(∃x)(x = b&Fx&SaFx) veridical perception

(∃x)(∼ Fx&SaFx) visual illusion

(∃x)(SaFx) & ∼ (∃x)((Ey)(y = x) &SaFx) visual hallucination

As an example of hallucination, in the morning after a heavy party I may
see a pink elephant on the wall (F ), but the associated perspectival world line
cannot be extended to the actual world. The sentence

(∃x)(SaFx&Ka ∼ Fx)

expresses a conscious illusion: it seems to me that the oar is bent in the water,
even though I know that this is not really the case. Hence, illusions need not
always be mistaken beliefs, as many theories of perception claim.

By combining perceptual and epistemic operators further interesting cases
are obtained (see [Niiniluoto, 1979]):

(∃x)(x = b&Sa(∃y)(y = x) &Ba(x = c)) a visually holds b as c

(∃x)(x = b&Sa(∃y)(y = x) &Ka(∃y)(y = x)) a notices b

(∃x)(Sa(∃y)(y = x) &Ka(x = b)) a recognizes b

For similar reasons perception may fail in many ways: don’t look at, don’t
see, don’t notice, don’t recognize.

Corresponding formulations for memory (e.g. ‘I remember you’, ‘I remem-
ber Jaakko lecturing’, ‘I am reminiscing about her’, ‘I remember who this girl
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is’) and imagination (e.g. ‘I am imagining about my friend’, ‘I imagine her as
Anna Karenina’, ‘I imagine that Esa is running’) can be given by the two kinds
of quantifiers combined with the operators Ra and Ia (see [Aho, Niiniluoto,
1990; Niiniluoto, 1985b]). It is also easy to formulate sentences for remember-
ing when, where, what, and who. But a complete formalization of memory
statements should be combined with temporal logic: the statement ‘I remem-
ber Esa as a young student’ is directed to a person living now, but ‘Jaakko
remembers Gödel’ should not entail that Gödel exists now.

An interesting special feature of memory and imagination is self-
identification. Memories of past event are personal in the sense that the agent
has to be able to place himself or herself in the remembered scene. If I remem-
ber that Jaakko was lecturing in 1967, I have to identify myself as a person in
the audience. David Lewis (see [Lewis, 1979]) has called such epistemic abilities
de se attitudes. More generally, contexts involving de se attitudes may involve
interplay of physical and perspectival identification.

5. Concluding Remarks

The logic of perception is mainly interesting for epistemology and philo-
sophy of language, but it may have potential applications with the psychology of
perception and cognitive neuroscience. Hintikka himself was excited by the fact
that his philosophical distinction between the physical and perspectival meth-
ods of cross-identification has a counterpart within neuroscience: the what- and
where-systems of visual perception [Vaina, 1990] and the semantic and episodic
memory [Tulving, 1972] (see [Hintikka, 1990; Hintikka, Symons, 2003]). But
while the neuroscientists have postulated two different kinds of visual percep-
tion or memory, Hintikka’s system is more economical, as it assumes only one
perceptual operator (seeing that) or memory operator (remembering that).

Given the strong emphasis on the concept-laden nature of perception and
memory, one may ask whether the Hintikka-type of approach is applicable to an-
imals and children before they have learnt a symbolic language. One possibility
is that the logic of perception is a third-person analysis of perceptual processes
independently whether the agent has linguistic abilities. But Hintikka’s own
discussion seems to assume that the framework describes perceptual experiences
of actual subjects. Then one might surmise that the physical cross-identification
is not yet successful for a creature on the pre-linguistic level, as this presup-
poses mastery of temporal and spatial concepts and the objective distinction
between “you” and “me”. Perspectival cross-identification is simpler, as it al-
lows a dog to “know” its master or a child to “know” her mother. The formula
‘a looks at b’ presupposes only that a is able to see b as an existing object
separate from its environment, which is possible already in the pre-conceptual
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level of consciousness. But here it is somewhat perplexing that Tulving ar-
gues that animals possess the semantic memory but lack the episodic memory
(see [Tulving, 1972]). Perhaps such animal abilities should be formalized by
statements involving remember-how in analogy with know-how.

Similar question arise, if the logic of perception and the logic of memory
are applied to theories and practices of artificial intelligence, such as pattern
recognition and machine learning. There the human agent is replaced by a
robot or a self-regulating computer program, which does not have intentional
mentality or de se attitudes. Still, such machines can be taught to be in causal
interaction with their environment, to store perceptual data and to use them
in recognition and inference.
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1. Introduction

Logic is about arguments. Arguments are expressed in languages; and for
modern logicians, these are formal languages. For such a language, a metalan-
guage is a language which can express — amongst other things — statements
about that language and its properties. And a metatheory is a theory couched
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in that language concerning how some of those notions behave. Two such no-
tions that have been of particular interest to modern logicians — for obvious
reasons — are truth and validity. These notions are notoriously, however, deeply
entangled in paradox. A standard move, since Tarski’s Warheitsbegri [Tarski,
1935] is to take the metalanguage to be distinct from language in question, and
so avoid the paradoxes.

I think that most logicians would now agree with Tarski that this move is
just an artifice — one with little justification other than to avoid contradiction.
Natural languages, in which, of course, such paradoxes find their home, most
certainly do not seem to be structured in this hierarchical fashion.

One of the attractions of a dialetheic approach to the paradoxes of self-
reference is that this move may be avoided. One may have a language with the
expressive power to talk about — among other things — itself, and a theory in
that language about how notions such as truth and validity for that language
behave. The contradictions delivered by these notions are forthcoming, but
they are quarantined by the use of a paraconsistent logic.

The point of this paper is to discuss this project, the extent to which it has
been successful, and the places where issues still remain. In the first part of the
paper I will discuss truth; in the second and much longer part, I will discuss
validity.

2. Truth

As far as truth is concerned, what we need is a language which contains
a way of referring to its own sentences, and a truth predicate that applies to
these. As is now standard, a simple way of talking about sentences is to suppose
that our theory contains arithmetic, and use a gödel coding. I will assume this
in what follows. In particular, given any sentence, A, of the language, I will
write 〈A〉 for the numeral of the gödel code of A. This is its name.

The theory must also tell us how truth behaves. Given that avoiding para-
dox is no longer necessary, the natural and obvious thought is that it should
deliver all instances of the T -schema:

• T 〈A〉 iff A

There is a question about how to understand the ‘iff’ here, and there are various
possibilities. One is as the biconditional of some relevant logic, ↔; another is
as bi-deducibility, a`; another is as a material biconditional, ≡ (where A ≡ B
is (¬A ∨ B) ∧ (¬B ∨ A)). Given some simple assumptions, the first of these
options is the strongest. In particular, any results about what cannot be proved
using this notion of conditionality carry over to the weaker notions. So let me
discuss this option.
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Take the logic of our theory to be an appropriate relevant logic;1 and take a
theory in this logic which contains enough arithmetic, plus the axiom schema:

• T 〈A〉 ↔ A

for any closed sentence, A. It is now well known that such a theory is incon-
sistent but non-trivial. Thus, one can show that some sentences are both true
and not true — for example, the sentence L of the form ¬T 〈L〉. However, one
cannot prove everything. In particular, any sentence in the →-free fragment
in the language which is grounded in Kripke’s sense [Kripke, 1975] behaves
consistently. The proof of this and references may be found in [Priest, 2008,
§ 8].

Of course, one may wish for more from a theory of truth than this. In
particular, Tarski showed how to give a theory of truth in which truth condi-
tions are given recursively, and the T -Scheme is then proved. One can do this
too. What is essentially the Tarski construction can also be carried out in a
paraconsistent logic. The details of the construction can be found in [Priest,
1987, ch. 9].

Before we move on to validity, let me make a couple of comments on two
notions cognate with truth: satisfaction and denotation. The construction
which shows the non-triviality of the T -Schema may be used to establish the
non-triviality of the (one-place) Satisfaction-Schema:2

• yS 〈A〉 ↔ Ax(y)

where S is the satisfaction predicate, A is any formula of one free variable, x,
and Ax(y) is the result of substituting y for x in A (relabelling bound variables
if necessary to avoid a clash).

We may define the denotation predicate, D, in the obvious way: 〈t〉Dy :=
yS 〈x = t〉, where t is any (closed) term, to deliver the Denotation Schema:

• 〈t〉Dy ↔ y = t

The same results then follow for denotation.
There is an extra complication in this case, however. I have tacitly as-

sumed that the language we are dealing with till now does not contain de-
scriptive terms. If we add such terms to the language, complications arise in
the case of denotation. Non-triviality results are obtainable, at least when the

1Exactly what this is, we do not need to go into here. But I assume that the logic contains
the Principle of Excluded Middle, |= A ∨ ¬A, but not Absorption, A→ (A→ B) |= A→ B.
A suitable such logic is BX. See [Priest, 2008, 10.4a.12].

2And its generalisation to an arbitrary number of free variables.
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biconditional of the Scheme is bi-deducibility.3 However, matters are less than
straightforward, since they are entangled with assumptions one makes about
denotation.

3. Validity: Preliminary Considerations

Let us now move from truth to the somewhat move vexed notion of validity;
and let us start by getting some relatively straightforward matters out of the
way.

In modern logic, validity can be defined syntactically, in terms of some
proof system, or semantically, in terms of interpretations of the language. Any
axiomatic theory that contains arithmetic can define its own syntactic validity
relation, at least for finite premise-sets. Thus, given an axiom system for the
theory, whose axioms are the members of some decidable set X, then if Y is
finite set of sentences, Y ` A iff there is a finite sequence of formulas, A1, ..., An
such that A is An, and for any i < n, Ai is either in X, or in Y , or follows from
some sentences earlier in the sequence by some rule of inference. All this can be
expressed in arithmetic in a familiar fashion. Nothing about paraconsistency
changes this matter.

Of course, if the arithmetic theory is axiomatic and consistent, it cannot
prove its own consistency. On the other hand, there are complete and incon-
sistent arithmetics based on a paraconsistent logic which can prove their own
non-triviality.4

So let us switch our attention to a semantic definition of validity. According
to such a definition, X |= A iff every interpretation (appropriate for the logic
in question) which makes all the members of X true makes A true. First, note
that the notion of truth here is truth-in-an-interpretation, not truth simpliciter.
Of course, one might hope that there is some interpretation such that truth in
that interpretation is extensionally equivalent to truth simpliciter (a standard
interpretation); but such is not required for a definition of validity. Next,
note the the notion of an interpretation, as it is standardly understood, is
a set-theoretic one. (An interpretation comprises a domain of quantification,
a denotation function, etc.) Hence, to give such a definition requires one to
deploy the language of set theory.

How to do so is familiar to anyone with a knowledge of the elements of
model-theory. Thus, suppose our language is that of first-order set-theory, and
our theory is ZFC. Then, given any language, L, and a notion of interpretation
for that language, we can define the relation X |= A in a straightforward
fashion. In particular, L can be the language of first-order set theory, and the

3See [Priest, 1998; Priest, 1999] and [Priest, 2005, ch. 8].
4See [Priest, 1987, 17.4].
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notion of interpretation can be that of classical logic. The notion of validity
defined can then be the one deployed in ZFC. In that sense, ZFC can define
its own validity relation.

What it cannot do, at least if ZFC is consistent, is to prove that there is a
standard model. That is, it cannot establish the existence of an interpretation,
I, such for any sentence, A, in the language of set theory, 〈A〉 is true in I iff A.
This fact deprives us of a rationale as to why one may legitimately deploy this
notion of validity when reasoning in ZFC itself — where we are, presumably,
interested in deploying a notion of validity that preserves truth simpliciter. It is
not at all obvious how to address this issue. Probably the best known approach
is to apply the notion of informal rigour, as suggested by [Kreisel, 1967].

4. Paraconsisent Validity

Having got these matters straight, let us now turn to the issue of a model-
theoretic definition of validity appropriate for a dialetheic solution to the para-
doxes of self-reference using a paraconsistent logic.

Of course, if one holds that ZFC is the correct set theory, matters are ex-
actly the same as in the case of classical logic. One simply replaces the notion
of a classical interpretation with that of the notion of interpretation appropri-
ate for the paraconsistent logic at hand. This approach is hardly available to
someone who endorses a dialetheic solution to the paradoxes of set-theory, how-
ever. For in such an approach one endorses the naive comprehension schema:

• ∃x∀y(y ∈ x iff A)

where A is arbitrary.5 The set-theoretic paradoxes are then forthcoming, but
they are quarantined by the use of the paraconsistent logic. Naturally, this
commits one to a set-theory quite different from ZFC.

And here we meet our first real problem. What is that set theory? The
matter turns again on how one is to understand the conditional ‘iff’ in the
schema. There are presently two approaches to the problem. The first is to
take the underlying logic of the theory to be an appropriate relevant logic,
and take the biconditional to be that of this logic. This approach has been
developed at greatest length by Weber [Weber, 2010; Weber, 2012], who has
shown how to prove most of the standard results concerning ordinal and cardinal
arithmetic (and many other interesting things) in this theory. The theory is
also known to be non-trivial, due to a proof of Brady.6 It is also clear that the

5Even if one insists that x does not occur free in A, the more general case follows. A
proof of this for set theory based on a substructural logic can be found in [Cantini, 2003,
Theorem 3.20]. The same proof works in relevant logic.

6For discussion and references, see, again, [Priest, 2002, § 8].
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standard model-theoretic definition of validity can be given for the logic used.
One simply defines it and the notions it requires in the obvious way. One has at
one’s disposal, after all, the naive comprehension schema. Unfortunately, it is
not known how much of standard model theory can be established in this way,
since the usual proofs deploy inferences not available in the theory. Naturally,
the definitions themselves are not much good unless we can show that the
notions defined have at least some minimal properties, such as that the proof
system of the logic is sound with respect to the notion of validity. Until more is
known about these matters, it is impossible to say anything much for the issue
at hand.7

A quite different approach to paraconsistent set theory is to take its underly-
ing logic to be that of the paraconsistent logic LP , and to take the biconditional
in the comprehension scheme to be the material biconditional of that logic.8 If
one takes this approach then, since the conditional of this logic does not detach,
one cannot prove anything much from the set theoretic axioms. A different ap-
proach is required. This is itself model-theoretic. It can be shown that there
are interpretations of the language of set-theory which are models of both the
naive comprehension schema and all the theorems of ZFC. The set of sen-
tences true in such models is inconsistent, since one can prove paradoxes such
as Russell’s, but non-trivial. And now, if one may assume that the universe
of sets — or universes of sets if there is more than one — is/are given by such
(an) interpretation(s), then one may simply help oneself to anything that can
be engineered in ZFC, including the definition of validity for the logic LP , and
all those results about it that may be proved.9

One thing that this approach can do, which can not be done classically, to
deliver us a standard model. For it can be shown that there are interpretations
of the kind just indicated in which all instances of the following are true:

• ∃x(x is an LP interpretation ∧(A ≡ (x + 〈A〉)))

7In [Weber, 2016], Weber shows one way in which semantic validity may be defined for
propositional logic, and proves soundness and completeness. His approach comes with a steep
downside, however: every inference is invalid (though some are valid too). Non-triviality
proofs also become trivially easy, and so somewhat vacuous. It seems to me that many of the
problems arise because Weber endorses the exclusivity of truth and falsity in an interpretation
(p. 539). This assumption, it seems to me, could be jettisoned. However, this is not the place
to go into that matter.

8This account of set-theory is proposed in the second edition of [Priest, 1987, ch. 18], and
explored at greater length in [Priest, 2017, §§ 10–12].

9Naturally, one may ask why such an assumption is justified. Perhaps there is no better
answer than that it seems to validate the things we take to be true of sets — though of course
it does not justify these beliefs.



54 Graham Priest

(Here, + denotes truth in a LP interpretation.) Assuming, again, that the
universe(s) of sets is (are) like this then justifies the application of this notion of
validity in reasoning about sets. Of course, one might reject the claim that the
“intended” models of set theory do contain a standard model. In that case, we
would be no worse off than in the classical case, and we would have to deploy
some strategy such as Kreisel’s in an attempt to justify using LP to reason
about sets.

A second positive fact about this notion of validity, is that it solves a version
of the validity-Curry paradox, first proposed by [Beall, Murzi, 2013]. Let us
write V (〈A〉 , 〈B〉) to express the fact that the inference from A to B is valid.
By standard techniques of self-reference, we can construct a sentence, D, of the
form V (〈D〉 , 〈⊥〉), where ⊥ is a logical constant such that, in LP , ⊥ |= A, for
any A. Then there is a natural argument for ⊥. This argument fails in the
models we are dealing with, since they are closed under LP consequence, and
they are not trivial. Where the argument breaks down may depend on exactly
how it is formulated; but essentially, it fails due to the invalidity of material
detachment.10

5. Validity and Detachment

In the last couple of sections, I will take up two issues arising from this
account of validity. In what follows, I will stick to the one-premise case of
validity for simplicity. The considerations clearly carry over the general case.

The first issue concerns the fact that if we define validity in the way de-
scribed, the connection between the premises of a valid inference and its con-
clusion is only a material one.11 The definition of validity has the following
form:12

• ∀I(I + A ⊃ I + B)

Even though an inference is valid, then, the move from I + A to I + B
is not valid in LP . And if I is the standard model, the same goes for truth
simpliciter. This does not mean that no inference from the first to the second is
possible. Failure of detachment occurs in LP only when the antecedent of the
conditional is both true and false. Hence the move is legitimate provided that
this is not the case. This observation can be built into a formal non-monotonic
logic, LPm, in which the inference from C and C ⊃ D to D is a valid default

10For further discussion, see [Priest, 2017, § 4.2].
11The following comes from [Priest, 2017, § 14].
12+ is a relationship between an interpretation and a sentence, so it would be more correct

to write the relation as I + 〈A〉. However, here and in what follows I omit the quotation
marks, as logicians usually do.
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inference.13 Using LPm, we can then move from I + A to I + B provided
that we do not have I 6+ A as well (which is quite different from I + ¬A).

However, it remains the case that this is a default inference. What is the
significance of this? This depends on how one understands the model-theory.
A straightforward way to understand the model-theoretic definition of validity is
as specifying the meaning of ‘valid’. In this case, even valid deductive inferences
are, in the last instance, default inferences.

It might be thought odd to have the validity of a deductive inference groun-
ded in a defeasible inference. But a little thought may assuage this worry.
The difference between a material I + A ⊃ I + B and a detachable
I + A → I + B is not as great as might be thought. Both are simply true
(or false) statements. Inference, by contrast, is an action. Given the premises
of an argument, an inference is a jump to a new state. No number of truths is
the same thing as a jump. (This is the moral of Lewis Carroll’s celebrated dia-
logue between Achilles and the Tortoise [Carroll, 1895].) None the less, truths
of a certain kind may ground the jump, in the sense of making it a reasonable
action. There is no reason why a sentence of the form C ⊃ D may not do this,
just as much as one of the form C → D. It is just that one of the latter kind
always does so, while one of the former kind does so only sometimes (normally).

If it is not clear how a defeasible warrant for an action can work, merely
consider sentences of the form:

(*) You promised to do x.

The truth of (*) is normally a ground for doing x, in the sense of making it
reasonable to do so. But, to use a celebrated example, suppose that (*) is true,
where the x in question is the returning of a weapon to a certain person. And
suppose that the person comes requesting the weapon, but you know that they
intend to use it to commit murder. Then the truth of (*) does not, in this
context, ground the action. So with validity and the material conditional: the
truth of a sentence of a certain kind may ground an appropriate action in
normal circumstances, but fail to do so in unusual circumstances.

Another way to take the model-theoretic account of validity is as providing,
not the meaning of ‘valid’, but merely an extensional characterisation of what
is valid. The meaning of ‘valid’ itself can be characterised in a different way, say
proof-theoretically (or simply taken as an indefinable primitive). The model-
theoretic account merely gives us a characterisation of what inferences are or
are not deductively valid — nothing more. Valid inferences can then simply
license detachment of their conclusions, though this aspect of things may not
be captured by the characterisation. In a similar way, an inferentialist who

13See the second edition of [Priest, 1987, ch. 16].
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takes validity to be defined in terms of the meanings of the logical constants,
spelled out in terms of introduction and elimination rules, may yet hold that a
model-theoretic definition of validity delivers an extensionally equivalent char-
acterisation (if sound and complete), though this may miss aspects of validity
itself.

6. Dialetheic Validity

The second issue I will take up concerns the extent to which validity is
itself a dialetheic notion. Let us suppose that we are working within one of the
models of the kind we saw to exist in §4; and let us suppose that the model
does verify the existence of a standard model.

The following argument is due, in effect, to Young [Young, 2005]. Let M
be the standard model. Then given the resources of self-reference, we can find
a sentence, D, of the form M 6+ D. The facts about the standard model then
deliver:

• M + D ≡ M 6+ D

It follows in LP that M + D ∧ M 6+ D. Since A,¬B |= ¬(A ⊃ B), it also
follows that

• ¬(M + D ⊃ M + D)

So ∃x¬(x + D ⊃ x + D), i.e., ¬∀x(x + D ⊃ x + D). That is,
the inference from D to D is invalid. It follows that p 6|= p, since p has an
invalid substitution instance — even though p |= p as well. Perhaps this is not
surprising. Truth is intimately connected with validity — at least when we have
a standard model around. So one might expect self-referential constructions to
deliver inconsistencies concerning validity; and the inference from p to p is not
a terribly useful one!

It might be thought that Young’s argument can be extended to establish
that other valid inferences are also invalid. Thus, consider, for example, the
inference from p ∧ q to p. If we could show that:

• [1] ¬(M + D ∧D ⊃ M + D)

we would have a similar counter-example. Now, the truth conditions for con-
junction give us:

• I + D ∧D ≡ I + D ∧ I + D

or equivalently:

• [2] I + D ∧D ≡ I + D
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In LP material equivalents are inter-substitutable, in the sense that A ≡ B |=
C(A) ≡ C(B).14 So from [2], when I is M , we have:

• ¬(M + D ⊃ M + D) ≡ ¬(M + D ∧D ⊃ M + D)

But we cannot infer [1] because of the failure of detachment for the material
biconditional. The inference is not even a valid default inference, since we know
that the left hand side is contradictory. The same sort of problem is going to
beset similar extensions of Young’s argument to other inferences.

At present, it is not known how inconsistent validity is on the approach un-
der consideration. The natural generalisation of Young’s argument does not go
through, but that does not mean that there are no others; and at present, there
are no arguments which establish that the domain of inconsistency concerning
validity is bounded, of the kind that show this for truth. This is, hence, an
area where more work is required.

But let us suppose a worst case scenario: every inference is invalid. How
damaging a conclusion would this be? Less than one might have thought.
(Certainly, much less than a conclusion to the effect that every sentence is not
true.) One should remember that every inference is an instance of some formally
invalid inference (e.g., p ` q). An inference is acceptable if it is a substitution
instance of some formally valid inference. Thus, it is perfectly acceptable to
use an inference that is formally valid — it’s a substitution instance of itself —
even if it is invalid too!15

14See [Priest, 2017, 2.3].
15I note that there is a way to avoid conclusions to the effect that some valid inferences

are invalid, whether they are arguments of Weber’s kind or of Young’s kind. The definition
of semantic validity given in [Priest, 1987, 5.2], is slightly different from the one considered
above. It uses a truth predicate, and amounts to this:

• A |= B is ∀I T
〈
I + A ⇒ I + B

〉
(where ⇒ is either → or ⊃, depending on how one thinks of the underlying set theory). Of
course, given the T -Schema, this makes no difference to what is valid. However, it may well
make a difference to what is invalid. One can establish that ¬(M + D ⇒ M + D), and
so T

〈
¬(M + D ⇒ M + D)

〉
; but one cannot establish that ¬T

〈
M + D ⇒ M + D

〉
unless negation commutes with truth; that is, unless the T -schema contraposes. There are
reasons to suppose that it does not. See [Priest, 1987, 4.6]. A reader of the 1987 text would
probably not even have noticed the use of truth in the definition there, or might have supposed
its use to be merely stylistic. It would not be unreasonable to do so. Indeed, I myself have
ignored this subtlety ever since. However, the use of the truth predicate was not an innocent
one: I phrased the definition like this precisely because I thought that arguments of the kind
in question might be possible.
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7. Conclusion

We have now looked at many of the most important aspects of a dialetheic
account of metatheory. While it can hardly be claimed that all of these are
resolved, the project seems in a more than satisfactory state.

Acknowledgements. Many thanks go to Zach Weber for comments on an earlier
draft of this paper. A version was read at the UNILOG conference, Vichy, June
2018.
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For citation: Sandu G. “Gödelian sentences and semantic arguments”, Logicheskie Issledo-
vaniya / Logical Investigations, 2020, Vol. 26, No. 1, pp. 60–77. DOI: 10.21146/2074-1472-
2020-26-1-60-77

To the memory of Alexandr Karpenko, such a great friend

1. Gödel incompleteness theorem

Let L be the language of arithmetic, consisting of

- variables, x0,x1, x, y, ...

- logical constants: ¬,∨,∃x,=

- nonlogical constants: 0,S,+,×.

(Here ‘0’ is an individual constant, ‘S’, is a one-place function symbol and ‘+’,
and ‘×’ are two place function symbols.)

From these items, the terms and formulas of the language of L are formed
in the standard way.

As Tarski observed, the object language of a formalized science, comes
together with a theory, usually given by listing its axioms and rules of inference.
In our case the starting point is the theory Q (minimal arithmetic) which is the
set of logical consequences of the following axioms:
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1. ∀x∀y(Sx = Sy → x = y)

2. ∀x(Sx 6= 0)

3. ∀x(x 6= 0→ ∃y(s = Sy))

4. ∀x(x+ 0 = x)

5. ∀x∀y(x+ Sy = S(x+ y))

6. ∀x(x× 0 = 0)

7. ∀x∀y(x× Sy = (x× y) + x).

Notice that this theory is finitely axiomatizable. The language of Q is inter-
preted in a metalanguage in which ‘0’ is assigned the the natural number zero,
‘S’ is assigned the successor function, ‘+’ is assigned the operation of addition
‘×’ is assigned multiplication. It is known that Q is a rather strong theory
which is able to represent all recursive functions (in a technical sense of the
notion of ‘representation’, which is assumed to be known. It is also known that
Q defines (in a technical sense assumed to be known) its own syntax and many
semantical notions. This happens, as shown by Gödel, via the notion of gödel
numbering. As a result, each term t in the language L gets associated with a
gödel number ptq; and each formula A receives its gödel number pAq. Recalling
that every natural number m has a name m in L, where m is an abbreviation
for (the numeral) SS...︸ ︷︷ ︸0 (m times), we see that every term t and every formula
A have names in the arithmetical language, ptq and pAq, respectively. This
fact, together with the ones mentioned earlier, makes possible to introduce, for
any formula A in the language of arithmetic, the diagonalization of A, which
is the expression

∃x(x = pAq ∧A).

When A is a formula with one free variable, then we see that asserting the
diagonalization of A amounts to predicating A of its own gödel number.

From Gödel’s results, it follows that for any theory T extending Q, the
set of gödel numbers of theorems of T is not definable in T , from which it
can be further inferred that the set of Gödel numbers of true arithmetical
sentences (“true in the standard model”) is not definable. This last statement is
usually known as “Tarski’s theorem”; it is somehow debatable in the literature
whether Gödel himself was aware of this result or not, but this matter will not
concern us here. The first statement is standardly proved by reductio using the
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diagonalisation lemma which asserts that for any theory T which extends Q,
for any formula B(y) there is a sentence A such that

T ` A↔ ¬B(pAq).

The second statement follows directly from it, by observing that the set of
true arithmetical sentences is an extension of Q.

The variant of the Gödel’s incompleteness theorem we are interested in is
proved by first showing that for every extension T of Q there is a formula
PrT (x) in the language of arithmetic which has the form ∃yProvT (x, y) and is
such that for any sentence A in the language of arithmetic:

• T ` A if and only if ∃yProvT (pAq, y) is true (in the standard model)
if and only if for some natural number m, ProvT (pAq,m) is true if and
only if (given the representability of ProvT in Q), Q ` ProvT (pAq,m)
for some m.

Here ProvT (x, y) is a primitive recursive formula, that is, a formula which
contains only bounded quantifiers and is closed under the standard propos-
itional connectives. Thus, from the above we get that if T ` A then
Q ` ProvT (pAq,m) for some m, and given that T is an extension of Q we
also get T ` ∃yProvT (pAq, y), i.e., T ` Pr(pAq). Now applying the Diagon-
alization lemma to the formula ∃yProvT (pAq, y) Godel showed that there is a
sentence, usually denoted by G such that

T ` G↔ ¬∃yProvT (pGq, y)

The sentence G is called a Gödel sentence for T . It is taken to say: “I am
unprovable”.

We recall that a theory T is called ω−inconsistent if there is a formula F (x)
such that T ` ∃xF (x) but T ` ¬F (0), T ` ¬F (1), T ` ¬F (2),...(for every
natural number 0, 1, 2, ...). T is called ω−consistent if it is not ω−inconsistent.
Now Gödel proved

Theorem 1. (Gödel First Incompleteness Theorem). Let T be a consistent,
axiomatizable extension of Q and let G be a Gödel sentence for T . Then T 0 G.
If T is ω−consistent, then T 0 ¬G.

The proof is well known but we rehearse it here (we follow Boolos, Jeffrey
and Burgess), because it serves as a basis for extracting, later on, a se-
mantic argument. Suppose that T ` G. Hence, by our previous comments,
∃yProvT (pGq, y) is true (in the standard model) and by a well known res-
ult, Q ` ∃yProvT (pGq, y); given that T is an extension of Q we also have
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T ` ∃yProvT (pGq, y). From the Diagonalization lemma we also know that
T ` ¬∃yProvT (pGq, y). Thus T is inconsistent, a contradition. Hence T 0 G.
For the second claim, suppose that T ` ¬G. By the diagonalization lemma,
T ` ∃yProvT (pGq, y). But given that T is consistent and T ` ¬G, we must
have T 0 G. This implies that for no natural number n, n is the code of a proof
of G in T , that is, ¬ProvT (pGq, 0), ¬ProvT (pGq, 1), ¬ProvT (pGq, 2)..., are
all true (in the standard model), where each of these formulas are primitive re-
cursive. Hence Q ` ¬Prov(pGq, 0), Q ` ¬Prov(pGq, 1), Q ` ¬Prov(pGq, 2)....
and since T is an extension of Q we also have T ` ¬Prov(pGq, 0), T `
¬Prov(pGq, 1), T ` ¬Prov(pGq, 2).... Hence T is ω−inconsistent, which con-
tradicts our assumption. We conclude T 0 ¬G.

After reviewing these results, let us return to the question which is the
main concern in this paper, namely Gödel’s method to produce undecidable
sentences such as G, and especially a claim often made in this connection to
the effect that these sentences are true and recognized to be true. Here is, for
instance, how Dummett describes Gödel’s result:

By Gödel’s theorem there exists, for an intuitively correct formal
system for elementary arithmetic, a statement [G] expressible in
the system but not provable in it, which not only is true but can be
recognized by us to be true... [Dummett, 1963].

The puzzling question is: how do we “recognize” that G (or any statement
equivalent to it) is true?

The above proof of the theorem does not give an explicit argument about
how we come to recognize G as true, neither did Gödel provide one. But it is
not very difficult to extract one. From the Diagonalization lemma we know that
the statement G is equivalent to a universal statement, viz. ¬∃yProvT (pGq, y)
(i..e ∀y¬ProvT (pGq, y)). From the second part of the proof we see that every
numerical instance is provable (and true) in the system. Since G is the universal
quantification over all these numerical instances, then G is true. Of course in
this last step we rely on our grasp of the standard model (this is what the
ω−consistency is supposed to ensure).

In fact, this is Dummett’s argument for the truth of Gödel’s sentence:

The statement [G] is of the form ∀xA(x),where each one of the
statements A(0),A(1),A(2), ...is true: since A(x) is recursive, the
notion of truth for these statements is unproblematic. Since each
of the statements A(0),A(1),A(2), ...is true in every model of the
formal system, every model of the system in which G is false must
be a non-standard model...whenever, for some predicate B(x), we
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can recognize all of the statements B(0),B(1),BA(2), ...as true in the
standard model, then we can recognize that ∀xA(x) is true in that
model. This fact ...we know on the strength of our clear intuitive
conception of the structure of the model [Dummett, 1963, p. 191].

As we see from this quote, we come to appreciate that the undecidable Gödel
sentence G for Q is true not by working inside the system but rather by con-
ducting a so called semantical argument which makes an essential use of the
concept of truth itself. Dummett is not the only one to have seen the import-
ance of semantical arguments. There is another semantical argument which
uses the truth predicate, distinct from Dummett’s argument, which goes back
to Alfred Tarski [Tarski, 1956]. In order to present it, we need to say somehting
about arithmetical induction.

The system Q of minimal arithmetic is knowingly defficient in that it fails
to prove many universal statements about numbers which are usually proved
by mathematical induction. Typically, if we want to prove that every number
has a given property, we prove it by showing that 0 has that property, and then
we show, from the assumption that an arbitrary number x has that property,
that the successor Sx has that property. To accommodate induction one needs
a more adequate set of axioms for number theory. To this effect we add to the
7 axioms of the system Q all sentences of the form

8. [A(0) ∧ ∀x(A(x)→ A(S(x))]→ ∀xA(x)

(8) is usually known as the Induction axiom scheme. The theory which is the
set of all sentences in the language of arithmetic which are logical consequences
of (1)–(8) is known as Peano Arithmetic (PA). It is a simple mathematical
fact that definability and representability in Q entail definability and repres-
entability in any extension of Q and thus in PA in particular. From now on we
shall operate with PA. Tarski’s semantical argument which proves the truth
of the Gödelian statement G for PA, uses a universal statement which cannot
be proved in Q but needs PA.

1.1. The representability of the syntax in arithmetic

Tarski’s truth-definition for arithmetic exploits the representability of the
syntax of PA in PA.

It is a mathematical fact that there are functions f¬, f∨, f∃ defined on the
natural numbers such that the following hold:

- f¬(pAq) = p¬Aq, for every formula A in the object language;
- f∨(pAq, pBq) = pA ∨Bq, for every formulas A,B in the object language;
- f∃(pAq, n) = p∃xnAq, for every formula A and natural number n.
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There is also a function fsub (the susbstitution function) which has the
property:

fsub(pAq, pxiq, ptq) = pA(t)q

for every formula A in the language of arithmetic, variable xi and term t in the
same language.

All these functions are recursive, thus representable in Q and hence in
PA which means there are formulas Neg(x, y), Dis(x, y, z), Ex(x, y, z) and
Sub(x, y, z, w) in the language of arithmetics so that for all formulas A,B,
term t, and natural number n we have

a) PA ` ∀y (Neg(pAq, y)↔ y = p¬Aq)

b) PA ` ∀y (Dis(pAq, pBq, y)↔ y = pA ∨Bq)

c) PA ` ∀y
(
Ex(pAq, n, y)↔ y = p∃xnAq

)
d) PA ` ∀y

(
Sub(pAq, pxiq, ptq, y)↔ y = pA(t)q

)
Similarly, the function f= on the natural numbers such that

f= (ptq, psq) = pt = sq

for all terms t, s in the language of arithmetic is representable in PA by, say,
the expression Id(x, g, z), that is,

PA ` ∀y (Id(ptq, psq, y)↔ y = pt = sq) .

If in (a) we instantiate y with p¬Aq we get

PA ` Neg(pAq, p¬Aq)↔ p¬Aq = p¬Aq.

The formula on the right side is a theorem of the predicate calculus (with
identity), hence PA proves it. Thus PA ` Neg(pAq, p¬Aq). We can show that
for each formula A of the object language there is exactly one formula B of the
object laguage such that PA ` Neg(pAq, pBq) and B is ¬A. Therefore we can
take Neg to be a function and write Neg(pAq) = p¬Aq.

In a similar way we can also takeDis,Ex, Sub, Id, Less to be also functions.
Thus we shall have

a*) PA ` Neg(pAq) = p¬Aq, for every formula A in the object language.

b*) PA ` Dis(pAq, pBq) = pA ∨Bq, for every formulas A,B in the object
language
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c*) PA ` Ex(pAq, n) = p∃xnAq, for every formula A in the object language
and natural number n.

d*) PA ` Sub(pAq, pxiq, ptq) = pA(t)q, for every formula A and term t of the
object language and every natural number i.

e*) PA ` Id(ptq, psq) = pt = sq, for all terms t, s of the object language.

In a similar way it can be shown that PA defines its own syntax: being a closed
term, a variable, a formula and a sentence (of the language of arithmetic). That
is, there are formulas ct(x), var(x), form(x) and sen(x) in the object language
such that the following holds:

f) PA ` ct(ptq), for every closed term t.

g) PA ` var(pxiq), for every natural number i.

h) PA ` form(pAq), for every formula A.

j) PA ` sen(pAq), for every closed sentence A.

PA also defines some semantical properties. There is a formula Den(x) in the
object language (that we can take to be a function) such that

k) PA ` t = s ↔ Den(ptq) = Den(psq), for all terms t, s in the object
language.

2. Tarski’s truth theory

In the case of Tarski’s truth theory for arithmetic we do not need to go via
the notion of satisfaction but use directly the truth-predicate Tr. The reason
for this is that each natural number has a name in the object language.

The axioms of the truth-definition are given in the metalanguage containing
Tr is a predicate symbol:

Ax1 ∀x(Tr(x)→ sen(x))

(If x is true, then x is of a sentence)

Ax2 ∀x∀y(ct(x) ∧ ct(y)→ (Tr(Id(x, y))↔ Den(x) = Den(y)))

(The identity between two closed terms x and y is true iff their denotations are
the same)

Ax3 ∀x(Sen(x)→ (Tr(Neg(x))↔ ¬Tr(x)))

(The negation of the sentence is true iff the sentence is not true)
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Ax4 ∀x∀y(sen(x) ∧ sen(y)→ (Tr(Dis(x, y))↔ Tr(x) ∨ Tr(y)))

(A disjunction is true iff either sentence is true)

Ax5 ∀x1∀x2(form(x1) ∧ var(x2) → (Tr(Ex(x1, x2)) ↔
∃t(Tr(Sub(x1, x2, t))))

(An existential sentence is true iff there is a closed term t such that the sentence
which is the result of the substitution of the free variable x2 in x1 by t is true.)

Let PA(Tr) be the set of sentences which are the logical consequences of
the 7 axioms of PA, the five axioms (Ax1)–(Ax5), and plus the Induction
schema (8) which allows occurrences of the truth-predicate in the formulas
A(x). It can be shown that PA(Tr) is materially adequate, that is,

PA(Tr) ` Tr(pAq)↔ A,

for any sentence A in the language of arithmetic.
It is well known that the Tarskian truth theory proves the following universal

statements:

• The principle of noncontradiction (consistency). For every sentence y of
the object language it is not the case that both y and its negation are
true:

PA(Tr) ` ∀y (Sen(y)→ ¬(Tr(y) ∧ Tr(neg(y)))) .

This property follows directly from Ax3.

• The principle of excludded middle. Every sentence of the object language
is true ot its negation is true:

PA(Tr) ` ∀y (Sen(y)→ Tr(y) ∨ Tr(neg(y))) .

This property follows from the other direction of Ax3.

• The principle of soundness. All theorems are true:

PA(Tr) ` ∀x(PrPA(x)→ Tr(x)).

This principle fully exploits the occurrence of the truth-predicate in the In-
duction scheme. We omit its proof but it consists, informally, of the following
steps:

1. All the axioms of PA are true.

2. The rules of inference of PA preserve truth.

3. Hence every theorem of PA is true (i.e. PA(Tr) ` ∀x(PrPA(x) →
Tr(x)).
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2.1. Tarski’s semantical argument
In the postscript to the English translation of his seminal article, Tarski

adds some interesting parallels between his results and those of Gödel:

Moreover Gödel has given a method for constructing sentences
which- assuming the theory concerned to be consistent- cannot be
decided in any direct way in this theory. All sentences constructed
according to Gödel’s method possess the property it can be estab-
lished whether they are true or false on the basis of the metatheory
of higher order having a correct definition of truth [Tarski, 1956,
p. 274].

To establish the truth of such a Gödelian sentence Tarksi uses the principle of
soundness listed in the previous sesction. We present Tarski’s semantical argu-
ment (Tarski, 1936, Theorem 5) for the Gödelian sentence ¬PrPA(p¬0 = 0q)
(that we shall abbreviate by ConPA) which is taken to express the consistency
of PA. The semantical argument for G is similar. There is nothing original in
my presentation, this argument has been rehearsed many times [Ketland, 1999]
and [Shapiro, 1998].

Gödel’s second incompleteness theorem shows that PA 0 ConPA and PA 0
¬ConPA. But Tarski shows

PA(Tr) ` ConPA.

The argument is straightforward. From the soundness principle we get

(i) PA(Tr) ` PrPA(p¬0 = 0q)→ Tr(p¬0 = 0q).

We also know that the theory of truth proves all the T-instances, i.e.,

(ii) PA(Tr) ` Tr(p¬0 = 0q)↔ ¬0 = 0.

But PA proves 0 = 0, and thus PA(Tr) ` 0 = 0, which together with
(ii) entails

(iii) PA(Tr) ` ¬Tr(p¬0 = 0q).

From (i) and (iii) we get

(iv) PA(Tr) ` ¬PrPA(p¬0 = 0q)

that is, PA(Tr) ` ConPA.
Tarski’s semantical argument is usually expressed in words, in order to

enhance its explanatory power:
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• In a first step we establish the principle of soundness as we showed earlier:

1. All the axioms of PA are true.

2. The rules of inference of PA preserve truth.

3. Hence every theorem of PA is true,

PA(Tr) ` ∀x(PrPA(x)→ Tr(x)).

• A second step established that the sentence ‘¬0 = 0’ is not true:

PA(Tr) ` ¬Tr(p¬0 = 0q)

(see (iii))

• In a third step we combined the conclusion of the first and of the second
step and concluded that ‘¬0 = 0’ is not a theorem:

PA(Tr) ` ¬PrPA(p¬0 = 0q)

(see (iv))

• Finally we note that ¬PrPA(p¬0 = 0q) is the Consistency statement
ConPA.

The crucial role in this argument is the universal generalization which is the
Principle of soundness. It confers the semantic argument the form of a nomo-
logical argument which shows the explanatory role of the truth predicate:

Let us return to the Gödelian statement G (or ConPA). Let us
suppose a logic teacher asserts that ConPA is true, and the puzzled
student asks for an explanation. The student believes the teacher’s
word that ConPA is true, but he wants to be shown why ConPA
is true. The student wants something like a convincing proof or an
explanatory proof. The natural answer is to remark that all the
axioms of PA are true and the rules of inference preserve truth.
Thus every theorem of PA is true. It follows that ‘¬0 = 0’ is
not a theorem and thus PA is consistent.... It seems to me that
this informal version of the derivability of ConPA is as good an
explanation as there is. The argument shows why ConPA is true or
why ConPA is a consequence- and the move through the notion of
truth provides the explanation [Shapiro, 1998, p. 505].
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3. Feferman’s program

Tennant [Tennant, 2002] argues against Ketland [Ketland, 1999] and Sha-
piro [Shapiro, 1998] that Tarski’s theory of truth is not the only way we can
come to recognize the truth of the Gödel sentence. In particular, Tennant
claims, the generalization “All theorems are true” is not the only way to ex-
press the soundness of an arithmetical system S. There is, instead, another
way to express it, viz., using reflection principles of the form

(pa) If ϕ is a primitive recursive sentence and ϕ is provable in S, then ϕ.

As we see, this reflection principle does not use the truth-predicate. Tennnat
follows here Feferman [Feferman, 1962], who emphasizes that “Reflection prin-
ciples are axioms schemata ...which express, insofar as is possible without use
of the formal notion of truth, that whatever is derivable in S is true”.

Let us take stock. We have discussed two semantic arguments invoked in
how we come to recognize that Gödelain sentences are true.

One such argument, due to Tarski, and explicitly described in Shapiro’s
quote in the last section, uses the generalization “All theorems are true” and
can be run in an extension PA(Tr) of PA which, in addition to the truth
axioms, allows occurrences of the truth predicate in the induction scheme.

The other semantic argument, described earlier in the second quote from
Dummett also uses the truth-predicate. However, Tennant [Tennant, 2002]
rephrases it, so that the reference to “the structure of the model” is deleted and
the truth-predicate lifted out as required by Feferman’s reflection principles.
Here is Tennant’s formulation of his own semantic argument:

G is a universally quantified sentence (as it happens, one of Gold-
bach type, that is, a universal quantification of a primitive-recursive
predicate). Every numerical instance of that predicate is provable in
the system S. (This claim requires a subargument exploiting Gödel
numbering and the representability in S of recursive properties.)
Proof in S guarantees truth. Hence every numerical instance of G
is true. So, since G is simply the universal quantification over those
numerical instances, it too must be true [Tennant, 2002, p. 556].

Tennant shows that this argument can be faithfully represented in a “suffi-
ciently strong” arithmetical system S enriched with reflection principles (with
no occurrence of the truth-predicate) in Feferman’s style.

I will now describe shortly the main lines of Tennant’s argument. Before do-
ing that let me mention what it means for a formal system of arithmetic S to be
“sufficiently strong”: S represents recursive properties and proves the Diagonal-
ization lemma (i.e., there is a proof in S leading from G to ¬∃yProvT (pGq, y);
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and there is a proof in the other direction too), and S also proves the equival-
ence between the Gödelian sentence G and the consistency sentence ConS . It is
known that there are several systems which satisfy this requirement, e.g. PA.

Tennant proposes an extension of S with Feferman’s principle of uniform
primitive recursive reflection (which is more general than the principle (pa)
mentioned above):

(UR) Add to S all sentences of the form

∀n(PrS(pψ(n)q))→ ∀mψ(m)

where ψ is a primitive recursive formula and n is, as before the numeral
corresponding to the natural number nand PrS(pψq) is, like before, an
abbreviation for ∃yProvS(ψ, y)

He then shows that in this extension a faithful formalization of the semantical
argument described above can be run. The proof goes like this [Tennant, 2002,
p. 577]. (We let S∗ denote the system S plus (UR)).

Suppose m codes a proof of G in S. Hence by representability (a natural
number being the code of a proof in S of a formula is a primitive recursive
relation), S ` ProvS(pGq,m), where ProvS is a primitive recursive formula.
But S proves also, from the assumption G, the sentence ∀y¬ProvS(pGq, y)
(i.e. the diagonalization lemma), which by universal instantiation implies
¬ProvS(pGq,m). Given our assumption that S is consistent, we have a con-
tradiction, from which we conclude that m does not code a proof of G in S.
Again by representability we get S ` ¬ProvS(pGq,m). But n has been chosen
arbitrarily, hence for every n, there is some proof of ¬ProvS(pGq, n) in S, from
which with the help of (UR) we derive (in S∗) that ∀y¬ProvS(pGq, y). Finally,
by the Diagonalization Lemma, we get G (in S∗).

The penultinate steps requires perhaps some additional clarification. If I
understood correctly, “for every n, there is some proof of ¬ProvS(pGq, n) in S”
is just the sentence ∀nPrS(pψ(n)q) in the antecedent of (UR), where ψ(n) is
the primitive recursive sentence ¬ProvT (pGq, n).

We are then told:

The foregoing proof justifies the assertion ofG. The stronger system
S∗ contains methods for reflecting on the justification resources of
the weaker system S. These methods can be seen at work, in the
application, in the proof just give, of various rules of inference that
are available in S∗ but not in S [Tennant, 2002, p. 577].
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The thing which I find somehow problematic in the proof are the penultimate
steps:

...But n has been chosen arbitrarily, hence for every n, there is some proof
of ¬ProvS(pGq, n) in S, from which, with the help of (UR), we derive (in S∗)
that ∀y¬ProvS(pGq, y).

I take them to correspond to the informal steps of Tennant’s own semantic
argument listed earlier in this section. It seems to me that we can justify these
steps only on the basis of our intuitive understanding of the standard model,
as Dummett pointed out. The principle of uniform recursive reflection (UR)
just expresses this understanding in a formal way. We may have eliminated
the truth-predicate as required by a minimlist conception of truth, but the
justification of (UR) is still grounded in such understanding. This matter is
orthogonal to the goal of this essay, so I will not dwell on it.

One can still perhaps argue that Tarski’s truth-definition is more general,
because it can also account for the intuition that all S−theorems are true
(sound), and not just the primitive recursive ones. Tennant’s response to this
objection is that we could add as well to S∗ the schema (soundness principle)

ProvS(pϕq)→ ϕ,

where ϕ is any sentence in the language of arithmetic. It is known from Löb’s
theorem that this principle cannot be derivable in S without making S incon-
sistent. But in the present case we add the soundness principle not to S directly
but to S extended with the principle of uniform primitive recursive reflection,
and this avoids the inconsistency.

To sum up, I agree with Tennant that the difference between the two se-
mantic arguments is that between saying (Tarski) and showing (Feferman).
That is, Tarski’s truth theory can state the principle of soundness in one single
universal statement “All theorems are true”. In this case the “recognition” of
the truth of the Gödelian sentence takes the form of a nomological explanation
which uses that universal statement [Ketland, 1999; Shapiro, 1998]. On the
other side, the Feferman-Tennant framework (S∗ extended with the soundness
axiom scheme) uses an axiom scheme which can be seen as a list of the infinitely
many instances of the universal statement ∀x(PrS(x)→ Tr(x):

PrS(pϕ1q)→ Tr(pϕ1q)
PrS(pϕ2q)→ Tr(pϕ2q)

...
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in which the truth-predicate has been eliminated in virtue of the equivalences

Tr(pϕ1q)↔ ϕ1

Tr(pϕ2q)↔ ϕ2
...

In this case the recognition of the truth of G does not take the form of a
nomological argument (because there is no collection of all these instances into
one universal statement). It consists in the apprehension of the proof of G in the
extension of e.g. PA with the soundness principle. Truth does not “transcend”
proof, truth is just proof (in the extended system).

4. The justification of the extensions

A question which arises quite naturally at this stage is about the justification
of different extensions which settle the Gödelian statements, and about the
nature of these statements themselves. Is a given extension more justified than
another? This question revives an older discussion which goes back to Gödel
concerning intrinsic versus extrinsic extensions of a theory which has been the
inspiring source for the Feferman program.

Gödel’s reflections took place in the context of set theory (What is Cantor’s
continuum problem? [Gödel, 1947]) but they also apply mutatis mutandis to
arithmetic. Gödel introduced a distinction between an intrinsic and extrinsic
extension of an axiom system. An intrinsic extension, unlike an extrinsic one,
is justified on the basis of one grasping the concepts of the base theory. Gödel
gave as an example the Axiom of Determinacy in set theory that he regarded
as an extrinsic axiom because it is not justified by our understanding of sets, in
contrast to Mahlo’s axioms for big cardinals. In addition, Gödel also mentioned
intrinsic extensions with undecidable statements (Gödelian sentences) that one
recognizes as true in virtue of their meaning, that is, by reflecting on their
undecidability.

Gödel’s remarks suggest the idea to treat the truth axioms of Tarski’s theory
of truth as examples of intrinsic extensions of the base theories, whose justi-
fication is grounded in our grasping of the concepts of the base theory, that
is, natural numbers and operations on natural numbers. In fact this sugges-
tion, which was not made by Gödel, has been explicitly advocated later on by
Koellner in his reflections on Gödel’s distinctions:

Let us consider first our conception of natural numbers which is
underlying PA. This conception of natural numbers not only jus-
tifies the principle of mathematical induction for the language of
PA, but for any other extension of the language of PA which has
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a sense. For instance if we extend the language of PA by adding the
tarskian truth-predicate and we extend the axioms of PA by adding
the tarskan axioms for truth, then, on the basis of our conception
of natural numbers, we are justified in accepting the instances of
the induction scheme in which the truth-predicate occurs. In the
resulting system one can prove ConPA....By contrast, the Axiom
of determinacy AD is not justified by our understanding of natural
numbers [Koellner, 2006].

Similar ideas have been expressed by Feferman. Starting with the 60’s and in-
spired by Gödel, he addressed the question of the extensions of schematic formal
systems (formal systems which contain axiom shemes, like ZFC and PA) with
new axioms. He started looking for the possibility to generate systematically
extensions of such systems whose acceptance was already implicit in the base
theory. One of the mechanisms Feferman proposed is reflection principles. We
saw an illustration of this mechanism when presenting Tennant’s ideas. Little
by little Feferman also came to consider extensions which contains explicitly
a truth-predicate and developed the notion of reflexive closure of a schematic
theory [Feferman, 1991], which allows for the Induction scheme to range over
the truth-predicate. In this case the extended system can prove statements of
the form ∀x(PrPA(x)→ Tr(x)). This has been, as we saw, Tarski’s way.

I think there is an important difference between Gödel’s notion of intrinsic
extension where the new axioms display or unfold the content of the notions
of the base theory, and the two extensions of PA introduced in this paper. It
seems to me that neither Tarski’s extension of PA with his theory of truth, nor
Tennant’s extension of a sufficiently strong arithmetical system S (e.g. PA)
with reflection principles ProvS(pϕq) → ϕ, “unfold” the content of the notion
of natural number. None of this extensions is, in my opinion, grounded in
our knowledge and understanding of natural numbers but rather “reflect” on
the properties of certain methods of proof that have been adopted. That is,
although these methods of proof operate on arithmetical and logical resources,
they also possess certain properties confered to them by certain philosophical
positions which are constitutive of their definitions. The extension axioms or
schemata are about these properties (e.g. soundness, truth, consistency) and
not about the content of the notion of natural number. Gödelian arithmetical
statements as well as their analogues in set theory contain explicit references
to these methods of proof, as a consequence of which they inherit an additional
content which is not purely arithmetical, or set-theoretical, for that matter.
One can find a partial recognition of this point in [Horsten, 2011]:
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Gödelian proofs of GZFC and ConZFC are certainly partly math-
ematical in nature. The proof cited above, for example, involves
an instance of the principle of mathematical induction, which is a
mathematical principle if there ever was one. It is just that such
Gödelian proofs are not purely mathematical proofs. For they essen-
tially contain the notion of truth, which is itself not a mathematical
but a philosophical notion. This is not to deny that mathematics
can be applied to produce interesting theories of truth. It is just
that mathematical theories of truth do, on this view, belong not to
pure mathematics but at least to applied mathematics, or to the
more mathematical part of philosophy [Horsten, 2011].

Horsten refers here to the philosophical notion of truth, and to Gödelian proofs
using a truth-predicate, but my main point in this paper is slightly different. It
concerns the notions of proof and provability. It is a metamathematical notion
which reflects a certain finitistic, philosophical standpoint. By making explicit
reference to such notions, Gödelian sentences acquire also a higher-order, not
purely numerical content, which depends on the properties of these notions and
cannot be reduced to the concept of natural number. One possible way to be
more explicit about the higher-order content of Gödelian sentences is through
some remarks made by Isaacson [Isaacson, 1991; Isaacson, 1996]. He contrasts
arithmetical sentences provable in PA with the Gödelian sentences: the former
have a pure arithmetical content, and the system PA which proves them arises
out of our undertanding of natural numbers. On the other side, the meaning
of Gödelian statements involve our reflections on our understanding of natural
numbers.

The ideas discussed in this paper have been debated many times in the post
Gödelian era. The contribution of the paper is simply one of emphasis. Myhill,
for instance expresses similar ideas in an often quoted passage:

Indeed it seems to me that the use of the word ‘proof’ in ordinary
non-philosophical mathematical discussion is rather clearly neither
a syntactical nor a semantical term. It is as self-contradictory to
use methods of proof without admitting their correctness, as it is
to make statements without admitting their truth. (I am not using
‘self-contradictory’ in the sense of formal logic, but roughly as a
synonym for ‘irrational’.) Therefore if a person who has been us-
ing certain methods for proving arithmetical theorems succeeds in
making these methods explicit, he is ipso facto committed to the
perfectly definite proposition that the use of those methods cannot
lead to a false arithmetical statement, for example the statement
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that 0 is equal to 1. By Gödel’s technique of arithmetization, which
translates every statement of formal deducibility into a statement of
arithmetic, any such person is compelled to admit a new arithmet-
ical statement, namely the arithmetized version of the statement
that his methods cannot lead to a proof of the statement that 0
is equal to 1. By Gödel’s theorem, he could not have established
this statement by his previous methods. Hence, as soon as a person
makes explicit the tools which he has been using in the construction
of arithmetical proofs, he is ipso facto in a position to obtain new
arithmetical proofs which he could not have obtained by using those
tools alone. The whole process is closely related to what the British
philosophical logician W.E. Johnson called ‘intuitive induction’; we
find ourselves making certain inferences and we thereupon realize
that the pattern of those inferences is such as to confer validity on
arguments in which they occur. This realization is a demonstrative
and rational step quite apart from any question of formalization,
though of course the results of an intuitive induction can be form-
alized after the induction has taken place [Myhill, 1960, p. 461].

It is difficult to disagree with these remarks. Myhill, like other commentators I
discussed (Horsten) is concerned with the distinction between different kind of
proofs. My concern in this paper was, however, with the other side of the coin:
the meaning of the Gödelian sentences which are settled by these proofs. The
minor point I tried to make was that, by making reference to notions like proof
(provability), these sentences have a content which transcend the arithmet-
ical content of purely numerical statements. This is the internal, conceptual
reason for which, in some cases (not all; there are Gödelian statements like
“I am provable” which are provable), their proof has to mobilize higher-order
(meta-theoretical) resources, be they in the form of a truth-theory, a la Tarski,
or reflection principles, a la Feferman. I think that Gödel was aware of this
fact when he made a distinction between intrinsic extensions with Gödelian
sentences and intrinsic extensions with other kind of axioms which unfold the
content of the basic notions like natural numbers.

References
Dummett, 1963 – Dummett, M. “The Philosophical Significance of Gödel’s Theorem”,
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En toute sobriété
j’ai eu de mutliples visions de multiples choses

et si je suis arrivé à maintenir ma sérénité
c’est en voyant l’unité au-dela de la diversité

la cohérence au-delà de l’incohérence.
Baron de Chambourcy

1. Many-Valuedness and Universal Logic

The aim of this paper is to develop a better understanding of what many-
valuedness is and what universal logic is. Universal logic has emerged as a
general theory of logical systems (see [Béziau, 1994] and [Béziau, 2012c]), so it
is directly linked to many-valuedness in two different ways:
• Many-valued logics are objects of study of universal logic.
• Many-valuedness, including in particular many-valued logical matrices, is

a tool for developing universal logic.
But, as we have pointed out in previous papers (see [Béziau, 2006b] and

[Béziau, 2018b]), universal logic is not restricted to a mathematical meta-
theory, it encompasses also philosophical and methodological questions. Many-
valuedness with its twofold relation with universal logic is a good opportunity
to discuss the many virtues of both many-valuedness and universal logic.

2. Many-Valued Logic(s), Many-Valuedness and Universal
Logic

As for many concepts, such as e.g. human being, number or time, there is
not only one and true definition of many-valued logic.

First let us make a distinction between “Many-valued logic” and “Many-
valued logics”. Here we are putting quotes because we are talking about the
linguistic expressions rather than the notions, for which we, as above, use ital-
ics.1 Although it has become trendy, following the fashion of pluralism, to put
an “s” at the end of everything, a small snake tailing any idea, let us emphasize
that we can still sanely and safely make the distinction between plurality and
singularity, not to say unity. No doubts that there are many girls, cars, num-
bers, but we still can, even without being a Platonist, consider the notions of
girl, car and number.

There are many different many-valued logics, but nevertheless we can con-
sider the notion of many-valued logic which encompasses all these logics. Al-
though it is rather trivial, it is worth emphasizing that the notion of many-
valued logic is not itself a logic, in the same way that the notion of girl is not

1About the notion of notion, see [Béziau, 2018a].
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itself a girl, by contrast to the notion of notion which can itself be considered
as a notion.

To conceptualize what a girl is, we need a general theory of psychology,
zoology, archaeology. . . Of course we can also give a first idea, as stressed by
Quine (cf. [Quine, 1960]), just by ostentation, pointing at and/or focusing
on a canonical example, such as the Girl from Ipanema. We can indeed do
the same with many-valued logic, although less beautifully and musically (see
Figure 1).

Fig. 1. Definition by Ostentation of the notion of many-valued logic.

That gives a rough idea of what it is. It is necessarily biased, as any tentative
to think the general through the particular. But it is fair enough for childish
games. If we want to get more scientific, that is another kettle of fish. And if
we want to get more philosophical, that is a true cassoulet, not to say feijoada.
Let us present three definitions of A MANY-VALUED LOGIC on the basis on
which we can go a step further than ostentation:
• A logic which does not reduce to truth and falsity.
• A logic that can be characterized only by a logical matrix of more than

2-values (including or not infinite matrices).2

• A logic that can be characterized by any semantics with more than
2 truth-values.3

A careful look at these definitions shows that they are pairwise different but
not pairwise exclusive. In particular the first does not use the notion of value,
the third one uses it but does not use the notion of matrix, by contrast with
the second one.

MANY-VALUED LOGIC itself can be considered as
• The class of many-valued logics.
• The meta-theory of many-valued logics.

2For details see [Béziau, 1997].
3In this case classical proposotional logic can be considered as a many-valued logic, for

details see [Béziau, 1997].
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• A meta-theoretical tool / framework that is useful for the study of any
logical systems.

It is often difficult, not to say artificial, to distinguish between the two first
meanings, as in the case of other logics, that is why it is not necessarily useful
to introduce two different names. It is also difficult to find a good name for the
third meaning. But the expression “MANY-VALUEDNESS” looks pretty good
to encompass the 2nd and 3rd above meanings.

The idea of universal logic is to promote a general theory inside which /
with which, we can turn conceptualization of logical notions and systems easier.
In this sense universal logic is neither a logic, nor a bunch of logics. It is a kind
of extension of many-valuedness as just characterized above: it is the meta-
theory of all logical systems, therefore extending the above 2nd meaning and it
is a meta-theoretical framework including the above 3rd meaning.

3. A Short Short History of Many-Valuedness

We can say without much exaggeration that many-valuedness exists since
the beginning of the world, or better the beginning of the logical world, consid-
ering that it is directly connected with Aristotle who is considered himself as
the father of logic, as the science of reasoning (Aristotle did not create logic as
reasoning, cf. [Béziau, 2010]). This is the famous story of future contingents
according to which “Tomorrow will be the end of the world” is neither true, nor
false, unless we believe in determinism or apocalypse.

And also without romancising too much we can say that the next step
in the story is with Jan  Lukasiewicz who, directly influenced by the Stagir-
ite, built a three-valued logic [ Lukasiewicz, 1920]. But  Lukasiewicz did much
more than that, not only he also built a four-valued logic [ Lukasiewicz, 1953],
but he developed with other Polish logicians, in particular with Alfred Tarski
[ Lukasiewicz, Tarski, 1930], a whole theory of many-valued logical matrices that
is a basic framework and tool for a general theory of logics. At this level we see
therefore a strong connection between universal logic and many-valuedness.

This connection was independently promoted by Paul Bernays and Emil
Post at approximately the same time. And it is also worth mentioning that
many-valued logic did not escape to Charles Sanders Peirce who had a very
general view of logic both from a philosophical and mathematical point of
views. In particular he was the first to draw three-valued “truth-tables” (see
[Béziau, 2012a]).

This is of course a very short and synoptic story of many-valuedness. We will
not go in more details since our objective here is more to look a the present and
the future than the past. But the moral of the story is that many-valuedness
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is present along the whole story of logic and that it is not a crucial difference
between traditional logic and modern logic.

4. Dichotomy and Polytomy

Before examining the opposition between many-valuedness and bivalent lo-
gic closer and if we can reduce or not logicality to bivalence, let us go beyond
logic stricto sensu and broaden our horizon to general thinking / conceptualiz-
ation.

Dichotomy can be found both in the East and the West. In the East we
have Taoism, with Yin and her brother Yang, in the West Pythagoras with his
table of opposites. Taoism is more radical and interactive: there are only two
things from which everything is derived by combination. Pythagoras’s table of
opposites has at least ten different dichotomic oppositions. But this theory of
multiple oppositions was then developed in a very abstract theory of dichotomic
oppositions, more abstract than the Chinese one, very logical, connected to the
emergence of classical negation, a very powerful tool that can apply to any
thing, as we have recently argued in [Béziau, 2019].

Fig. 2. Taosim vs. Pythagoricism.

Polytomy can also be seen both in the East and the West. By its own
nature polytomy is multiple: it can be 3, 4, 5, up to infinity. But what is
predominating is small size polytomy: trichotomy, quadritomy, or pentagony.
At the religious level we have in India the trimurti with Brahma, Vishnu, Shiva
and in the West the trinity of Christianity with The Son, The Father and the
Holy Spirit. At a more physical level, we have the theory of four elements in
the Occident and the theory of five elements in China.

Vivaldi naturally promoted quadritomy with his masterpiece The Four Sea-
sons. Schopenhauer was also found of a fourfold approach, that he developed at
different levels (see [Béziau, 2020]). On the other hand Peirce was very found of
trichotomy as well as Robert Blanché, who duplicated it as a colorful hexatomy
(see [Blanché, 1966] and [Béziau, 2012d]). One may wonder in which sense this
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symphony of polytomies is part of many-valuedness. In the case of Blanché is
hexagon is clearly part of it, if we consider that it can be applied to metalogic
(see [Béziau, 2013]).

5. The Value of Reduction to Bivalence

If we put aside monotheism, the most impressive reduction of multiplicity is
the binary notation. “In the beginning was the word” (John 1:1) can be coded
as a sequence of 0s and 1s:

01001001 01101110 00100000 01110100 01101000 01100101 00100000
01100010 01100101 01100111 01101001 01101110 01101110 01101001 01101110
01100111 00100000 01110111 01100001 01110011 00100000 01110100 01101000
01100101 00100000 01110111 01101111 01110010 01100100

It is less poetic and maybe the meaning of the sentence is lost in some way,
but it makes sense for a computer. However we are not (yet) computers and
what is good for our understanding is something not tooooooooooooo big, but
also not too small. For numbers we use decimal notations, an alphabet has an
average of 25 signs and the average of phonemes in a language is 31.

Reduction in logic can be considered either from a pragmatic viewpoint or
an objective viewpoint. A pseudo-Fregean may claim that there are only two
real truth-values: truth and falsity, a pseudo-Peircean may say that three values
are quite useful. Peirce proved that all binary connectives can be reduced to
only one, but it was not for him a reason to use only one.

A three-valued logic like  Lukasiewicz logic L3 cannot be defined by a two-
valued truth-functional semantics, however it can be defined by a two-valued
non-truth functional semantics, the charateristic functions of relatively maximal
theories, like many logics. This result can be considered as a typical result of
universal logic (see [Béziau, 2012b]). It is a valuable and interesting result but
nevertheless something is lost in the reduction, i.e. truth-functionality.

What we can say, against Suszko’s reductionist thesis (see [da Costa et al.,
1996]), is that truth-functional semantics helps to give meaning. However we
have to be careful with meaning! In standard many-valued matrix semantics
the values are divided in two sets: designated and non-designated values. It
makes sense to still apply the dichotomy truth/falsity to them. For example in
the case of a four-valued matrix semantics with two designated and two non-
designated elements, we can use the terminology: strong truth, weak truth,
weak falsity, strong falsity, or necessary truth, possible truth, possible falsity,
necessary falsity (see [Béziau, 2011]).

Moreover many-valued matrices can be used to refine the notion of con-
sequence relation, as it has been done by G. Malinowski [Malinowski, 1990],
Shramko and Wansing [Shramko, Wansing, 2011].
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6. Singularity vs. Universality

Let us consider the following truth-table:

( 1 2 3 4 5 6 7

1 3 7 2 1 4 4 6

2 1 7 4 2 3 3 1

3 5 2 3 4 5 2 4

4 3 2 5 4 3 6 1

5 2 6 7 3 1 3 1

6 4 1 4 1 5 7 3

7 7 3 2 6 2 6 5

Fig. 3. A Binary Connective in a 7-valued logic.

This is intended to be a truth-table for a binary connective, (, in a 7-valued
logic. This connective is very singular, peculiar not to say idiosyncratic. What
can we say about it? What can we do with it? And why should we waste our
time focusing on it?

We can ask the same questions about any particular individual, whether it
is a stone, a tree, a number or a human being. Can we say that the number
5987 has an interest by itself? Maybe yes, maybe not. Some particular numbers
are more interesting than others, like the number π, to give a classical example
of celebrity. And some particular connectives are more interesting than other
ones like Sheffer stroke, in bivalent classical logic.

The value of a singular connective in many-valued logic really makes sense
only from a general perspective and this is true for any singular object of
any field. A singular object is singular only in relation with other objects.
A universal approach helps to stress singularity. However a particular case can
be a starting point.

It is worth to find some general positive and negative results about all finite
valued logics. This is very important. For example if we consider Dugun-
dji theorem stating that S5 cannot be characterized by a finite valued logic
(cf. [Dugundji, 1940]), then we will not lose our time looking for a possible
256-valued matrix semantics for it. On the other hand one may explore some
particular cases in view of a specific goal or based on an intuitive interpretation.
One may develop a beautiful 9-valued logic with wonderful applications.

Another methodology is to connect these general investigations with other
mathematical properties and theories. This is what Karpenko did making a
connection between prime numbers and many-valued matrix semantics (see
[Karpenko, 2006]).
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7. Many-Valuedness and the Universe of Logical Systems

If we consider many-valuedness as a general tool, in particular logical
matrices, it is related to many logics, including bivalent classical logic, in the
sense that it can be applied to them at the meta-level, for example for proof
of independence of axioms, as Bernays originally did (see Chapter 2 of [Béziau,
2012c]).

Now if we consider many-valuedness as a tool for constructing logical sys-
tems, it is related to many other non-classical logics, in particular modal logic,
paraconsistent logic, probability logic, fuzzy logic.

Many-valued logic was developed by  Lukasiewciz in view of modality, this
line of research was in some sense aborted on the one hand due to the negative
result of Dugundji [Dugundji, 1940], on the other hand due to the success of pos-
sible world semantics. Nevertheless it still makes sense to use many-valuedness
to develop modal logic, either using logical matrices or non truth-functional
many-valued semantics. In both cases the problem is with self-extensionality,
i.e. the failure of the replacement theorem, but this is not necessarily a problem
despite the fact that paradoxically modal logic has been qualified as extensional
logic.

Three-valued logic has been used for the developement of paraconsistent lo-
gic by Asenjo [Asenjo, 1966], da Costa and D’Ottaviano [D’Ottaviano, da Costa,
1970], Priest [Priest, 1979], Avron [Avron et al., 2018] and Beziau [Béziau,
Franceschetto, 2016; Béziau, 2016b].

Asenjo’s logic is a logic which is both paraconsistent and 3-valued but not
modal, the paraconsistent logic Z [Béziau, 2006a] is both modal and paracon-
sistent but not finite-valued and we have investigated logics which are at the
same time paraconsistent, modal and many-valued but considering 4-values
instead of 3-values (see [Béziau, 2011]).

8. Philosophy of Many-Valuedness

In the last 100 years there was a proliferation of logical systems, due in par-
ticular to the formalization and mathematization of logic. This is the door open
to infinite non-sense. Quine wrote about modern many-valued logic: “Primarily
the motivation of these studies has been abstractly mathematical: the pursuit
of analogy and generalization. Studied in this spirit, many-valued logic is logic
only analogically speaking; it is uninterpreted theory, abstract algebra” [Quine,
1960].

Mathematics is nice and can lead us to the sky of ideas, but it is good to
always try to have some meaningful constructions, which can help us to land
back down to earth. And it is important to work out the interaction between
philosophy and mathematics.
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If we say that a proposition is something which is either true or false, for-
mulas of many-valued logic are not propositions. Is this a problem? And then
what are they? By contrast we may want to introduce a three-value logic ex-
actly because we believe that we should consider formulas that are neither true
nor false as corresponding to propositions.

What happens is that in modern logic people are considering “formulas”
in an informal way without asking what they are or/and what they are rep-
resenting. This is not necessarily a problem, this is the path to abstraction
and generalization. But on the one hand it is good to go at a higher level of
abstraction, on the other hand to go down to earth to connect to reality.

The idea of universal logic is indeed to consider a structure where a con-
sequence relation acts on objects whose nature is not further specified. These
objects can be events, thoughts, information, etc. They can be interpreted in
many ways.

It is important to take in account philosophical motivations to develop a
mathematical framework. Matrix semantics can look as a non-intuitive, not to
say absurd, construct. One may want to build semantics with:
• Formulas having no truth-values.
• Formulas having as value a set of values, e.g. truth and falsity.
These two cases are comically nicknamed respectively gap and glut. It

is true that this can be simulated in matrix semantics but simulation is not
strictly speaking the same as reality. And although it can make sense to call
many-valued the glut case, it is not clear that this makes sense for the gap case.

Let us also stress that a central problem of the philosophy of many-valued
logic is how to interpret the additional values. A straightforward interpreta-
tion is degrees of truth and degrees of falsity. But in the simplest case, i.e.
three-valued logic this does not necessarily make sense in particular due to
dissymmetry. The third value is seen most of the time as something at the
middle between truth and falsity. It is often called “undetermined” and funny
enough it is indeed quite undetermined: it can be considered as designated or
non-designated, as neither true nor false, or as both true and false.

Fig. 4. Indetermination lying at the middle.
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9. Applications of Many-Valuedness

We can make a clear distinction between many-valuedness as a meta-theory
to study logical systems and many-valuedness as a basis to develop some in-
teresting logical systems that can have useful applications. The first point is
quite clear, and we have good examples, the second point is not so obvious, it
depends on particular what we really consider as a many-valued logic (cf. our
definitions from the first section).

Let us note that there is no many-valued system of logic which really solves
the liar paradox (cf. [Béziau, 2016a]). It is also not clear that many-valued
logic can be applied in case of physics, in particular to Heisenberg’s principle of
indeterminacy. Paulette Février [Février, 1937] tried to do so many years ago,
but she had very few, not to say no, followers.

Applications to computer science also are not clear, computer scientists in
fact use another name multiple-valued logic (change of terminology: change of
subject?), no to speak about fuzzy logic. Most of the time it is rather something
corresponding to many-valuedness or/and algebraic systems rather than to a
many-valued logic, excepting the case of the 4-valued logic of Dunn and Belnap
(see [Belnap, 1977]), but this logic is also rather a meta-theoretical framework
for the theory of computation than an effective system.

10. Dedication and Personal Recollections

I am very glad to dedicate this paper to Alexander Karpenko. I met Alexan-
der for the first time at the 1st World Congress on Paraconsistency which took
place in Ghent, Belgium, July 30 – August 2, 1997. At this time our discussion
was rather limited because I was not speaking Russian and Alexander was not
speaking Swiss. We met again the following year at the Stanislaw Jaśkowski
Memorial Symposium July 15-18, 1998 in Torun, Poland.

So our encounter started on a paraconsistent basis. But as shown by the pa-
per presented by Alexander in Torun, entitled “Jaśkowski’s criterion and three-
valued paraconsistent logics” [Karpenko, 1999], he had an interest for a sys-
tematic and universal approach, relating different non-classical logics. At this
meeting in Torun I presented a talk in some sense diametrically opposed to his
paper, because on the one hand my objective was not to work on Jaśkowski’s
criterion of maximality, but to find an intuitive basis for Jaśkowski’s discuss-
ive logic, and on the other hand my solution was not based on many-valued
matrices, but on possible world semantics (see [Béziau, 2006a]). I started to
work on 3 and 4 matrix semantics and paraconsistent logic only later on (see
[Béziau, 2011]).

Our 3rd meeting was at Smirnov’s Readings — 3rd International Confer-
ence — May 24-27, 2001, in Moscow, Russia, which was my first visit to Russia.
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And our further meetings were also all in Russia:

• 4th Smirnov’s Reading, May 28-31, 2003, Moscow;

• 6th international conference Logic Today: Developments and Perspect-
ives, June 20-22, 2004, Saint Petersburg;

• 6th Smirnov’s Readings, June 17-19, 2009, Moscow;

• Nikolai Vasiliev’s Logical Legacy and Modern Logic, October 24-25, 2012,
Moscow;

• The 12th international conference Logic Today: Developments and Per-
spectives, June 22-24, 2016, Saint Petersburg.

We had discussion not limited to logic stricto sensu. Alexander had in-
terest for many topics including arts, in particular poetry, and our friendship
developed in the framework of this general perspective. Alexander was the Head
of the Department of Logic at the Institute of Philosophy, Russian Academy of
Science from 2000 until his death. I think it is important in Russia and else-
where to have researchers and in particular directors of research like Alexander
who have a general perspective and vision.

Acknowledgements. Thanks for useful comments by an anonymous referee.
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Béziau, 2019 – Béziau, J.-Y. “Cats that are not cats”, in: Natural Arguments —
A Tribute to John Woods, D. Gabbay, L. Magnani, W. Park, and A.V. Pietar-
inen (eds.), College Publications, London, 2019, pp. 49–71.
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E-mail: bruno.ramos.mendonca@gmail.com

Walter A. Carnielli
University of Campinas,
R. Sérgio Buarque de Holanda, 251 - Cidade Universitária, Campinas - SP, 13083-859, Brazil.
E-mail: walter.carnielli@cle.unicamp.br

Abstract: The traditional theory of semantic information, originally proposed by[Bar-Hillel,
Carnap, 1953], provides a versatile and pretty plausible conception of what kind of thing se-
mantic information is. It embodies, however, the so-called “scandal of deduction”, a thesis
according to which logical truths are informationally empty. The scandal of deduction is prob-
lematic because it contradicts the fact that ordinary reasoners often do not know whether
or not a given sentence is a logical truth. Hence, it is plausible to say, at least from the
epistemological standpoint of those reasoners, that such logical sentences are really inform-
ative. In order to improve over traditional theory, we can replace its classical metatheory by
the so-called urn logics, non-standard systems of logic (described in detail below) that better
describe the epistemological standpoint of ordinary reasoners. Notwithstanding, the applic-
ation of such systems to the problem of semantic information faces some challenges: first,
we must define truth-conditional semantics for these systems. Secondly, we need to precisely
distinguish two systems of urn logic, namely, perfect and imperfect urn logics. Finally, we
need to prove characterization theorems for both systems of urn logic. In this paper we offer
original (and hopefully, elegant) solutions for all such problems.

Keywords: semantic information, scandal of deduction, logical knowledge, urn logics, truth-
conditional semantics, characterization theorems, Hintikka normal forms, non-classical logics

For citation: Mendonça R., Carnielli A. “New semantics for urn logics: taming the endur-
ing scandal of deduction”, Logicheskie Issledovaniya / Logical Investigations, 2020, Vol. 26,
No. 1, pp. 91–109. DOI: 10.21146/2074-1472-2020-26-1-91-109

c© Mendonça R., Carnielli A.

http://dx.doi.org/10.21146/2074-1472-2020-26-1-91-109
mailto:bruno.ramos.mendonca@gmail.com
mailto:walter.carnielli@cle.unicamp.br
http://dx.doi.org/10.21146/2074-1472-2020-26-1-91-109


92 Bruno R. Mendonça, Walter A. Carnielli

Dedicated to the memory of Professor Alexander Karpenko

1. Introduction

There is a wide debate in the current logical literature on the nature of
semantic information and how it can be measured. Traditional theory of se-
mantic information, originally proposed by [Bar-Hillel, Carnap, 1953], equates
the semantic information of a sentence with the number of different models that
falsify it. A problematic consequence of this approach is the so-called “scan-
dal of deduction” [Hintikka, 1970a]: according to this thesis, logical truths are
informationally empty, due to the absence of falsifying models.

The scandal of deduction seems to be in conflict with the recognizable fact
that reasoners often do not know whether or not a given sentence is a logical
truth. For instance, beginning students of set theory may find trouble to recog-
nize that Russell’s paradox — a problematic consequence of naive set theory —
involves a contradiction. In more precise terms, these individuals ignore that
the sentence ¬∃x∀y(y ∈ x ↔ y 6∈ y) is logically valid. So, it is plausible to
assume that, since there are logical truths whose validity is prima facie ignored
by ordinary reasoners, at least from the epistemological standpoint of these
individuals, such logical sentences are not uninformative.

Mainstream attempts to solve the scandal of deduction generally propose
replacing traditional theory by more or less distorted alternatives (as, for in-
stance, in [Floridi, 2004]). However, some of these proposals seem to throw
the baby out with the bathwater. Traditional theory offers a flexible and per-
suasive conception of the kind of information associated with the meaning of
sentences, and should be preserved. Fortunately, it is possible to simultan-
eously save traditional theory and block the scandal of deduction by revising
the logical metatheory on which our theory of semantic information is based on.

As mentioned above, the scandal of deduction contradicts the fact that at
least some logical truths are really informative when considered from the epi-
stemological standpoint of ordinary reasoners. So, we could block this thesis by
adopting some logical theory that better describes the semantic knowledge (i.e.,
the knowledge of truth-conditions, by assuming a truth-conditional approach
to semantics) associated with the semantic competence of ordinary reasoners.
This new logical theory should be able to support the idea that, for some lo-
gical truths, an ordinary reasoner does not know its truth-conditions; more
specifically, it should point out that the epistemological stance of an ordinary
reasoner cannot exclude some impossible models that falsify the logical truth
in question.

Urn logics, a generalization of first-order logic introduced in [Rantala, 1975],
are good candidates to fulfill such an explanatory role. Drawing balls from an
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urn with or without replacement is a classical problem in probability and stat-
istics. An urn problem is a mental experiment in which colored balls that
represent events are withdrawn and whose probabilities should be determined.
An urn model is a probability distribution, or a family of probability distribu-
tions associated with urn problems.

Now, the intuition behind urn logic is to think of the domain of quanti-
fication in a way analogous to urns of balls used in probability theory. The
metaphor here is to think of quantifying over objects in a domain as being ana-
logous to drawing balls from an urn. In the standard models of first-order logic
the domain of quantification stays fixed as we ‘draw’ elements from the domain.
But we can think of models where the domain of quantification changes in the
course of evaluating a formula, as probability urns where balls can be replaced,
or new balls can be added.

Basically, the fragments of classical logic introduced by this new procedure
lose the capacity to express dependence relations between nested quantifiers in a
given formula.1 Consequently, these systems can formalize the epistemological
standpoint of someone who does not know that some first-order valid sentence φ
is a logical truth because this individual is not aware of the dependence relations
holding between nested quantifiers occurring in φ.

The application of urn logics to the problem of semantic information, how-
ever, faces some technical challenges. First, whereas traditional theory presup-
poses truth-conditional semantics, urn logics were originally defined in game-
theoretic terms. Secondly, there are at least two different systems of urn logic
which generate different versions of the traditional theory of semantic inform-
ation, but the literature does not precisely differentiate such systems (in this
paper these systems are called perfect and imperfect urn logics, for reasons that
will become clear soon). Finally, it is not clear exactly which logical truths are
semantically informative in the context of urn logics. In order to make this
point clear, we need to characterize the set of logical truths of urn logics.

To solve these challenges, we define in this paper a truth-conditional se-
mantics for urn logics that is able to precisely separate their perfect and imper-
fect versions (section 2). Further, we present a characterization theorem for the
set of validities of perfect urn logic, and draw some remarks on how it is pos-
sible to obtain a corresponding result for imperfect urn logic (section 4). Such
a theorem relies on an important auxiliary result to be presented in section
3, namely, the existence of Hintikka normal forms for urn logics. All of these

1Urn semantics should not be confused with IF-logic [Tulenheimo, 2018] and related sys-
tems. Whilst IF-logic extends first order logic with the capacity of expressing independ-
ence / dependence relations between nested quantifiers, urn semantics deals with a fragment
of classical logic.
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results are original contributions to the study of urn logics — in particular, the
characterization theorems introduced in section 4 provide a full generalization
of a partial result presented in [Rantala, 1975, pp. 470–472].

2. Truth-conditional semantics for urn logics

Generally speaking, the idea behind urn logics is that two nested quanti-
fiers Q and K occurring in some formula may have different quantificational
domains and there are not enough logical resources in these systems to express
dependence relations between them. Thus, for instance, in urn logics the quan-
tifiers in ∀x∃y(x < y) may have different domains and there is no way to force
dependence relations between them.

We can formalize this idea in the following way. In what follows, let M be
a non-empty set. For any elements a0, . . . , an of M, let B(a0, . . . , an) be some
non-empty subset of M. We call such sets B(a0, . . . , an) choice sets and there
is no specific restrictions on how they are supposed to be concretely defined.

For every n ∈ N, a set of choice n-sequences Mn of M is such that the
following holds:

1. M0 is a set of unary sequences of M;

2. For each 〈a0, . . . , an〉 ∈ Mn, consider a choice set B(a0, . . . , an) of M.
Then, Mn+1 = {〈a0, . . . , an, b〉 : 〈a0, . . . , an〉 ∈Mn, for every b ∈
B(a0, . . . , an)}.

Further, let M =
⋃
n∈N

Mn be the set of choice sequences of M. In order to

better visualize the meaning of these concepts, consider the following example:
assume M is the set of natural numbers and let M0 = {1} and, for any sequence
of natural numbers a0, . . . , an, B(a0, . . . , an) = {2an}. Then M collects the
initial segments of the geometric progression starting with 1 and with common
ratio 2.

Based on those notions, [Rantala, 1975] defines a system of urn logic game-
theoretically.

Definition 1. Let M be a classic structure, M a set of choice sequences of M
and φ a formula of the language of M. A urn game semantics G(M, M, φ) is
similar to classic game semantics except in the following clauses. Assume that
φ′ is the subformula of φ considered in the i-th round of a match p of G(M,
M, φ) and the choice k-sequence 〈a0, . . . , ak〉 has been chosen in the previous
rounds:

1. If φ′ is ∃xψ, then the player who holds φ′ in the i-th round of p holds
ψ(b/x) in the i+ 1-th round of p, for some b of his own choice and such
that 〈a0, . . . , ak, b〉 ∈Mk+1;
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2. If φ′ is ∀xψ, then the player who holds φ′ in the i-th round of p holds
ψ(b/x) in the i+ 1-th round of p, for some b of other player’s choice and
such that 〈a0, . . . , ak, b〉 ∈Mk+1;

The difference between classic and urn game semantics lies essentially in
the behavior of quantifiers: whilst in the classic game a player who chooses
witnesses in the model might choose them looking in the entire domain, in urn
game semantics the player must limit herself to choice sequences only.

Definition 1 describes a game of perfect information, i.e., in order to choose
witnesses in the model, the player must verify which witnesses were chosen in
the previous rounds of the match. We can define a variant game of imperfect
information by adding the condition that, for any n ∈ N, for any two choice
n-sequences ā and b̄, B(ā) = B(b̄). In this case, the player does not need
anymore to consider the particular sequence of witnesses that have appeared
previously in the game because any such sequence determines the same choice
set. To avoid confusion, we call the logical systems which are defined by these
two different urn game semantics perfect and imperfect urn logics, respectively.

The greatest obstacle for the construction of a truth-conditional semantics
for urn logics is the non-compositional character of these systems [Cresswell,
1982, pp. 128–129]. We can solve this issue by relativizing the satisfaction of
formulas in the following way.

Definition 2. Let M be a classic structure with a set of choice sequences M.
For every n ∈ N and for any formula φ of the language of M, the pair (M, M)
n-satisfies φ with respect to 〈a0, . . . , an−1〉, in symbols MM, a0, . . . , an−1 |= φ,
if the following holds:

• If φ is atomic formula, MM, a0, . . . , an−1 |= φ⇔ M classically satisfies φ;

• If φ is ψ ∧ γ, MM, a0, . . . , an−1 |= φ if and only if MM, a0, . . . , an−1 |= ψ
and MM, a0, . . . , an−1 |= γ (an analogous clause holds for disjunction);

• If φ is ¬ψ, MM, a0, . . . , an−1 |= φ⇔ MM, a0, . . . , an−1 6|= ψ;

• If φ is ∃xψ, MM, a0, . . . , an−1 |= φ ⇔ MM, a0, . . . , an−1, b |= ψ(b/x), for
some b such that 〈a0, . . . , an−1, b〉 ∈Mn.

• If φ is ∀xψ, MM, a0, . . . , an−1 |= φ ⇔ MM, a0, . . . , an−1, b |= ψ(b/x), for
every b such that 〈a0, . . . , an−1, b〉 ∈Mn.2

2Strictly speaking, we do not need to present a specific definition of satisfaction for uni-
versal formulas since ∀ is definable in urn logics as ¬ ∃ ¬. But, since in the following we will
extensively consider universal formulas, this specific clause shows itself to be important.
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Finally, (M, M) satisfies φ, in symbols MM |= φ, if and only if (M, M)
0-satisfies φ with respect to ∅.

In the next theorem, following the usual conventions of the literature on
game theory, we refer to the players of an urn game semantics as Abelard and
Eloise. Eloise is the player that initially holds the formula φ in a match of the
game G(M, M, φ).

Theorem 1. Let M be a classic structure with a set of choice sequences M,
and let φ be a formula of the language of M. The following are equivalent:

1. MM |= φ;

2. Eloise has a winning strategy in G(M, M, φ).

Proof. (1⇒2) Assume 1. We can define a winning strategy σ for Eloise in
G(M, M, φ) as follows. Suppose that, for some n ∈ N, we have defined σ in
the first i-th rounds of a match p of G(M, M, φ). Moreover, consider that the
choice k-sequence 〈a0, . . . , ak〉 has been chosen in those rounds of p:

• Assume Abelard holds ψ ∧ γ in the i-th round of p. If MM, a0, . . . , ak 6|=
ψ, then Eloise demands Abelard to hold ψ in the i + 1-th round of p;
otherwise, Eloise demands Abelard to hold γ;

• Assume Eloise holds ψ ∨ γ in the i-th round of p. If MM, a0, . . . , ak |= ψ,
then Eloise demands herself to hold ψ in the i+1-th round of p; otherwise,
Eloise demands herself to hold γ;

• Assume Abelard holds ∀xψ in the i-th round of p. If there is some b
such that MM, a0, . . . , ak, b 6|= ψ(b/x) such that 〈a0, . . . , ak, b〉 ∈ Mk+1,
then Eloise demands Abelard to hold ψ(b/x); otherwise, Eloise demands
Abelard to hold ψ(c/x), for some arbitrary c such that 〈a0, . . . , ak, c〉 ∈
Mk+1;

• Assume Eloise holds ∃xψ in the i-th round of p. If there is some b such
that MM, a0, . . . , ak, b |= ψ(b/x) such that 〈a0, . . . , ak, b〉 ∈ Mk+1, then
Eloise demands herself to hold ψ(b/x); otherwise, Eloise demands herself
to hold ψ(c/x), for some arbitrary c such that 〈a0, . . . , ak, c〉 ∈Mk+1.

By induction on the indexes of the rounds of any match p in which Eloise
follows strategy σ, we can verify that p is a winning case for her. Consequently,
σ is a winning strategy for Eloise.

(2⇒1) Assuming MM 6|= φ, we can define a winning strategy σ′ for Abelard
considering a set of directives dual to those defining σ. By a similar argument
it is possible to prove that Eloise loses any match in which Abelard follows σ′.
Consequently, Eloise has no winning strategy in G(M, M, φ). �
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3. Hintikka normal forms for urn logics

The existence of Hintikka normal forms is a fundamental property of clas-
sical logic with a variety of applications: Hintikka normal forms characterize
tableau-like deductive systems [Hintikka, 1965], generate truth tables for quan-
tificational logic [Freire, 2015] and provide an essential tool for the construction
of theories of semantic information [Hintikka, 1970b]. Particularly in the case
of urn logics, it is possible to obtain characterization theorems for these systems
based on the syntactic structure of special kinds of Hintikka normal forms, as
we will show in section 4 below.

Let an unnested formula be a formula whose terms have complexity at most
1. For a finite set of formulas Ψ = {ψ0, . . . , ψn}, let

∧
Ψ denote

∧
i≤n

ψi and
∨

Ψ

denote
∨
i≤n

ψi. Let ¬Ψ = {¬ψ : ψ ∈ Ψ} and ∃xΨ = {∃xψ : ψ ∈ Ψ}. Moreover,

let the quantifier rank of φ, qr(φ), be as follows:

• For every atomic formula φ, qr(φ) = 0;

• If φ is ¬ψ, then qr(φ) = qr(ψ);

• If φ is either ψ ∧ γ or ψ ∨ γ, then qr(φ) = max {qr(ψ), qr(γ)};

• If φ is either ∀xψ or ∃xψ, then qr(φ) = qr(ψ) + 1.

Finally, let Φ(x0, . . . , xn) be the set of unnested atomic formulas of the
considered language with variables within x0, . . . , xn.

Definition 3. Let L be a finite first order language. For every n,m ∈ N,
a state description θm(x0, . . . , xn) of L is such that:

• θ0(x0, . . . , xn) is ∧
Σ ∧

∧
¬[Φ(x0, . . . , xn)− Σ],

for some Σ ⊆ Φ(x0, . . . , xn);

• Now, assume that m > 0 and the set Θ of state descriptions of L with
quantifier rank m− 1 and free-variables x0, . . . , xn, ym has been defined:
the state description θm(x0, . . . , xn) is (

∧
∃ymΓ) ∧ (∀ym

∨
Γ), for some

set Γ ⊆ Θ.

For any formula φ of L with quantifier rank m and free-variables x0, . . . , xn,
φ is a Hintikka normal form if and only if φ is

∨
Γ, for some set Γ of state des-

criptions with quantifier rank m and free-variables x0, . . . , xn.
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In classical logic, we can prove the existence of Hintikka normal forms by
showing that satisfiable state descriptions define partial isomorphisms [Hodges,
1997, pp. 84–85]. We can generalize this strategy for the case of urn logics.

Definition 4. Let M and N be classic structures with sets of choice sequences
M and N, respectively. There is a partial isomorphism MM ' NN if and only if
there is a poset H of isomorphisms between finite parts of M and N such that
the following holds:

1. The first element ι0 in H is ∅;

2. Assume that, for some n ∈ N, there is an isomorphism ιn between
substructures {a0, . . . , an−1} ⊆ M and {b0, . . . , bn−1} ⊆ N such that
ιn(ai) = bi, 〈a0, . . . , an−1〉 ∈M and 〈b0, . . . , bn−1〉 ∈ N.

• For any a ∈ M such that 〈a0, . . . , an−1, a〉 ∈M, there is b ∈ N such
that 〈b0, . . . , bn−1, b〉 ∈ N and there is an isomorphism ιn+1 between
{a0, . . . , an−1, a} and {b0, . . . , bn−1, b} such that ιn ⊆ ιn+1 ∈ H;

• For any b ∈ N such that 〈b0, . . . , bn−1, b〉 ∈ N, there is a ∈ M such
that 〈a0, . . . , an−1, a〉 ∈M and there is an isomorphism ιn+1 between
{a0, . . . , an−1, a} and {b0, . . . , bn−1, b} such that ιn ⊆ ιn+1 ∈ H;

3. H is the smallest poset satisfying conditions 1 and 2.

Moreover, we say that there is a k-partial isomorphism MM 'k NN if and
only if condition 2 holds at least for every n < k.

Lemma 1. Let M be a classic structure of a finite language and let M be a
set of choice sequences of M. Then, for every m,n, k ∈ N, for any elements
a0, . . . , an ∈ M, there is a unique state description θm(x0, . . . , xn) such that
MM |= θm(a0, . . . , an).

Proof. Proof by induction on m ∈ N. In the base case, θ0(x0, . . . , xn) is∧
Σ ∧

∧
¬[Φ(x0, . . . , xn)− Σ],

for Σ = {φ ∈ Φ(x0, . . . , xn) : MM |= φ(a0, . . . , an)}. In the inductive step, con-
sider Γ = {θm(x0, . . . , xn, y) : MM |= θm(a0, . . . , an, b), for some b such that
〈a0, . . . , an, b〉 ∈M}. Then,

∧
∃yΓ∧∀y

∨
Γ is the relevant state description. �

Lemma 2. Let L be a finite language, M and N be classic structures of L.
Consider M and N sets of choice sequences of M and N, respectively. For any
k ∈ N, the following are equivalent:
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1. MM 'k NN;

2. For every m ≤ k, there is a unique state description θm of L that is
satisfied by (M, M) and (N, N).

Proof. (1⇒2) Assume 1. Item 2 is a consequence of the following fact:

(∗) For any m and n such that m + n ≤ k, for any state description
θm(x0, . . . , xn−1) and for any 〈a0, . . . , an−1〉 ∈M,

MM, a0, . . . , an−1 |= θm(a0, . . . , an−1)⇔

NN, ιn(a0), . . . , ιn(an−1) |= θm(ιn(a0), . . . , ιn(an−1))

for ιn in the poset H of isomoprhisms that defines MM 'k NN.

The proof of (∗) follows by induction on m. Assume that the property holds
for some m < k. For any n such that m+ n < k, consider a state description
θm(x0, . . . , xn−1, y). We can show that (M, M) and (N, N) agree in all formulas
of the form ∃y θm(x0, . . . , xn−1, y) in the following way.

Suppose that MM, a0, . . . , an−1 |= ∃y θm(a0, . . . , an−1, y) (the proof in the
other direction works in exactly the same way). Therefore,

MM, a0, . . . , an−1, a |= θm(a0, . . . , an−1, a)

for some a such that 〈a0, . . . , an−1, a〉 ∈M.
By inductive hypothesis and 1, there is ιn+1 ∈ H such that

NN, ιn+1(a0), . . . , ιn+1(an−1), ιn+1(a) |= θm(ιn+1(a0), . . . , ιn+1(an−1), ιn+1(a)).

So, NN, ιn+1(a0), . . . , ιn+1(an−1) |= ∃y θm(ιn+1(a0), . . . , ιn+1(an−1), y).
Consider the set

Γ = {θm(x0, . . . , xn−1, y) : MM, a0, . . . , an−1, a |= θm(a0, . . . , an−1, a),

for some a such that 〈a0, . . . , an−1, a〉 ∈M}.

(M, M) and (N, N) both satisfy (
∧
∃yΓ) ∧ (∀y

∨
Γ). Moreover, by Lemma

6 this is the only state description that we must consider. This completes the
proof of (∗), 2 being a subcase of it.

(2⇒1) Assume 2. We can construct MM 'k NN in the following way.
For some m < k, suppose MM 'm NN has been defined. Let ιm be one
of the isomorphisms which define MM 'm NN and let the domain of ιm be
{a0, . . . , am−1} such that 〈a0, . . . , am−1〉 ∈M.
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Without loss of generality, fix some element a such that 〈a0, . . . , am−1, a〉 ∈
M and consider the state description θk−(m+1)(x0, . . . , xm−1, y) such that

MM, a0, . . . , am−1, a |= θk−(m+1)(a0, . . . , am−1, a).

By 2 and the definition of MM 'm NN,

NN, ιm(a0), . . . , ιm(am−1), b |= θk−(m+1)(ιm(a0), . . . , ιm(am−1), b),

for some b such that 〈ιm(a0), . . . , ιm(am−1), b〉 ∈ N.
Consider the function ι∗ ⊃ ιm with domain {a0, . . . , am−1, a} such that

ι∗(a) = b. Now, note that for any constant t ∈ L,

tM = a⇔ t = y occurs in θk−(m+1)(x0, . . . , xm−1, y)⇔ tN = b.

Moreover, for any n-ary relation R ∈ L, for every ā ∈ {a0, . . . , am−1, a}n and
x̄ ∈ {x0, . . . , xm−1, y}n,

ā ∈ RM ⇔ R(x̄) occurs in θk−(m+1)(x0, . . . , xm−1, y)⇔ ι∗(ā) ∈ RN.

The case of functions can be reduced to the case of relations. So, ι∗ is an
isomorphism. �

Based on Lemma 2, we can prove that in urn logics every unnested formula
has a set of Hintikka normal forms.

Theorem 2. Let φ be an unnested formula with quantifier rank k and free-
variables x0, . . . , xn. Then, for every q ≥ k, there is a Hintikka normal form ψ
equivalent to φ and with quantifier rank q.

Proof. Proof by induction on φ. If φ is atomic formula, then ψ is
∨

Γ, for

Γ = {θq(x0, . . . , xn) : MM |= θq(a0, . . . , an) ∧ φ,

for some M, M and a0, . . . , an ∈ M}.

To verify this, first assume that, for some structure M and a set of choice
sequences M, MM |= φ(a0, . . . , an). By Lemma 6, there is some state descrip-
tion θq such that MM |= θq(a0, . . . , an). Hence, MM |=

∨
Γ(a0, . . . , an), by

definition of Γ.
On the other hand, assume MM 6|= φ(a0, . . . , an). Moreover, suppose

that MM |= θq(a0, . . . , an), for some θq ∈ Γ. Then, by definition of Γ,
there is some structure N and some set of choice sequences N such that
NN |= θq(b0, . . . , bn) ∧ φ. However, by Lemma 7, θq defines an isomorphism ι;
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{a0, . . . , an} → {b0, . . . , bn} and, consequently, MM |= φ(a0, . . . , an), what con-
tradicts our original hypothesis. So, φ ≡

∨
Γ.

For the inductive step, fix some q ≥ k and assume φ is ψ ∧ γ. By inductive
hypothesis, there are Hintikka normal forms

∨
Ψ and

∨
Γ of ψ and γ, respect-

ively, with quantifier rank q. So,
∨

(Ψ∩Γ) is the Hintikka normal form of φ. A si-
milar reasoning shows that

∨
(Ψ∪Γ) and

∨
(Ψ̄) are the Hintikka normal forms

of ψ ∨ γ and ¬ψ, respectively, for Ψ̄ = {θq(x0, . . . , xn) : θq(x0, . . . , xn) 6∈ Ψ}.
Finally, suppose that φ is ∃yψ. By inductive hypothesis, ψ has a Hintikka

normal form
∨

Γ with quantifier rank q − 1. So, ∃yψ is equivalent to ∃y
∨

Γ.
Let ∆0, . . . ,∆m be all the non-empty elements of the power set of Γ. For every
i ≤ m, the formula

∧
∃y∆i∧∀y

∨
∆i is a state description with quantifier rank

q. Further,
∨

Γ is equivalent to
∨
i≤m

(
∧
∃y∆i ∧ ∀y

∨
∆i). Therefore, this is a

Hintikka normal form of φ. �

Theorem 2 establishes that in urn logics at least unnested formulas have
Hintikka normal forms. What about nested formulas? The next result shows
that in urn logics it is possible to weakly generalize Theorem 2 for all formulas.

In urn logics, every formula is equisatisfiable with some unnested translation
of it. We will not prove this fact here (see [Mendonça, 2018, p. 50] for more
details), but the following example gives an illustration. For instance, consider
a pair (M, M) satisfying the formula f(g(x)) = c and let g(x)M = a and
f(a)M = b, for some a, b ∈ M. Let M′ be a variant of M such that 〈a, b〉 ∈M′.
Then, MM′ |= ∃y∃w(g(x) = y ∧ f(y) = w ∧ c = w). So, f(g(x)) = c is
equisatisfiable with the formula ∃y∃w(g(x) = y ∧ f(y) = w ∧ c = w).

Corollary 1. Let φ be a formula with quantifier rank k. Then, for every q ≥ k,
there is a Hintikka normal form ψ with quantifier rank q equisatisfiable with φ.

Proof. Consider a pair (M, M) that satisfies φ. There is a variant M′ of M and
an unnested translation φ′ of φ such that MM′ |= φ′. By Theorem 2, for any
q ≥ k, there is some Hintikka normal form ψ equivalent to φ′ with quantifier
rank q. So, ψ is equisatisfiable with φ. �

4. Characterization theorems

In this section we finally show that a special class of Hintikka normal forms
determines a characterization theorem for perfect urn logic. Moreover, we in-
dicate how we can obtain an equivalent result for imperfect urn logic.

In what follows, for any atomic formula φ, we say that the positive literal φ
occurs in some state description θ if and only if φ occurs in θ and ¬φ does not
occur in θ.
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Definition 5. A state description θ is p-consistent if and only if the following
holds:

• For any term t that occurs in θ, the positive literal (t = t) occurs in θ;

• For any state description θ′ with quantifier rank 0 occurring in θ, for any
terms t0, . . . , tn, s0, . . . , sn such that the positive literal (ti = si) occurs in
θ′, and for every atomic formula φ with free-variables within x0, . . . , xn,
the positive literal φ(t0, . . . , tn/x0, . . . , xn) occurs in θ′ if and only if the
positive literal φ(s0, . . . , sn/x0, . . . , xn) occurs in θ′;

• For every atomic formula φ whose terms are free in θ, the positive literal
φ occurs in θ if and only if ¬φ does not occur in θ.

We say that a Hintikka normal form is p-consistent if and only if every state
description occurring in it is p-consistent.

In classical logic, we can prove that consistent formulas are satisfiable by
showing that they define Hintikka sets [Hodges, 1997, pp. 40–42]. We can
explore a similar strategy to show that, in perfect urn logic, all and only
p-consistent Hintikka normal forms are satisfiable.

In what follows, let a subformula chain be a sequence of formulas
〈φ0, . . . , φn〉 such that φj is subformula of φi, for every 0 ≤ i < j ≤ n. We rely
here on a “relaxed” concept of subformula: in particular, consider that ¬φ and
¬ψ are subformulas of both ¬(φ ∧ ψ) and ¬(φ ∨ ψ). Moreover, let φ(t/x) be
a subformula of both ∃xφ and ∀xφ, and let ¬φ(t/x) be a subformula of ¬∃xφ
and ¬∀xφ, for any term t of the considered language.

For any quantifier Q, for any subformula chain T of the form

〈φ0, . . . , Qxψ, ψ(t/x), . . . , φn〉,

t is called a witness of T. The sequence of witnesses 〈t0, . . . , tn〉 of T is the
collection of witnesses of T such that ti occurs first in T than tj , for every
0 ≤ i < j ≤ n. Finally, the quantifier rank of a subformula chain T, in symbols
QR(T), is the total number of formulas of the form Qxψ in T.

Definition 6. For a language L, consider a collection of sets {∆n}n∈N such
that the following holds:

1. (t = t) ∈ ∆0, for every term t of L with complexity at most 2;

2. For every atomic formula φ, either φ 6∈ ∆0 or ¬φ 6∈ ∆0;
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3. For every n ∈ N, If φ ∧ ψ ∈ ∆n, then φ, ψ ∈ ∆n; If ¬(φ ∧ ψ) ∈ ∆n, then
either ¬φ or ¬ψ are in ∆n (Dual clauses can be defined for φ ∨ ψ and
¬(φ ∨ ψ));

4. For every n ∈ N, if ¬¬φ ∈ ∆n, then φ ∈ ∆n;

5. For every n ∈ N, for every atomic formula φ with free-variables
x0, . . . , xm, if there are terms t0, . . . , tm, s0, . . . , sm such that (ti = si) ∈⋃
j≤n

∆j , then

φ(t0, . . . , tm/x0, . . . , xm) ∈ ∆n ⇔ φ(s0, . . . , sm/x0, . . . , xm) ∈ ∆n;

6. For every formula φ that is either atomic or the negation of an atomic
formula, if φ ∈ ∆n, then φ ∈ ∆n+1;

7. Assume ∃xφ ∈ ∆n and {T0, . . . ,Ti, . . .} is the set of all subformula
chains defined in

⋃
j≤n

∆j such that ∃xφ is the last element in every Ti

and QR(Ti) = n+ 1. Then, for each Ti, there is a constant cφ,i of L such
that φ(cφ,i/x) ∈ ∆n+1 (A dual condition holds for ¬∀xφ);

8. Assume ∀xφ ∈ ∆n. For every formula ψ of L and for every non-empty set
of subformula chains {T0, . . . ,Ti, . . .} defined in

⋃
j≤n

∆j such that ∃xψ ∈

∆n is the last element of each Ti, QR(Ti) = n + 1, if there is some Ti
with the same sequence of witnesses as that of some subformula chain T
defined in

⋃
j≤n

∆j with ∀xφ as its last element, then φ(cψ,i/x) ∈ ∆n+1, for

the constant cψ,i of L defined as in clause 7 (A dual condition holds for
¬∃xφ).

A collection of sets
⋃
j≤n

∆j such that ∆n has only quantifier-free formulas is

a p-set of formulas of L.

The following lemma shows that p-sets are satisfiable in perfect urn logic.

Lemma 3. For any p-set of sentences ∆ =
⋃
j≤n

∆j of a language L, there is a

classic structure M and a set of choice sequences M such that, for every j ≤ n,
for every φ ∈ ∆j and for some sequence 〈a0, . . . , aj−1〉 ∈M, it is the case that
MM, a0, . . . , aj−1 |= φ.

Proof. We will build a canonical model M and a set of choice sequences M for
∆. Consider the set C of closed terms of L and a partition Π(C) such that, for
every JtK ∈ Π(C), s ∈ JtK if and only if (t = s) ∈ ∆.

Let M be the following interpretation function:
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• For every constant c ∈ L, cM = JcK;

• For every m-ary relation R ∈ L, RM = {〈Jt0K, . . . , Jtm−1K〉 :
R(t0, . . . , tm−1) ∈ ∆} (An analogous condition holds for m-ary functions
of L).

Let M= (Π(C),M ). M can be defined as follows:

• M0 = {JtK : for some formula φ of L, ∃xφ ∈ ∆0 and φ(t/x) ∈ ∆1};

Now, remember that, by definition of p-set, for every formula of the form
∃xφ ∈ ∆j , the set of subformula chains {T0, . . . ,Ti, . . .} defined in

⋃
k≤j

∆k such

that QR(Ti) = j + 1 which have ∃xφ as their last element generates a set of
constants {cφ,0, . . . , cφ,i, . . .} such that φ(cφ,i/x) ∈ ∆j+1. Hence:

• For any ¯JaK ∈Mj , let B( ¯JaK) = {Jcφ,iK : ā is the sequence of witnesses of
some subformula chain Ti defined in

⋃
k≤j

∆k with ∃xφ as its last element,

for some formula φ of L}. Based on this, Mj+1 is straightforwardly
defined.

The lemma is a consequence of the following claim:

(∗∗) For every j ≤ n, for any formula φ with free-variables x0, . . . , xm and for
any closed terms t0, . . . , tm of L, the following holds:

• If φ(t0, . . . , tm/x0, . . . , xm) ∈ ∆j , then MM, ¯JsK |= φ(Jt0K, . . . , JtmK), for
every ¯JsK ∈Mj−1 such that s̄ is the sequence of witnesses of some subfor-
mula chain T defined in

⋃
k≤j

∆k with φ(t0, . . . , tm/x0, . . . , xm) as its last

element;

• If ¬φ(t0, . . . , tm/x0, . . . , xm) ∈ ∆j , then MM, ¯JsK 6|= φ(Jt0K, . . . , JtmK), for
every ¯JsK ∈Mj−1 such that s̄ is the sequence of witnesses of some subfor-
mula chain T defined in

⋃
k≤j

∆k with ¬φ(t0, . . . , tm/x0, . . . , xm) as its last

element.

We can prove (∗∗) by induction on φ. If φ is atomic, then the property
follows by definition of M and by clauses 2 and 5 of Definition 6.

Assume φ is ψ∧γ and ψ∧γ ∈ ∆j . Moreover, assume that s̄ is the sequence
of witnesses of a subformula chain T defined in

⋃
k≤j

∆k with φ as its last element.

Then, ψ, γ ∈ ∆j and both formulas extend T to two other subformula chains
that have the same sequence of witnesses. Therefore, by inductive hypothesis,
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MM, ¯JsK |= ψ ∧ γ(Jt0K, . . . , JtmK). On the other hand, assume ¬(ψ ∧ γ) ∈ ∆j .
Then, either ¬ψ or ¬γ are in ∆j . Without loss of generality, suppose ¬ψ ∈ ∆j .
So, by inductive hypothesis, MM, ¯JsK |= ¬(ψ ∧ γ)(Jt0K, . . . , JtmK). Based on a
similar argument we can verify that the property holds for ψ ∨ γ and ¬(ψ ∨ γ).

Assume φ is ¬ψ. If φ ∈ ∆j , then, by inductive hypothesis,

MM, ¯JsK |= φ(Jt0K, . . . , JtmK).

On the other hand, if ¬φ ∈ ∆j , then ψ ∈ ∆j and, by inductive hypothesis,
MM, ¯JsK 6|= φ(Jt0K, . . . , JtmK).

Assume φ is ∃xψ and φ ∈ ∆j . Then, ψ(cψ,i/x) ∈ ∆j+1. By inductive hy-
pothesis, MM, ¯JsK, Jcψ,iK 6|= ψ(Jt0K, . . . , JtmK, Jcψ,iK). Given that Jcψ,iK ∈ B( ¯JsK),
then MM, ¯JsK |= ∃xψ(Jt0K, . . . , JtmK).

Finally, assume φ is ∀xψ and φ ∈ ∆j . Fix some formula γ such that there
is some subformula chain T defined in

⋃
k≤j

∆k with ∃xγ as its last element

and whose sequence of witnesses is s̄. Then, ψ(cγ,i/x) ∈ ∆j+1. By inductive
hypothesis,

MM, ¯JsK, Jcγ,iK |= ψ(Jt0K, . . . , JtmK, Jcγ,iK).

By definition of B( ¯JsK), these are all the terms that need to be considered
in order to conclude that MM, ¯JsK |= ∀xψ(Jt0K, . . . , JtmK). Based on a similar
argument we can verify that the property holds for ¬∀xψ and ¬∃xψ. �

Lemma 4. For every p-consistent state description θ with quantifier rank n+1
there is a p-set ∆ =

⋃
j≤n+1

∆j such that θ ∈ ∆0.

Proof. Let L be a finite language of θ. By definition, θ is of the form

(
∧
∃x0Γ) ∧ (∀x0

∨
Γ),

for some set Γ of game normal forms. So, let ∆0 be the set that collects all the
conjuncts of θ plus all identities t = t such that t is a term of complexity at
most 2 of L.

In order to define ∆1, consider an extension L1 = L ∪ {cφ : φ ∈ Γ}. Based
on this extension, let

∆1 = {φ(cφ/x0) : φ ∈ Γ} ∪ {
∨

Γ(cφ/x0) : φ ∈ Γ}∪

∪{t = t : t = t ∈ ∆0} ∪ {ψ : ψ is either a conjunct of φ(cφ/x0) or

is a disjunct of
∨

Γ(cφ/x0), for some φ ∈ Γ}.

For any φ′ ∈ Γ, every φ(cφ′/x0) ∈ ∆1 is a game normal form of the form
(
∧
∃x1Γφ) ∧ (∀x1

∨
Γφ). Assume φ0, . . . , φm are all such formulas. In order to

define ∆2, consider a new extension L2 = L1 ∪ {cψ : ψ ∈ Γφi , 0 ≤ i ≤ m}.
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Let Σ′ = {ψ(cψ/x1) : ψ ∈ Γφi , 0 ≤ i ≤ m}. For every 0 ≤ i ≤ m, let
Ti be the subformula chain defined in ∆0 ∪ ∆1 with ∀x1

∨
Γφi as its last

element and let Σ′′ = {
∨

Γφi(cψ/x1) : the subformula chain T defined in ∆0 ∪
∆1 with ∃x1ψ as its last element has the same sequence of witnesses as Ti}.
Based on this, consider that

∆2 = Σ′ ∪ Σ′′ ∪ {t = t : t = t ∈ ∆1}∪

∪{ψ : ψ is either a conjunct of some element of Σ′ or a disjunct of

some element of Σ′′}.

The reiteration of this process n+ 1-times generates an adequate p-set ∆.�

Theorem 3. For every state description θ, θ is satisfiable in perfect urn logic
if and only if θ is p-consistent.

Proof. (Sufficiency) Assume θ is not p-consistent. Then, we must consider the
following three cases:

• Case 1: for some term t of the considered language, t 6= t occurs in θ.
In this case, in every game G(M, M, θ) there is a winning strategy for
Abelard, namely, to force Eloise to hold t 6= t.

• Case 2: in some state description θ′ occurring in θ with qr(θ′) = 0,
for some terms t0, . . . , tn, s0, . . . , sn such that the positive literal ti = si
occurs in θ′, for some atomic formula φ with free-variables x0, . . . , xn, the
positive literal φ(t0, . . . , tn/x0, . . . , xn) occurs in θ′ but the positive literal
φ(s0, . . . , sn/x0, . . . , xn) does not occur in θ′. In this case, Abelard has the
following winning strategy in a game G(M, M, θ). Consider that Eloise
substitutes t0, . . . , tn, s0, . . . , sn by some a0, . . . , an ∈ M during a match
of G(M, M, θ). If MM, a0, . . . , an |= φ, then Abelard enforces Eloise to
hold the formula ¬φ(s0, . . . , sn/x0, . . . , xn); Otherwise, Abelard enforces
Eloise to hold the formula φ(t0, . . . , tn/x0, . . . , xn).

• Case 3: for some atomic formula φ whose terms t0, . . . , tn are not bounded
in θ, both φ and ¬φ occur in θ. In this case, Abelard has the following
winning strategy in any game G(M, M, θ): if MM |= φ, then Abelard
enforces Eloise to hold ¬φ; Otherwise, Abelard enforces Eloise to hold φ.

(Necessity) The proof is immediate from Lemmas 3 and 4 . �

Corollary 2. [Characterization theorem for perfect urn logic] A formula φ is
satisfiable in perfect urn logic if and only if φ has p-consistent Hintikka normal
forms.
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Imperfect urn logic describes a stricter notion of satisfiability than perfect
urn logic. So, finally, let us a present a quick remark on how we can obtain a
similar characterization theorem for the former logical system.

Essentially, in imperfect urn logic different choice n-sequences ā and b̄ have
always the same choice sets, that is, B(ā) = B(b̄). Now, if the concept of choice
sequence is syntactically grasped by the notion of a sequence of witnesses, then
what we need to do is to define a subclass of the set of p-consistent state
descriptions such that, for any θ in this subclass, any two existential formulas
∃xφ and ∃xψ occurring in θ with the same quantifier rank should accept the
same witnesses. This subset of formulas defines a notion of consistency for
imperfect urn logic (for simplicity, we call this notion i-consistency). If we
generalize this property for Hintikka normal forms (by saying that for any two
state descriptions θ and θ′ occurring in some Hintikka normal form, any two
existential formulas ∃xφ and ∃xψ occurring in them with the same quantifier
rank accept the same witnesses), then, appealing to a strategy similar to the
one used above, we could show that these are all and the only formulas which
are satisfiable in imperfect urn logic. Since the proof of this result is very
similar to the one presented above, we let to the reader the task of proving this
theorem – the reader can get more information about it in [Mendonça, 2018].

5. How have we avoided the scandal of deduction?

In this paper we have shown that we can define truth-conditional semantics
for both perfect and imperfect urn logics. Furthermore, we have presented a full
characterization of the sets of logical validities of these systems. In the case of
perfect urn logic, every formula satisfiable in this system is equisatisfiable with
a p-consistent Hintikka normal form. By its turn, in the case of imperfect urn
logic, we have indicated that the satisfiable formulas are all equisatisfiable with
i-consistent Hintikka normal forms. Now, we need to go back and ask again:
what happens to the scandal of deduction under this new logical framework?

It is not difficult to see that traditional theory of semantic information
based on urn logics in fact blocks the scandal of deduction. We can see this
by noticing that classical logic defines a proper subclass of structures of urn
logic, i.e., we can conceive of a classic structure M as a model whose set of
choice sequences M is equal to the set of all sequences of M. Now, given the
fact that, in this sense, classical logic is a semantic fragment of urn logics, some
formulas which are unsatisfiable in the former system become satisfiable in the
latter ones. So, many classical logical truths turn out to be not valid in urn
logics and, consequently, have its real informativeness acknowledged in this new
theoretical context.
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However, this is too much theoretical. The reader might want to see some
concrete examples of classical logical validities which show themselves to be
really informative in this new logical framework. In order to see one such
example, we can consider again Russell’s paradox, the anomalous consequence
of naive set theory. As we have said before, beginning students of set theory
often find it difficult to see that the notion of a set of all sets that do not
contain themselves as elements is contradictory. Hence, these reasoners ignore
that the sentence ¬∃x∀y(y ∈ x ↔ y 6∈ y) is logically valid. In urn logics, we
can formalize the epistemological standpoint of a person who ignores the logical
validity of that sentence in the following way. Consider a classic structure Q
and a set of choice sequences Q such that Q0 = {a}, Q1 = {b} and Q classically
satisfies b ∈ a and b 6∈ b. It is easy to see that QQ |= ∃x∀y(y ∈ x↔ y 6∈ y). So,
based on urn logics, the epistemological standpoint of an individual who does
not know that the sentence ¬∃x∀y(y ∈ x ↔ y 6∈ y) is logically valid can be
explained by the idea that her knowledge of truth-conditions does not exclude
impossible models such as QQ.

Finally, let us make a few more general remarks on what more can we expect
to obtain from traditional theory of semantic information in this new logical
framework. Since urn logics are decidable formal systems [Olin, 1978, p. 357],
with this replacement we obtain a decidable theory of semantic information.
This is a theoretical advantage for the following reason: given that here we
associated semantic information with the epistemological standpoint of ordinary
reasoners, this conception presupposes (at least from an internalist approach
to epistemology) that ordinary reasoners are able to effectively measure the
semantic information of a given sentence. This presupposition is entirely met
by the decidability of urn logics.

However, one question remains unanswered: given that there are at least
two different systems of urn logic, which one provides the best framework for
the development of a theory of semantic information? This is a difficult ques-
tion. Perhaps, in order to solve this issue, we should do an empirical research
on the actual conditions of the epistemological standpoint of ordinary reason-
ers towards logical knowledge or, even, of the knowledge associated with the
semantic competence of linguistic users. Anyway, this discussion surpasses the
limits of the present exposition. Provisionally, we could state that perfect urn
logic, given its generality (that is, given the fact that this system semantically
includes both classical logic and imperfect urn logic), is a quite appropriate
framework for a theory of semantic information.
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and incomplete data. It deals with the situation when some propositions and their negations
are allowed to be simultaneously false, which is obviously impossible in the classical and many
non–classical propositional logics. In paracomplete logic, such classical laws as tertium non
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calculus QD1 to the hierarchy of related calculi.

Keywords: paracomplete logic, paracompleteness, the law of exluded middle, tertium non
datur, consequentia mirabilis, weakly–intuitionistic logic, literal–paracomplete logic, para-
consistent logic

For citation: Ciuciura J. “A lattice of the paracomplete calculi”, Logicheskie Issledovaniya /
Logical Investigations, 2020, Vol. 26, No. 1, pp. 110–123. DOI: 10.21146/2074-1472-2020-
26-1-110-123

1. Introduction

Let var denote a (non-empty) denumerable set of all propositional variables.
The set of formulas F is inductively defined as follows:

ϕ ::= p | ¬α | α ∨ α | α ∧ α | α→ α,

where p ∈ var, α ∈ F and the symbols ¬, ∨, ∧,→ denote negation, disjunction,
conjunction and implication, respectively. The connective of equivalence, α↔
β, is treated as an abbreviation for (α→ β) ∧ (β → α).
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Paracomplete logic can be defined in various ways, for instance,

Definition 1. A logic 〈L,`〉 is said to be paracomplete if, and only if
(1) {β → α,¬β → α} 0 α, for some α, β ∈ F ; or
(2) ∅ 0 α ∨ ¬α, for some α ∈ F ; or
(3) ∅ 0 (¬α→ α)→ α, for some α ∈ F ; or
(4) ∅ 0 (α→ ¬α)→ ¬α, for some α ∈ F .1

It is noticeable that paracomplete logic is specified negatively: any logic is
paracomplete if it meets at least one of the criteria listed above. The defini-
tions may seem too general at first sight; in particular, they may suggest some
logics which have nothing in common with paracompleteness. Suffice it to note
that  Lukasiewicz’s three–valued logic meets the four requirements. It is not
by accident, however, that the example has been cited here. From philosoph-
ical perspective, paracomplete calculi are expected to cope with the problem
of vagueness,2 or uncertain and incomplete information.3 Seen from this view-
point,  Lukasiewicz’s logic is a good example of how to interpret uncertainty in
relation to the issue of determinism or fatalism, whereas paracomplete calculi –
with regard to the dynamic character of information or knowledge. Metaphor-
ically speaking, in paracomplete logic, the dilemma of ‘Tomorrow’s sea fight’
has been reduced to ‘Today’s communication’.

The paracomplete calculi are expected to deal with the situation when some
propositions and their negations are allowed to be simultaneously false, which
is impossible in the classical and many non–classical propositional logics. The
calculi are also viewed as being dual to their paraconsistent counterparts, in
a sense that “(...) a logic is paraconsistent if it can be the underlying logic of
theories containing contradictory theorems which are both true. (...) a logical
system is paracomplete if it can function as the underlying logic of theories in
which there are (closed) formulas such that these formulas and their negations
are simultaneously false” [Loparić, da Costa, 1984, p. 119].

In what follows, we will consider axiomatic propositional calculi in a Hilbert-
style formalization with the sole rule of inference (MP): α → β, α / β. Such
a calculus C, identified with the triple 〈F , AxC ,`C〉, is determined by its set
of axioms AxC which is included in F . We will require for each paracomplete
calculus that it contains all axiom schemas of the positive fragment of Classical
Propositional Calculus (CPC+, for short), that is, all instances of the following
schemas:

1Cit. per [Petrukhin, 2018, pp. 425–426]. Some interesting examples of the paracomplete
calculi are given in [Batens et all, 1999; Bolotov et all, 2018; Ciuciura, 2015; Karpenko,
Tomova, 2017; Loparić, da Costa, 1984; Popov, 2002; Sette, Carnielli, 1995].

2See [Arruda, Alves, 1979; Arruda, Alves, 1979] and [Beall, 2017, Section 4.1], for details.
3See [Bolotov et all, 2018], for details.
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(A1) α→ (β → α)

(A2) (α→ (β → γ))→ ((α→ β)→ (α→ γ))

(A3) ((α→ β)→ α)→ α

(A4) (α ∧ β)→ α

(A5) (α ∧ β)→ β

(A6) α→ (β → (α ∧ β))

(A7) α→ (α ∨ β)

(A8) β → (α ∨ β)

(A9) (α→ γ)→ ((β → γ)→ (α ∨ β → γ)),

admits the rule (MP), and fulfils all the criteria listed in Definition 1. To put
it more accurately:

Definition 2. A calculus 〈F , AxC ,`C〉 is said to be paracomplete if, and only
if it contains CPC+, admits (MP) and cumulatively meets the conditions:

(1) {β → α,¬β → α} 0 α, for some α, β ∈ F
(2) ∅ 0 α ∨ ¬α, for some α ∈ F
(3) ∅ 0 (¬α→ α)→ α, for some α ∈ F
(4) ∅ 0 (α→ ¬α)→ ¬α, for some α ∈ F .

Observe that many non-classical logics, esp. Intuitionistic and  Lukasiewicz’s
three–valued logic, do not come within the scope of paracompleteness.

Definition 3. For C, any α ∈ F and any Γ ⊆ F , we say that α is provable
from Γ within C (in symbols: Γ `C α) iff there is a finite sequence of formulas,
β1, β2, . . . , βn such that βn = α and for each i 6 n, either βi ∈ Γ , or βi ∈ AxC ,
or for some j, k 6 i we have βk = βj → βi. A formula α is a thesis of C iff α is
provable from ∅ within C (in symbols: ∅ `C α).

Definition 4. Let T (C) be the set of all theses of C. For any calculi C and C?
in F , we say that C is an extension of C? if, and only if T (C?) ⊆ T (C). We
say that C? is a proper subsystem of C (in symbols: C? < C) if, and only if
T (C?) ⊆ T (C) and T (C) 6⊆ T (C?).

Let us recall a few well–known facts about C, where C = CPC+ + (MP).

Theorem 1. Deduction theorem holds for C.

Proof. This follows from the fact that C includes (A1) and (A2), and the sole
rule of inference in C is (MP). �
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Lemma 1. Let Γ,∆ ⊆ F and α, β, γ ∈ F .
(1) If α ∈ Γ, then Γ `C α
(2) If Γ ⊆ ∆ and Γ `C α, then ∆ `C α
(3) Γ `C α iff for some finite ∆ ⊆ Γ, ∆ `C α
(4) If ∆ `C α and, for every β ∈ ∆ it is true that Γ `C β, then Γ `C α
(5) If Γ ∪ {α} `C γ and Γ ∪ {β} `C γ, then Γ ∪ {α ∨ β} `C γ
(6) If Γ ∪ {α} `C β and ∆ `C α, then Γ ∪∆ `C β
(in particular, if Γ ∪ {α} `C β and ∅ `C α, then Γ `C β)

Proof. We refer the interested reader to [Wójcicki, 1988] and [Pogorzelski,
Wojtylak, 2008] for details. �

Remark 1. The relation `C is a finitary consequence relation satisfying
Tarskian properties (reflexivity, monotonicity, transitivity).

2. Paracomplete calculi. Axioms

The basic paracomplete calculus discussed in this section is CLaN . CLaN ,
as introduced in [Batens et all, 1999], is defined by (MP), CPC+ and the law
of explosion (DS): α→ (¬α→ β). In the succeeding paragraphs, we consider
some extensions of CLaN . They are obtained from CLaN by adding to it at
least one of the schemas:

(ExM2) α ∨ ¬α ∨ ¬¬α
(NN?) α→ ¬¬α.

As a result, we obtain three such extensions, namely,

Dmin = CLaN + (NN?)
Q1 = CLaN + (ExM2)
QD1 = CLaN + (ExM2) + (NN?).

The calculus Q1 was introduced in [Ciuciura, 2019]; Dmin was briefly dis-
cussed in [Carnielli, Marcos, 1999]; QD1 seems to be pretty new. Notice that
the calculi (incl. QD1) are proper subsystems of I1. The propositional calcu-
lus I1 was originally defined by (MP), (A1), (A2),

(I1) (¬¬α→ ¬β)→ ((¬¬α→ β)→ ¬α)
(I2) ¬¬(α→ β)→ (α→ β).4

The connectives of ¬ and → are taken as primitives. Conjunction, disjunc-
tion and equivalence are useful abbreviations. They can be introduced via the
definitions:

4[Sette, Carnielli, 1995, pp. 182–183].
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α ∧ β =df ¬(((α→ α)→ α)→ ¬((β → β)→ β))

α ∨ β =df (¬(β → β)→ β)→ ((α→ α)→ α)

α↔ β =df (α→ β) ∧ (β → α).5

It is noteworthy that I1 gave an impulse for further research and several al-
ternative axiomatizations for the calculus were proposed. In [Ciuciura, 2015],
for instance, the consequentia mirabilis (cf. Defition 1, (3)) plays the key
role; in [Fernández, Coniglio, 2003], the role is taken by the tertium non datur
(cf. Defition 1, (2)) which suggests that the connective of disjunction (and
conjunction) formally appears in formulas. Indeed, Fernández–Coniglio’s axio-
matization consists of (A1), (A2), (A4)–(A9), (NN?) and

(nC) ¬(α ∧ ¬α)

(NI?) (α ∨ ¬α)→ ((α→ β)→ ((α→ ¬β)→ ¬α))

(ExM¬) ¬α ∨ ¬¬α
(ExM ‡) (α ‡ β) ∨ ¬(α ‡ β), where ‡ ∈ {∧,∨,→}.

The sole rule of inference is (MP).
We prove now that CLaN,Dmin, Q

1 and QD1 meet the criteria mentioned
in Definition 2 ; let C ∈ {CLaN,Dmin, Q

1, QD1}, for the sake of brevity.

Remark 2. (1) The formulas
(ExM) p ∨ ¬p
(CM1) (p→ ¬p)→ ¬p
(CM2) (¬p→ p)→ p

(NN) ¬¬p→ p

are not provable in C.
(2) Neither (a) {β → α,¬β → α} `C α, nor (b) {¬(α→ β)} `C ¬β, nor (c)

{α→ ¬β, α→ β} `C ¬α hold, for any α, β ∈ F .

Proof. Apply the matrix MI =
〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where {1, 2, 0} is

the set of logical values, 1 is the designated truth value in MI and the con-
nectives ¬,∧,∨,→ are defined in the same way as it is done in [Sette, Carnielli,
1995] (see pp. 190, 199), that is,

→ 1 2 0

1 1 0 0
2 1 1 1
0 1 1 1

¬
1 0
2 0
0 1

5See Ibid., p. 199.; see also [Karpenko, Tomova, 2017, p. 14].
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∧ 1 2 0

1 1 0 0
2 0 0 0
0 0 0 0

∨ 1 2 0

1 1 1 1
2 1 0 0
0 1 0 0

Observe that (A1)–(A9), (DS), (ExM2), (NN?) are valid in MI and (MP)
preserves validity. To demonstrate that (ExM), (CM1), (CM2) and (NN)
are unprovable in C, it suffices to assign 2 to p in the formulas p ∨ ¬p, (p →
¬p) → ¬p, (¬p → p) → p and ¬¬p → p, respectively. This shows that the
claim (1) holds. For (2), assign 2 to α and β in (a); 1 to α and 2 to β in (b);
2 to α and 0 to β in (c). �

Remark 3. The calculus QD1 can be defined, in a Hilbert-style formalization,
by the axiom schemas of CPC+, (DS), (ExM¬) ¬α ∨ ¬¬α and (MP).

Proof. We need to show that (1) (ExM¬) is a thesis of QD1, and (2) (ExM2)
and (NN?) are provable in QD1

?, where QD1
? is defined by CPC+, (DS),

(ExM¬) and (MP). (1): This can be easily done by means of (ExM2), (NN?),
the thesis of CPC+ (α∨β∨γ)→ ((α→ γ)→ (β∨γ)) and (MP). (2): Assume
that α (by the deduction theorem). Then, we obtain ¬α→ ¬¬α by (DS), the
assumption and (MP). Notice that ∅ `QD1

?
(¬α → ¬¬α) → ¬¬α by (ExM¬),

the thesis of CPC+ (α ∨ β) → ((α → β) → β) and (MP). If ¬α → ¬¬α
and (¬α → ¬¬α) → ¬¬α, then ¬¬α, and finally ∅ `QD1

?
α → ¬¬α by the

deduction theorem. To prove that (ExM2) is a thesis of QD1
?, it suffices to

apply (MP) to (A8) and (ExM¬). �

Remark 4. CLaN < Q1 < QD1 and CLaN < Dmin < QD1.

Proof. It is clear that Q1 and Dmin are the extensions of CLaN . A proof
that CLaN is a proper subsystem of Q1 immediately follows from the classical
truth tables for implication, conjunction and disjunction plus the following one
for negation:

¬
1 0
0 0

The designated value is 1. As expected, (A1)–(A9), (DS) are valid under the
interpretation and (MP) preserves validity. Now, assign 0 to p in p∨¬p∨¬¬p
to demonstrate that there is a thesis of Q1 which is unprovable in CLaN .

A proof that CLaN is a proper subsystem ofDmin basically follows from the
fact that p→ ¬¬p is not provable in CLaN . This can be shown by modifying
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the matrixMI appropriately, that is, by replacing the truth table for negation
with the so-called rotary negation:

¬
1 2
2 0
0 1

and assigning 1 to p in p→ ¬¬p. LetM3 denote the resulting matrix, hence-
forth.

It is obvious that QD1 is an extension of Q1 and Dmin. Now, we show
that the formula ¬p ∨ ¬¬p is provable neither in Q1 nor Dmin. Case Q1:
apply M3 and assign 1 to p in ¬p ∨ ¬¬p. Case Dmin: consider the matrix
M3? =

〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where the connectives ∧,∨,→ are defined

in the same way as inMI , but the truth table for negation is as follows:

¬
1 0
2 2
0 1

The axiom schemas ofDmin are valid in the matrix and (MP) preserves validity;
to falsify ¬p ∨ ¬¬p, it is enough to assign 2 to p. �

Remark 5. (1) Dmin 6< Q1

(2) Q1 6< Dmin.

Proof. (1): Apply the matrixM3? and assign 2 to p in p∨¬p∨¬¬p, to show
that the formula p∨¬p∨¬¬p is unprovable in Dmin. (2): Use the matrixM3

and assign 1 to p in p → ¬¬p, to demonstrate that p → ¬¬p is unprovable in
Q1. �

Remark 6. QD1 < I1 < CPC, where CPC denotes the classical propositional
calculus.

Proof. It is known that I1 < CPC.6 All we have to do is to prove
that QD1 < I1. Since (MP) is the sole rule of inference of both calculi and
each axiom schema of QD1 is provable in I1, then I1 is an extension of
QD1. Now, we prove that (nCp) ¬(p ∧ ¬p) is not a thesis of QD1 (cf.
Fernández–Coniglio’s axiomatization of I1). For this purpose, consider the
matrix M3?? =

〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where 1 is the only designated

value inM3??, the connectives of negation and implication are specified in the
same way as inMI , but conjunction and disjunction are defined as follows:

6See [Sette, Carnielli, 1995; Karpenko, Tomova, 2017; Ciuciura, 2015], for details.
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∧ 1 2 0

1 1 2 2
2 2 2 2
0 2 2 0

∨ 1 2 0

1 1 1 1
2 1 2 2
0 1 2 0

Each axiom schema of QD1 is valid in M3?? and the rule of detachment
preserves validity. To show that (nCp) is unprovable in QD1, it is enough to
assign 2 to p in ¬(p ∧ ¬p). �

Since CLaN , Dmin, Q1 and QD1 are proper subsystems of I1, I1 is the
strongest calculus among the paracomplete calculi that have been discussed
so far. Moreover, I1 is maximal in the sense that if we enrich the calculus
with any classical tautology, which is not valid in I1, the resulting calculus
collapses into CPC. It means that there is no structural proper subsystem of
CPC stronger than I1. But ‘Is CLaN the weakest paracomplete calculus?’,
or: ‘Is there a proper subsystem of CLaN admitting CPC+ and (MP)?’ Some
results supporting a positive answer were suggested in Section 7 of [Nowak,
1998]. The requested calculus, denoted as `Cl1, is defined by CPC+, (MP)
and (DS?) α→ (¬α→ ¬β).

Remark 7. CPC+ < `Cl1 < CLaN .

Proof. It is obvious that CPC+ < `Cl1. For `Cl1 < CLaN , note that (DS?)
is an instance of (DS). Thus all the axiom schemas of `Cl1 are theses of CLaN .
To show that p → (¬p → q) is unprovable in `Cl1, apply the classical truth
tables for implication, conjunction and disjunction plus the following one for
negation (1 is the designated value):

¬
1 1
0 1

�

Let us summarize that the lattice relationships between the calculi can be
represented by the structure of Figure 1.

3. Paracomplete calculi. Semantics

A Kripke-type semantics for `Cl1 was given in [Nowak, 1998, p. 98]; a valua-
tion semantics for CLaN was introduced in [Batens et all, 1999, p. 32]; and
a three-valued semantics for I1 was proposed in [Sette, Carnielli, 1995, p. 190];
an alternative semantics for I1 was discussed in [Fernández, Coniglio, 2003].
In this section, we propose a bi-valuational semantics for the calculi Q1 and
QD1; let C? ∈ {Q1, QD1}, for the sake of brevity.
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Fig. 1. A lattice of the paracomplete calculi.

Definition 5. A C?-valuation is any function v : F −→ {1, 0} that satisfies,
for any α, β ∈ F , the following conditions:

(∨) v(α ∨ β)=1 iff v(α)=1 or v(β)=1
(∧) v(α ∧ β)=1 iff v(α)=1 and v(β)=1
(→) v(α→ β)=1 iff v(α)=0 or v(β)=1
(¬) if v(¬α)=1, then v(α)=0,

and additionally,
(¬¬) if v(¬¬α)=0, then (v(α)=1 or v(¬α)=1), for C? = Q1

(¬¬) if v(¬¬α)=0, then v(¬α)=1, for C? = QD1.

Definition 6. A formula α is a C?-tautology if, and only if for every C?-
valuation v, v(α) = 1. For any α ∈ F and Γ ⊆ F , α is a semantic consequence
of Γ (Γ |=C? α, in symbols) iff for any C?-valuation v: if v(β) = 1 for any β ∈ Γ,
then v(α) = 1.

The proof of soundness can be obtained in the standard way, by induction
on the length of a derivation in C?.

Theorem 2. For every Γ ⊆ F and α ∈ F , we have if Γ `C? α, then Γ |=C? α.

For the proof of completeness, we apply the method which is based on the
notion of maximal non-trivial sets of formulas. We use the technique proposed
in [Carnielli, Coniglio, 2016, Section 2.2]. Before going further, let us recall
some important definitions and results. Let C = 〈F , AxC ,`C〉 be a calculus
(satisfying Tarskian properties) and ∆ ⊆ F .
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Definition 7. We say that ∆ is a closed theory of C if, and only if for any
β ∈ F : ∆ `C β iff β ∈ ∆. We say that ∆ is maximal non-trivial with respect
to α ∈ F in C, if, and only if (i) ∆ 6`C α, and (ii) for every β ∈ F , if β 6∈ ∆
then ∆ ∪ {β} `C α.
Lemma 2 ([Carnielli, Coniglio, 2016], Lemma 2.2.5). Every maximal non-
trivial set with respect to some formula is a closed theory.

Observe that the lemma holds for C?. Moreover, we have:

Lemma 3. For any maximal non-trivial set ∆ with respect to α in C? the
mapping v : F −→ {1, 0} defined, for any δ ∈ F , as (?): v(δ) = 1 if and only
if δ ∈ ∆, is a C?-valuation.

Proof. We only prove the clauses for negation. The rest of the proof is similar
to that of Theorem 2.2.7 in [Carnielli, Coniglio, 2016].

Assume, for a contradiction, that v(¬β) = 1 and v(β) = 1. Thus we have
¬β ∈ ∆ and β ∈ ∆ by (?). This implies, by Lemma 1(1), that ∆ `C? ¬β
and ∆ `C? β. But, if ∆ `C? ¬β and ∆ `C? β, then ∆ `C? {¬β, β}. Since
∅ `C? β → (¬β → γ), thus {β,¬β} `C? γ, by the deduction theorem. The
relation `C? is transitive, so ∆ `C? γ. Notice that ∆ is a closed theory, so
α ∈ ∆. But α 6∈ ∆ (by the main assumption). This yields a contradiction.

If C? = Q1, we need to show that the mapping v satisfies the following
clause: if v(¬¬β) = 0 then (v(β) = 1 or v(¬β) = 1), for any β ∈ F . Assume,
for a contradiction, that v(¬¬β) = 0 and v(¬β) = v(β) = 0. Thus we have
¬¬β 6∈ ∆, ¬β 6∈ ∆ and β 6∈ ∆ by (?). Since ∆ is a maximal non-trivial set
with respect to α, ∆ ∪ {β} `Q1 α, ∆ ∪ {¬β} `Q1 α and ∆ ∪ {¬¬β} `Q1 α.
Consequently, ∆ ∪ {β ∨ ¬β ∨ ¬¬β} `Q1 α, by Lemma 1 (5). Note that ∅ `Q1

β ∨ ¬β ∨ ¬¬β, so ∆ `Q1 α, by Lemma 1 (6). Since ∆ is a closed theory, then
α ∈ ∆. But α 6∈ ∆. This yields a contradiction.

If C? = QD1, we have to prove that the mapping v satisfies the clause: if
v(¬¬β) = 0 then v(¬β) = 1, for any β ∈ F . Assume, for a contradiction, that
v(¬¬β) = 0 and v(¬β) = 0. Then we have ¬¬β 6∈ ∆ and ¬β 6∈ ∆ by (?). Since
∆ is a maximal non-trivial set with respect to α, then ∆∪ {¬¬β} `QD1 α and
∆ ∪ {¬β} `QD1 α. Consequently, ∆ ∪ {¬β ∨ ¬¬β} `QD1 α, by Lemma 1 (6).
It is known that ∅ `QD1 ¬β ∨ ¬¬β, so ∆ `QD1 α, by Lemma 1 (6). Since ∆ is
a closed theory, then α ∈ ∆. But α 6∈ ∆. This yields a contradiction. �

Note that the so-called Lindenbaum– Loś’ theorem holds, for any finitary
calculus C = 〈F , AxC ,`C〉.
Lemma 4 ([Pogorzelski, Wojtylak, 2008], Theorem 3.31; [Carnielli, Coniglio,
2016], Theorem 2.2.6). For any Γ ⊆ F and α ∈ F such that Γ 6`C α, there is a
maximal non-trivial set ∆ with respect to α in C such that Γ ⊆ ∆.
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Thus, the completeness of C? follows:

Theorem 3. For all Γ ⊆ F and α ∈ F : if Γ |=C? α, then Γ `C? α.

Proof. Assume that Γ 6`C? α and ∆ be a maximal non-trivial set with respect
to α in C? such that Γ ⊆ ∆. Then α 6∈ ∆. Because Lemma 3 holds, there is a
valuation v such that v(α) = 0 and v(β) = 1, for any β ∈ Γ. Hence Γ 6|=C? α.

�

4. A hierarchy of the paracomplete calculi

The `Cl1, CLaN , Dmin, Q1, QD1 and I1 are not the only paracomplete
calculi that satisfy the criteria specified in Definition 2. In fact, there are
infinitely many such calculi, for example, Q1, Q2, ..., Qn; or QD1, QD2,...
QDn. The hierarchy of Qn–calculi, n ∈ N, was considered in [Ciuciura, 2019].
In the subsequent paragraphs we will discuss the hierarchy of QDn–calculi. The
hierarchy is obtained by replacing (ExM¬) with a more general schema, that
is,

(ExM¬n) ¬nα ∨ ¬n+1α,

where n ∈ N and ¬nα is an abbreviation for
n︷ ︸︸ ︷

¬¬...¬α. To put it more precisely,
for each n ∈ N, let QDn be obtained from CPC+ (and (MP)) by adding to it
the axiom schemas:

(DS) α→ (¬α→ β)
(ExM¬n) ¬nα ∨ ¬n+1α.7

For each n ∈ N, the semantics for QDn results from replacing the evaluation
condition for (¬¬) with a more general one, i.e.

(¬n+1) if v(¬n+1α)=0, then v(¬nα)=1.

The semantic clauses for (∨), (∧), (→) and (¬) remain unchanged, i.e.

Definition 8. A QDn-valuation is any function v : F −→ {1, 0} that satisfies,
for any α, β ∈ F , the conditions:

(∨) v(α ∨ β)=1 iff v(α)=1 or v(β)=1
(∧) v(α ∧ β)=1 iff v(α) = 1 and v(β)=1

7If n = 0, then QD0 = CPC. Some other examples of the hierarchies are known in the
logical literature. For instance, the hierarchy of In–calculi is proposed in [Sette, Carnielli,
1995] and [Fernández, Coniglio, 2003]. There are also interesting hierarchies in a Newton da
Costa-style presentation, e.g. da Costa and Marconi’s hierarchy of paracomplete calculi Pn,
see [da Costa, Marconi, 1986]; or Arruda–Alves’ logic of vagueness, see [Arruda, Alves, 1979]
and [Arruda, Alves, 1979].
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(→) v(α→ β)=1 iff v(α)=0 or v(β)=1
(¬) if v(¬α)=1, then v(α)=0,
(¬n+1) if v(¬n+1α)=0, then v(¬nα)=1, where n ∈ N.

The definition of QDn-tautology (and semantic consequence |=QDn) is ana-
logous to that of Definition 6.

Theorem 4. For every Γ ⊆ F and α ∈ F , Γ `QDn α iff Γ |=QDn α, n ∈ N.

Proof. Proceed analogously to the proof of Theorems 2 and 3. �

At the end of this section, we state a few simple facts about theQDn–calculi.

Remark 8. If n > 1, then the formula p→ ¬¬p is not provable in QDn.

Proof. This follows from the completeness of QDn–calculi. �

Remark 9. If n > 1, then
(1) Dmin 6< QDn

(2) QDn 6< Dmin.

Proof. (1): Although (ExM¬n) is an axiom schema of QDn, the formula
¬np ∨ ¬n+1p is not provable in Dmin (it is enough to apply the semantics and
completeness theorem for Dmin, cf. [Carnielli, Marcos, 1999], Proposition 6.2 ).
(2): This is a consequence of Remark 8 and the fact that (NN?) is an axiom
schema of Dmin. �

Remark 10. For any r, m ∈ N such that r > m, we have QDr < QDm.

Proof. The proof follows from the completeness of QDn–calculi. �

Remark 11. Enriching the set of axiom schemas of any QDn-calculus (n ∈ N)
with the formula (NN) ¬¬α → α, results in obtaining the axiom system of
CPC.

Proof. This follows from the fact that the axiom schemas (ExM¬n) and (NN)
are equivalent to (ExM) α ∨ ¬α in CPC. �

Remark 12. Enriching the set of axiom schemas of any QDn-calculus (for
n > 1) with the formula ¬¬¬α→ ¬α, results in obtaining the calculus QD1.

Proof. Notice that (1) ¬¬¬α→ ¬α is a thesis of QD1, and (2) ¬¬¬p→ ¬p is
not provable in any QDn-calculus that is weaker than QD1. Now it suffices to
show that (ExM¬n), where n > 1, and ¬¬¬α→ ¬α are equivalent to (ExM¬)
in QD1. �
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Popov, 2002 – Popov, V.M. “On a three-valued paracomplete logic”, Logical Investig-
ations, 2002, Vol. 9, pp. 175–178. (In Russian)



A lattice of the paracomplete calculi 123

Sette, Carnielli, 1995 – Sette, A.M., Carnielli, W.A. “Maximal weakly-intuitionistic
logics”, Studia Logica, 1995, Vol. 55, No. 1, pp. 181–203.
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Аннотация: В статье рассматривается класс ERA-логик с эмпирическими модально-
стями � (необходимость) и ♦ (возможность), которые характеризуют, соответствен-
но, высказывания, представляющие эмпирические законы и эмпирические тенденции,
т. е. эмпирические закономерности. Эмпирические закономерности являются резуль-
татом ДСМ-рассуждений, которые образованы взаимодействием правил индуктивного
вывода и правил вывода по аналогии, а также процедурами абдуктивного принятия
гипотез. Рассматриваемые ERA-логики являются пропозициональной имитацией ДСМ-
рассуждений, применимых к последовательностям расширяемых баз фактов интеллек-
туальных систем. Характерной особенностью ERA-логик является применение двух кон-
цепций истины – когерентной и корреспондентной. Применение когерентной концепции
истины обусловлено порождением гипотез посредством правил индуктивного вывода и
вывода по аналогии. Применение же корреспондентной концепции истины обусловлено
применением абдуктивного вывода, принятие результатов которого использует верифи-
кацию гипотез о предсказаниях. С этой целью ERA-логики применяют оператор Т: «ис-
тинно, что. . . ». В заключении статьи обсуждаются нефинитные расширения ERA-логик,
а также их отличия как логик эмпирических модальностей от логики М логических мо-
дальностей Г.Х. фон Вригта.
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с тем фактом, что в некоторых «интересных» неклассических логиках (на-
пример, В3 Д.А. Бочвара,  Ln Я. Лукасевича, модальных логиках) либо
сохраняются логические связки двузначной логики на ограничении истин-
ностных значений «истина» и «ложь», либо предполагается использование
двузначной логики в соответствующих фрагментах этих неклассических
логик.

Однако имеются и логики для специфических рассуждений, порожден-
ных ориентацией на решение соответствующих проблем. Интуиционист-
ская логика формализует конструктивность доказательств, трехзначная
логика В3 применима для анализа парадоксов, логики  Ln связаны с про-
стыми числами [Бочвар, 1938;  Lukasiewicz, 1920], четырехзначные логики
аргументации [Финн, 2006] используются для формализации социологиче-
ских опросов.

ДСМ-метод автоматизированной поддержки исследований (ДСМ-
метод АПИ) реализует ДСМ-рассуждения и ДСМ-исследования, которые
посредством применения ДСМ-рассуждений к расширяемым последова-
тельностям баз фактов («возможным мирам») порождают эмпирические
закономерности (ЭЗК) – эмпирические законы и эмпирические тенден-
ции [Аншаков, 2009; Финн, Шестерникова, 2018; Финн, 2019; Финн, 2020a].

Этап применения ДСМ-метода АПИ к расширяемым последовательно-
стям баз фактов образует ДСМ-исследования, результатом которых явля-
ется поддержка и расширение открытых эмпирических теорий (квазиакси-
оматических теорий [Финн, 2019]).

Квазиаксиоматические теории образованы множествами фактов, от-
крытым и пополняемым множеством аксиом и правилами вывода (прав-
доподобными и дедуктивными). Правдоподобными выводами являются
правила индуктивного вывода и вывода по аналогии. Взаимодействие
этих правил, принятие порожденных гипотез о причине (результат индук-
ции) и гипотез о предсказании (результат аналогии) посредством абдук-
ции 1ого рода образуют ДСМ-рассуждения, применяемые к базе фактов
(«возможному миру»). Заметим, что правила индуктивного вывода ДСМ-
рассуждений являются формализацией и усилением известных канонов ин-
дукции Д.С. Милля [Финн, 2020b].1

Продолжение применений ДСМ-рассуждений к последовательностям
расширяемых баз фактов, представляющих истории возможных миров
HPWh, образуют ДСМ-исследование, завершаемое абдуктивным выво-

1В Приложении в [Финн, 2020b] представлены формализации индуктивных канонов
Д.С. Милля.
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дом гипотезы о причине с соответствующим модальным оператором (ре-
зультат абдукции 2ого рода [Финн, 2019; Финн, 2020a]).2

Правила индуктивного вывода ДСМ-рассуждений образуют дистри-
бутивную решетку [Финн, 2014; Финн, 2016], представляющую возмож-
ные стратегии ДСМ-рассуждений Strx,y. Каждая Strx,y из множества всех
стратегий Str применяется к множеству всех историй возможных миров
HPW для обнаружения эмпирических закономерностей. Эмпириче-
ской закономерностью является сохранение гипотез о причинах и гипотез
о предсказаниях в историях возможных миров HPWh из HPW таких, что
в последней базе фактов этих историй возможных миров гипотезы о пред-
сказаниях верифицируются. Эта верификация используется в абдуктив-
ном выводе абдукции 2ого рода, посредством которой принимается гипотеза
о причине, сохраняемая в историях возможных миров. К этой гипотезе и
применим соответствующий модальный оператор3.

Порождаемые ДСМ-исследованием эмпирические закономерности яв-
ляются эмпирическими номологическими высказываниями, поня-
тие номологических высказываний было предложено Гансом Рейхенбахом
в [Reichenbach, 1947; Reichenbach, 1954]. Посредством номологических вы-
сказываний он определял физические модальности. Однако номологиче-
ские высказывания Г. Рейхенбаха выражали как физические закономерно-
сти, так и логические законы.

В [Финн, Шестерникова, 2018; Финн, 2019; Финн, 2020a] были опре-
делены эмпирические модальности, порожденные ДСМ-исследованиями и
соответствующие пропозициональные модальные логики семейства ERA –
логики эмпирических закономерностей (ER) и абдукции (A).

В [Финн, Шестерникова, 2018; Финн, 2019] были определены четырна-
дцать модальностей, соответствующих эмпирическим законам (8 модаль-
ностей), эмпирическим тенденциям (4 модальности) и слабым эмпириче-
ским тенденциям (2 модальности). Факторизация частично упорядоченно-
го множества модальностей порождает два варианта модальных логик –
модальные логики трех модальностей (необходимость �, возможность ♦
и слабая возможность O), соответствующие эмпирическим законам, тен-
денциям и слабым тенденциям [Финн, Шестерникова, 2018] и модальные
логики двух модальностей (�, ♦).

2В [Фейс, 1965] Р. Фейс замечает, что модальности могут применяться для описания
физического мира и что модальности могут быть использованы для анализа причин-
ности [Фейс, 1965, с. 24]. Эта идея реализована в ДСМ-методе АПИ в компьютерных
системах интеллектуального анализа данных [Аншаков, 2009; Финн, 2019; Финн, 2020a]

3Множество модальных операторов частично упорядочено и имеет наибольший и
наименьший элементы [Финн, Шестерникова, 2018].
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В этих логиках импликация → истолковывается как «если p – причина
эффекта, то q – предсказание эффекта». �(p→ q), ♦(p→ q), O(p→ q) ис-
толковываются как представление ЭЗК типа «эмпирический закон», «эм-
пирическая тенденция» и «слабая эмпирическая тенденция», соответствен-
но. Tq означает верификацию q, а T – оператор «истинно, что . . . », кото-
рый аналогичен оператору T Г. фон Вригта [фон Вригт, 1971], но отличен
от него.

В [Финн, 2019] представлена модальная логика двух модальностей
(�,♦) ERA0.1, имеющая аксиомы, выражающие абдукцию 2ого рода [Финн,
Шестерникова, 2018; Финн, 2019; Финн, 2020a]: ((�(p → q)&Tq) → �p)
и ((♦(p→ q) &Tq)→ ♦p).

Важно отметить, что в [Финн, Шестерникова, 2018; Финн, 2019] эм-
пирические закономерности характеризуются соответствующими регуляр-
ными кодами Cd(j, h) такими, что для возможных миров j = 0, 1, . . . , s
и их историй h = 1, . . . , (s + 1)! имеются последовательности ν . . . ν, где
ν = 1,−1 и τ . . . τ ν . . . ν длины s такие, что ν . . . ν характеризует эмпи-
рический закон, а τ . . . τ ν . . . ν – эмпирическая тенденция, где 1,−1, τ –
типы истинностных значений гипотез – фактическая истина, фактическая
ложь и неопределенность, соответственно. Коды ν . . . ν и τ . . . τ ν . . . ν есть
значения пропозициональных переменных, представляющих ЭЗК, любой
отличный от них код является нерегулярным и соответствует отсутствию
ЭЗК. Регулярные коды ν . . . ν и τ . . . τ ν . . . ν делают истинными пропози-
циональные переменные p, q, . . . , а нерегулярные коды делают истинными
отрицания пропозициональных переменных ¬p,¬q, . . . 4

Итерации модальностей в логиках семейства ERA означают вид рас-
ширений возможных миров – сохранение гипотез в возможных мирах, что
представимо кодами типа ν . . . ν, где ν = 1,−1 (только истина или только
ложь) и кодами типа τ . . . τ ν . . . ν, где начало кода – подпоследователь-
ность неопределенностей (τ), выражающая эмпирическую тенденцию.

Рассмотрим возможные итерации модальностей: ��p,�♦p,♦�p и ♦♦p.
Имеются два способа (направления) расширений возможных миров: справа
налево (от переменной p :← p) и слева направо (от левой модальности
M : M →, где M есть �,♦).

В [Финн, 2019] ERA0, ERA0.1, ERA1 используют расширения возмож-
ных миров справа налево, что представимо аксиомами �♦p → ♦p,
♦�p→ ¬p, ��p→ �p,♦♦p→ ¬p.

4Нерегулярные коды ЭЗК могут содержать вхождение 0 – тип истинностных значе-
ний «фактическое противоречие» [Финн, Шестерникова, 2018].



128 В.К. Финн

В настоящей статье рассмотрим исчисление ERA0∗ , ERA0.2 и ERA2

такие, что итерации модальностей рассматриваются слева направо (в на-
правлении от левой модальности к переменной p).

Таким образом, �♦p имеет следующий код ЭЗК ν . . . ν τ . . . τ ν . . . ν та-
кой, что он является нерегулярным, а, следовательно, характеризует отсут-
ствие ЭЗК, а потому истинна аксиома �♦p→ ¬p, так как результирующий
код �♦p есть ν . . . ν τ . . . τ ν . . . ν такой, что он нерегулярный. Аналогич-
но получим истинную формулу ♦�p→ ♦p, соответствующую регулярному
коду τ . . . τ ν . . . ν.

Ниже сформулируем исчисления ERA0∗ , ERA0.2 и ERA2.
Алфавит:

p, q, r, . . . , (быть может с нижними индексами) – пропозициональные
переменные;

¬,&,∨,→,�,♦, T – логические связки;

(, ) – скобки.

Посредством букв греческого алфавита будем обозначать метасимволы
для формул.

Определение 1. Определение формулы

10. p, q, r, . . . – формулы;

20. ¬p,¬q,¬r, . . . – формулы;

30. если ϕ,ψ – формулы, то (ϕ&ψ), (ϕ ∨ ψ), (ϕ→ ψ) – формулы;

40. если ϕ – формула, то �ϕ,♦ϕ – формулы;

50. если ϕ – формула, то Tϕ – формула;

60. если ϕ – формула, то ¬ϕ – формула;

70. других формул нет.

ERA0∗ .

(1) Аксиомы двузначной логики L2.

(2) Аксиомы ERA0∗
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(�2) �p→ p

(♦2) ♦p→ p

(�3) �(p& q)↔ (�p&�q)

(�4) �(p ∨ q)↔ (�p ∨�q)
(♦3) ♦(p& q)↔ (♦p&♦q)

(♦4) ♦(p ∨ q)↔ (♦p ∨ ♦q)
(¬�) ¬�p→ (♦p ∨ ¬p)
(¬♦) ¬♦p→ (�p ∨ ¬p)
(��) ��p→ �p
(�♦)2 �♦p→ ¬p
(♦�p)2 ♦�p→ ♦p
(♦♦) ♦♦p→ ¬p
(�&♦) ¬(�p&♦p)

(�&¬) ¬(�p&¬p)
(♦&¬) ¬(♦p&¬p)
(�¬) ¬�¬p
(♦¬) ¬♦¬p
(�¬♦) �p→ ¬♦p
ϕ↔ ψ 
 (ϕ→ ψ) & (ϕ→ ψ)5

f 
 p&¬p
t
 ¬f

(3) Правила вывода ERA0∗ :

R1. ϕ,(ϕ→ ψ) ` ψ, где «`» есть метасимвол отношения выводимости;

R2. ϕ(p) ` ϕ(q), ϕ(χ) =
∫ χ
p ϕ(p)| – правило подстановки (Sub);

R3. �ϕ,�(ϕ→ ψ) ` �ψ;
R4. ♦ϕ,♦(ϕ→ ψ) ` ♦ψ;
R5. ϕ(χ) ` ϕ(χ1), где (χ ↔ χ1), – правило замены эквивалентных

формул.

Определение доказуемой формулы (обозначение: ` ϕ) стандартно.
5Символ «
» означает равенство по определению.
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Утверждение 1. ERA0∗ является противоречивым.

Доказательство. ¬�p → (♦p ∨ ¬p),�p ∨ ♦p ∨ ¬p,�¬p ∨ ♦¬p ∨ ¬¬p,
�¬p↔ f , ♦¬p↔ f [(�¬), (♦¬),¬t↔ f ]; f ∨ f ∨ p, p.

Таким образом, Sub ¬p в �p∨♦p∨¬p порождает ` p – противоречивость
в смысле Э. Поста. Поэтому в силу Sub получаем ` ϕ для любой ϕ, то есть,
абсолютную (или тривиальную) противоречивость ERA0∗ �

Получим тогда исчисление ERA0.2 посредством ограничения R2 следу-
ющим образом: R∗2 ϕ(p) ` ϕ(χ),ϕ(χ) =

∫ χ
p ϕ(p) |, где χ ∈ [{(p& q),(p ∨ q)}],

a [{(p& q), (p∨q)}] – замыкание {(p& q), (p∨q)}, соответствующее подмно-
жеству множества монотонных булевских функций.

Таким образом, исчисление ERA0.2 имеет аксиомы ERA0∗ и правила
вывода R1, R∗2, R3, R4 и R5 (то есть, ограниченную Sub). Это ограниче-
ние вызвано тем, что ERA0.2 и ERA2, формулируемое ниже, пропозици-
ональными средствами имитируют рассуждения относительно эмпириче-
ских закономерностей, которые являются значениями пропозициональных
переменных p таких, что им соответствуют регулярные коды ЭЗК.

Заметим, что ERA0.2 получено из ERA0.1 [Финн, 2019] заменой
�♦p→ ♦p на �♦p→ ¬p и заменой ♦�p→ ¬p на ♦�p→ ♦p.

В [Финн, 2019] была установлена непротиворечивость ERA0.1 относи-
тельно семантики историй возможных миров HPWh из HPW .

Расширим исчисление ERA0.2, добавив фрагмент TM2, формулируе-
мый ниже, и получим исчисление ERA2.

TM2

T1. Tp→ ¬T¬p

T2. T (Tp)↔ Tp

T3. Tp→ p

T4. T¬p→ ¬p

T5. T (pσ1 & qσ2)↔ (Tpσ1 &Tpσ2)

T6. T (pσ1 ∨ pσ2)↔ (Tpσ1 ∨ Tpσ2)

pσ =

{
p, если σ = 1
¬p, если σ = 0

T7. T¬(p& q)↔ (T¬p ∨ T¬q)
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T8. T¬(p ∨ q)↔ (T¬p&T¬q)

T9. T (p→ q)↔ (Tp→ Tq)

T10. T�p↔ (�p&Tp)

T11. T♦p↔ (♦p&Tp)

T12. ((�(p→ q) &Tq)→ T�p)

T13. ((♦(p→ q) &Tq)→ T♦p)

R6. Tϕ, T (ϕ→ ψ) ` Tψ

TM2 может быть расширено добавлением
(1) конечного множества аксиом Tn = {Tq1, . . . , T qn},
(2) бесконечного множества T = {Tq1, . . . , T qn, . . . }.
Тогда получим два варианта исчислений: TM (1)

2 и TM (2)
2 .

Соответственно, получим исчисления ERA(1)
2 и ERA(2)

2 .
(3) Третий вариант исчисления ERA2 получим посредством добавле-

ния к ERA2 базисного фрагмента TM2, тогда формулы вида Tq будут
применяться как предположения для выводов с их использованием.

Таким образом, имеем исчисления ERA2, ERA
(1)
2 и ERA(2)

2 , правилами
вывода которых являются R1, R∗2, R3, R4, R5 и R6, где ERA2 есть ERA0.2

с добавлением TM2.

Замечание 1. В исчислениях ERA2, ERA
(1)
2 и ERA(2)

2 имеются аксиомы
абдукции T12 ((�(p → q) &Tq) → T�p) и T13 ((♦(p → q) &Tq) → T♦p)
такие, что они являются усилением аксиом А10 ((�(p) → q) &Tq)) → �p)
и А11 ((♦(p) → q) &Tq)) → ♦p) из [Финн, 2019]. Заметим, что А10 и А11
доказуемы в указанных исчислениях.

Замечание 2. Семантика ДСМ-исследований основана на применении
двух концепций истины – когерентной [Rescher, 1973; Вейнгартен, 2000]
и корреспондентной [Вейнгартен, 2000; Tarski, 1956]. Когерентная кон-
цепция использует соответствие оценки высказывания и некоторого мно-
жества непротиворечивых знаний, а корреспондентная – соответствие вы-
сказывания и «положения дел», к которому оно относится.

ДСМ-рассуждение, представляющее взаимодействие индукции, анало-
гии и абдукции 1ого рода [Финн, 2019; Финн, 2020a] основано на приня-
тии результатов посредством локальных вынуждений, порождающих их
оценки посредством правил индуктивного вывода для гипотез о причи-
нах эффектов, и посредством каузальных вынуждений посредством правил
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вывода по аналогии для гипотез о предсказаниях. Принятие результатов
ДСМ-рассуждения завершается применением абдукции 1ого рода, реализу-
ющей степень объяснения баз фактов («возможных миров») посредством
порожденных гипотез о причинах исследуемых эффектов.

Принятие же результатов ДСМ-исследований осуществляется посред-
ством подтвержденных ДСМ-рассуждений, применяемых к множеству
всех возможных миров с использованием верификации гипотез о пред-
сказании исследуемых эффектов и принятия гипотез о причинах посред-
ством абдукции 2ого рода, что означает применение корреспондентной
концепции истины.

Из Замечания 2 следует необходимость определения оценки результатов
ДСМ-исследования посредством совместного применения двух типов оцен-
ки, соответствующих когерентной и корреспондентной концепцям истины.
Применение двух концепций истины отображается в аксиомах абдукции
в исчислениях типа ERA для модальностей необходимости и возможности
((�(p → q) &Tq) → T�p) и ((♦(p → q) &Tq) → T♦p), в которых под-
формулы �(p → q) и ♦(p → q) оцениваются когерентными истинностны-
ми значениями, а подформулы Tq – корреспондентными истинностными
значениями, соответствующими верификации гипотез о предсказании ис-
следуемых эффектов. Подформулы T�p и T♦p оцениваются одновремен-
но когерентной и корреспондентной концепциями истины. В связи с чем
в [Финн, 2020a] было введено понятие косвенной корреспондентной исти-
ны, ибо Tq представляет корреспондентно истинное предсказание (то есть,
верифицированное), а так как p выражает причину q и когерентно истинно
�(p→ q) и ♦(p→ q), то косвенно корреспондентно истинно Tp (то есть, ве-
рифицируемо), но в силу �(p→ q) &Tq и ♦(p→ q) &Tq имеет место коге-
рентная истина �p и ♦p, соответственно. Следовательно, истинна Tp&�p
и T�p, Tp&♦p и T♦p, соответственно, а потому истинны T�p и T♦p, со-
ответственно.

Семантическими основаниями логики ERA2 (как и логики ERA1

[Финн, 2019]) является конечное множество конечных историй возмож-
ных миров HPW такое, что возможным миром является база фактов ин-
теллектуальных систем, а историями возможных миров HPWh являются
конструктивно порождаемые последовательности вложенных возможных
миров. Если число расширений баз фактов есть s, то число всех возмож-
ных историй возможных миров HPWh есть | HPW |= (s + 1)! [Финн,
2019; Финн, 2020a].

Будем использовать метасимвол � для обозначения утверждения «ϕ ис-
тинно в HPWh»: HPWh � ϕ, где ϕ – формула ERA2, HPWh – история
возможных миров длины s, а 1 ≤ h ≤ (s+ 1)!.



О логиках эмпирических модальностей 133

Оценка формул, не содержащих оператора T , реализует когерентную
концепцию истины [Rescher, 1973; Вейнгартен, 2000], конструктивно реали-
зуемую ДСМ-рассуждениями. Они формализуют принятие гипотез о при-
чинах (посредством индукции) и гипотез о предсказаниях (посредством
аналогии), а также формализуют абдукцию 1ого рода, которая завершает
принятие порожденных гипотез посредством объяснения баз фактов.

Оценка формул, содержащих оператор T «истинно, что . . . » выража-
ет акт прямой верификации гипотез о предсказаниях и акт косвенной
верификации гипотез о причинах, которые когерентно истинны посред-
ством интегральных каузальных вынуждений [Финн, 2019], реализуемых
во всех HPWh из HPW . Эти оценки выражают корреспондентную кон-
цепцию истины [Tarski, 1956].

Базисом оценок корреспондентной истины является задание множества
корреспондентно истинных элементарных формул Т, где Т является сред-
ством семантики ERA2, ERA

(1)
2 и ERA

(2)
2 , но может быть добавлением

соответствующих аксиом для ERA(1)
2 и ERA(2)

2 .
Таким образом, HPWh � Tq, если и только если q ∈ T.

Определение 2. Определение истинности формул в HPWh

1◦. HPWh � p, если и только если Cd(p, h) = ν. . . ν или Cd(p, h) =
τ . . . τ ν . . . ν, где ν = 1,−1 («1» и «−1» – типы истинностных значений
«фактически истинно» и «фактически ложно», соответственно, а «τ» – тип
истинностного значения «неопределенно»), Cd(p, h) – код эмпирической
закономерности, образованной последовательностями типов истинностных
значений гипотез, порожденных ДСМ-рассуждениями в соответствующих
базах фактов, h – номер истории возможных миров, 1 ≤ h ≤ (s+ 1)!.

2◦. HPWh � ¬p, если и только если неверно, что HPWh � p, то есть:
Cd(p, h) 6= ν. . . ν и Cd(p, h) 6= τ. . . τν. . . ν; где ν. . . ν и τ. . . τν. . . ν – регуляр-
ные коды ЭЗК [Финн, Шестерникова, 2018; Финн, 2019].

3◦. HPWh � Tp, если и только если p ∈ T.
4◦. HPWh � (ϕ&ψ), если и только если HPWh � ϕ и HPWh � ψ.
5◦. HPWh � (ϕ ∨ ψ), если и только если HPWh � ϕ или HPWh � ψ.
6◦. HPWh � (ϕ→ ψ), если и только если «если HPWh � ϕ, то

HPWh � ψ».
7◦. HPWh � �ϕ, если и только если HPWj � ϕ для всех HPWj ,

HPWj ∈ HPW .
8◦. HPWh � ♦ϕ, если и только если существует HPWh такая, что

Cd(ϕ, h) = τ. . . τν. . . ν и для всех HPWj , HPWj ∈ HPWCd(ϕ, j) =
τ. . . τν . . . ν или Cd(ϕ, j) = ν. . . ν.

9◦.HPWh � �(ϕ&ψ), если и только еслиHPWh � �ϕ и иHPWh � �ψ,
где HPWh ∈ HPW .
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10◦. HPWh � �(ϕ ∨ ψ), если и только если HPWh � �ϕ или HPWh �
�ϕ, HPWh ∈ HPW .

11◦. HPWh � ♦(ϕ&ψ), если и только если HPWh � ♦ϕ и HPWh �
♦ψ,HPWh ∈ HPW .

12◦. HPWh � ♦(ϕ ∨ ψ), если и только если HPWh � ♦ϕ или HPWh �
♦ψ,HPWh ∈ HPW .

13◦. HPWh � T�ϕ, если и только если HPWh � Tϕ и HPWh �
�ϕ,HPWh ∈ HPW .

14◦. HPWh � ¬ϕ, если и только если неверно, что HPWh � ϕ, HPWh ∈
HPW .

Аксиомы ERA2 (�♦)2 �♦p→ ¬p и (♦�)2 ♦�p→ ♦p сохраняют истин-
ность относительно Определения 2 при применении R∗2.

Приведем некоторые теоремы ERA2: p∨¬p, (�p∨♦p¬p), (p↔ (♦p∨�p)),
(¬�p ↔ (♦p ∨ ¬p)), (¬♦p ↔ (�p ∨ ¬p)), ((�(p → q) &Tq) → �p), ((�(p →
q) &Tq)→ Tp).

Доказательство ¬�p ↔ (♦p ∨ ¬p) : �p → ¬♦p,♦p → ¬�p;¬�p →
(♦p∨¬p) (¬�);�p→ p (�2),¬p→ ¬�p;♦p→ ¬�p,¬p→ ¬�p ` (♦p∨¬p)→
¬�p, из ¬�p→ (♦p ∨ ¬p) и (♦p ∨ ¬p)→ ¬�p следует ¬�p↔ (♦p ∨ ¬p).

Добавим к исчислению ERA2 в качестве допустимого правила вывода
R7 теорему дедукции:6

Γ, ϕ ` ψ
Γ ` (ϕ→ ψ)

.

Из аксиом Т12 и Т13 выведем производные правила вывода
R8 �(p→ q), Tq ` �p и R9 ♦(p→ q), Tq ` ♦p.

Тогда получим, применяя R8 и R7 �(p → q), Tq ` �p; и Tq, �(p → q),
�p ` �q; и Tq, �(p→ q) ` �p→ �q; и Tq ` �(p→ q)→ (�p→ �q).

Это означает, что из эмпирического предположения Tq выводима дис-
трибутивность � относительно →. Аналогично получим, используя R9
Tq ` ♦(p→ q)→ (♦p→ ♦q).

Если же добавить R7 к исчислениям ERA
(1)
2 и ERA

(2)
2 , то для их ак-

сиом Tq получим доказуемость дистрибутивности � и ♦ относительно →:
` (�(p→ q)→ (�p→ �q)), ` (♦(p→ q)→ (♦p→ ♦q)).

Исчисления с правилом R7 обозначим посредством ERA2∗ , ERA
(1)
2∗ и

ERA
(2)
2∗ .

Обратим внимание на интересный факт: дистрибутивность � и ♦ отно-
сительно → в рассмотренных исчислениях связана с аксиомами абдукции
Т12, Т13 и с эмпирическими аксиомами Tq, а, следовательно, она зависит

6Правило вывода называют допустимым, если его добавление к исчислению не по-
рождает противоречий.
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и от двух концепций истины – когерентной и корреспондентной, ибо
логики типа ERA являются логиками двух концепций истины.

Рассмотрим теперь аксиомы ERA2, выражающие итерации модально-
стей (��), (�♦)2, (♦�)2 и (♦♦). Они имитируют пропозициональными
средствами расширение баз фактов (возможных миров) для продолже-
ния ДСМ-рассуждений в ДСМ-исследованиях, порождающих эмпириче-
ские закономерности относительно множества историй возможных миров
HPW [Финн, 2019].

В силу ограничения правила подстановки R2 посредством правила R∗2
из ��p → �p не выводимы � . . .�︸ ︷︷ ︸

k

p → �p, из �♦p → ¬p не выводимы

� . . .�︸ ︷︷ ︸
k

♦ . . .♦︸ ︷︷ ︸
l

p → ¬p, из ♦♦p → ¬p не выводимы ♦ . . .♦︸ ︷︷ ︸
k

p → ¬p, а из

♦�p → ♦p не выводимы ♦� . . .�︸ ︷︷ ︸
k

p → ♦p, где k и l – числа повторений

модальных операторов.
Легко показать, что приведенные выше формулы с k и l итерациями

модальностей истинны в семантике историй возможных миров.
В самом деле, рассмотрим �. . .�p→ �p. Так как код ЭЗК для �. . .�p

есть ν. . . ν. . . ν. . . ν, тоHPWh � �. . .�p и для всехHPWj ,HPWj � �. . .�p,
но и HPWj � �p для всех HPWj , так как код �p есть ν. . . ν, но и
ν. . . ν. . . ν. . . ν = ν. . . ν.

Таким образом, �. . .�p → �p истинно относительно HPW . Откуда
следует неполнота ERA2, а также ERA(1)

2 и ERA(2)
2 .

Аналогичные рассуждения имеют место для формул �. . .� ♦. . .♦ →
¬p, ♦. . .♦p → ¬p, ♦�. . .�p → ♦p, �. . .�p → p, соответствующей аксиоме
(�2) �p→ p.

Сформулируем ниже нефинитное исчисление ERA2 такое, что к его
аксиомам добавим �. . .�︸ ︷︷ ︸

k

p → p, �. . .�︸ ︷︷ ︸
k

p → �p, �. . .�︸ ︷︷ ︸
k

♦. . .♦︸ ︷︷ ︸
l

p → ¬p,

♦. . .♦︸ ︷︷ ︸
k

p→ ¬p, ♦�. . .�︸ ︷︷ ︸
k

p→ ♦p для любых целых положительных k и l.

Аналогичные исчисления получим для ERA(1)
2 и ERA(2)

2 , а соответству-
ющие исчисления обозначим посредством ERA2, ERA

(1)
2 и ERA(2)

2 . Сфор-
мулируем также исчисления ERA2∗ , ERA

(1)
2∗ и ERA(2)

2∗ с правилами вывода
R1, R∗2, R3–R7.7

7В [Финн, 2019] логики аргументации, формализованные посредством метода анали-
тических таблиц, в связи с отсутствием ассоциативности у & и ∨ имеют также нефи-
нитную формализацию.
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Замечание 3. В [Финн, 2019] и [Финн, 2020a] решением проблемы индук-
ции средствами ДСМ-метода АПИ для интеллектуальных систем является
порождение М-последовательностей модальных операторов ранга r, где r –
число периодов длины s, а r ≥ 1. М-последовательности представляют воз-
можные типы эмпирических закономерностей, являющиеся результатами
ДСМ-исследований, применяющих формализованные и усиленные индук-
тивные каноны Д.С. Милля в качестве правил вывода, порождающих ги-
потезы о причинах. Нефинитные расширения ERA2-логик являются упро-
щенной попыткой пропозициональной имитации рассуждений относитель-
но историй расширяемых возможных миров (баз фактов)8.

Следствием Замечания 3 является потребность в расширениях ERA2-
логик посредством оператора слабой возможности [Финн, 2019] и оператора
N такого, что Np фиксирует существование незакономерности, тогда как
¬p есть отрицание закономерности, а потому NNp → Np, но ¬¬p ↔ p,
а Np → ¬p. Если M -последовательность M = M1M2. . .Mr−1N , то ДСМ-
исследование ранга r не является закономерностью для периодов повторе-
ния ДСМ-рассуждений r раз.

Кроме того, ERA2-логики могут быть расширены добавлением опера-
тора слабой возможности O [Финн, Шестерникова, 2018].

Интересно рассмотреть в связи со сказанным нефинитные ERA2-
логики с операторами O и N .

Так как аксиома S4 �p → ��p истинна в ERA2, то возможна логика
ERA2.4 с аксиомой �p→ ��p.

Заметим, что аксиома S5 ♦p→ �♦p [Фейс, 1965; Hughes, Cresswell, 1972]
не является истинной в ERA, но она истинна в логике ERA1 [Финн, 2019],
поэтому возможно её расширение ERA1.5.

Замечание 4. Логика M Г.Х. фон Вригта [Фейс, 1965; Hughes, Cresswell,
1972] образована аксиомами:
М1. �p→ p
М2. �(p→ q)→ (�p→ �q)
и правилами:
RM1. ϕ,ϕ→ ψ ` ψ
RM2. ϕ(p) ` ϕ(χ), ϕ(χ) =

∫ χ
p ϕ(p) |

RM3. ϕ ` �ϕ
Следовательно, в M доказуема любая формула �ϕ такая, что ϕ – тав-

тология двузначной логики L2.
8Упрощенность обусловлена тем, что рассматриваются не все модальности из [Финн,

Шестерникова, 2018; Финн, 2019], а только � и ♦, тогда как операторов � имеется
восемь, операторов ♦ имеется четыре, а операторов слабой возможности O имеется два.
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В этом смысле можно говорить, что логика M и её расширения S4 и
S5 являются логиками логических модальностей.

Следующие сходства и различия логикиM и ERA2-логик имеют место.

1. В ERA2-логиках (и ERA1-логиках [Финн, 2019]) имеется аксиома
�p→ p.

2. В ERA2 из предположения Tq выводима �(p → q) → (�p → �q) :
Tq ` �(p→ q)→ (�p→ �q).

3. В ERA(1)
2 и ERA(2)

2 , имеющих «эмпирические» аксиомы Tq доказуема
�(p→ q)→ (�p→ �q).

4. В возможных мирах логики M не является истинной константа
f [Chellas, 1980], а, следовательно, истинна константа t, представляющая
тавтологию L2. Однако истинность и ложность f и t в историях возможных
миров HPWh не определима, так как выполнимость в HPWh предпо-
лагает конструктивные вынуждения (forcing) посредством правил вывода
ДСМ-рассуждений (индукции и аналогии).

5. Правило вывода RM3 ϕ ` �ϕ, где ϕ доказуема в двузначной логи-
ке L2, в ERAi-логиках (i = 1, 2) не имеет места.

Дело в том, что введение � возможно только в силу двух правил вы-
вода:

R3 �ϕ, �(ϕ→ ψ) ` �ψ и производного правила вывода Tq, �(p→ q) `
�p. Следовательно, должна быть для введения � уже доказанная формула
вида �(ϕ→ ψ).

Невыполнимость t (тавтологий L2) в HPWh согласуется с непримени-
мостью правила RM3 в ERA-логиках.

6. В M имеет место ♦p ↔ ¬�¬p, то есть, выразимость ♦ через � и ¬,
тогда как в ERA-логиках модальные операторы � и ♦ независимы, ибо �
характеризует эмпирические законы (их коды – ν . . . ν), а ♦ – эмпирические
тенденции (их коды – τ . . . τ ν . . . ν).

7. Существенным отличием ERA-логик от M , S4 и S5 является приме-
нение двух концепций истины – когерентной и корреспондентной, наличие
в ERA-логиках в связи с этим оператора T и аксиом абдукции Т12, Т13.

Существенно также, что в ERA(1)
2 и ERA(2)

2 имеются эмпирические ак-
сиомы Tq, имитирующие использование эмпирических (эксперименталь-
ных) данных в ДСМ-рассуждениях.

Рассмотренные особенности ERA2-логик характеризуют их как ло-
гик эмпирических (нелогических) модальностей, что согласуется с идеей
Р. Фейса о связи модальностей и причинности [Фейс, 1965], ибо источником
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ERA2-логик (ERA1-логик [Финн, 2019]) являются ДСМ-исследования, ко-
торые образованы рассуждениями, порождающими гипотезы о причинах
эффектов и гипотезы о предсказаниях этих эффектов (с использованием
гипотез о причинах и абдукции для принятия порожденных гипотез).

В [Reichenbach, 1947; Reichenbach, 1954] Г. Рейхенбах определил «физи-
ческие модальности» следующим образом: пусть «p» – имя высказывания
p, тогда p – физически необходимо
 если «p» есть номологическое выска-
зывание,

p – физически невозможно 
 если «¬p» есть номологическое выска-
зывание,

p – физически возможно 
 если ни «p», ни «¬p» не являются номо-
логическими высказываниями.

Номологические высказывания у Г. Рейхенбаха определяются посред-
ством специальных условий, выразимых в языке логики предикатов 1ого по-
рядка. Таким образом, возможность у Г. Рейхенбаха не представляет эм-
пирические закономерности. Тогда как в ДСМ-методе АПИ возможность
представляет эмпирические тенденции, а эмпирические законы и эмпири-
ческие тенденции в ERA-логиках характеризуются следующими аксиома-
ми: ¬�p → (♦p ∨ ¬p), ¬♦p → (�p ∨ ¬p), которые выражают различие и
независимость модальностей � и ♦, характеризующих эмпирические зако-
ны и эмпирические тенденции, соответственно.

Таким образом, ERA-логики являются логиками, порожденными
ДСМ-рассуждениями, а так как ДСМ-рассуждения являются логически-
ми средствами ДСМ-исследований, порождающими эмпирические законо-
мерности (эмпирические номологические высказывания [Финн, 2019]), то
модальности, соответствующие обнаруженным закономерностям, являют-
ся эмпирическими, отличными от логических модальностей известных
модальных логик. Специфические свойства эмпирических модальностей
обусловлены их происхождением от средств интеллектуального анализа
данных, итогом которого являются эмпирические номологические выска-
зывания, определяющие эмпирические модальности.

Как уже было сказано выше, эпистемологической особенностью ERA-
логик является применение двух концепций истины – когерентной (она
обусловлена ДСМ-рассуждениями) и корреспондентной (она обусловлена
верификацией гипотез о предсказаниях), что вызвало необходимость при-
менения оператора T в ERA-логиках.

Наличие двух типов истинностных оценок породило вопрос: будут ли
непротиворечивы (противоречивы) ERA-логики, дополненные условием
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¬Tp& p?9 Этот вопрос вызван тем обстоятельством, что когерентные ис-
тинностные значения и корреспондентные истинностные значения неза-
висимы, так как первые порождены ДСМ-рассуждениями, а вторые –
верификациями их результатов [Финн, 2019; Финн, 2020a]. Поэтому коге-
рентные истинностные значения можно называть «внутренними», а кор-
респондентные истинностные значения – «внешними», используя терми-
нологию Д.А. Бочвара [Бочвар, 1938].

Замечание 5. Система аксиом ERA2 является зависимой, так как до-
казуемы аксиомы (�2), (♦2), (�¬♦).

Если добавить к ERA2 в качестве аксиомы (�p ∨ ♦p ∨ ¬p), то будут
доказуемы (¬�) и (¬♦).

Таким образом, получаем экономную формулировку ERA2, устранив
(�2), (♦2), (�¬♦), (¬�) и (¬♦), добавив аксиому (�p∨♦p∨¬p): любое вы-
сказывание p является необходимым, или возможным, или не представляет
эмпирическую закономерность.
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Woleński. Palgrave Macmillan, 2014. P. 13–48.

96. Основной вопрос метафизики // Философский журнал. 2014. № 2(13).
С. 51–73.

97. Решетки четырехзначных модальных логик // Логические исследо-
вания. 2015. Т. 21. № 1. С. 122–134.

98. Предисловие. Многообразие трехзначности // Девяткин Л.Ю., Пре-
ловский Н.Н., Томова Н.Е. В границах трехзначности. М.: ИФ РАН,
2015. С. 9–33.

99. В поисках реальности: Исчезновение // Философия науки и техники.
2015. Т. 20. № 1. С. 36–81.

100. Тоска по философии (памяти А.П. Огурцова). Статья I // Вопросы
философии. 2015. № 10. С. 133–149.

101. Тоска по философии (памяти А.П. Огурцова). Статья II // Вопросы
философии. 2016. № 2. С. 137–147.



Список трудов А.С. Карпенко 153

102. Сверхреализм. Часть I: От мыслимого к возможному // Философ-
ский журнал. 2016. Том 9. № 2. С. 5–23.

103. Сверхреализм. Часть II: От возможного к реальности // Философ-
ский журнал. 2016. Том 9. № 3. С. 5–24.

104. Яакко Хинтикка (1929–2015) // Логические исследования. 2016. Т. 22.
№ 1. С. 9–12.

105. Модальная пропозициональная логика истины Tr и ее полнота // Ло-
гические исследования. 2016. Т. 22. № 1. С. 13–31.

106. Bochvar’s three-valued logic and literal paralogics: Their lattice and
functional equivalence // Logic and Logical Philosphy. 2017. Vol. 26. № 2.
P. 207–235. (в соавторстве с Н.Е. Томовой)

107. Four-valued logics BD and DM4: Expansions // Bulletin of the section of
logic. 2017. Vol. 46. № 1/2. P. 33–45.

108. Контрфактуальное мышление // Логические исследования. 2017.
Т. 23. № 2. C. 98–122.

Статьи в энциклопедиях

1. Контрфактические высказывания // Энциклопедия Эпистемологии
и Философии Науки. М., 2009. С. 385–386.

2. Логика // Энциклопедия Эпистемологии и Философии Науки. М.,
2009. С. 424–428.

3. Логика высказываний // Энциклопедия Эпистемологии и Философии
Науки. М., 2009. С. 385–386.

4. Логика многозначная // Энциклопедия Эпистемологии и Философии
Науки. М., 2009. С. 432–434.

5. Логика символическая // Энциклопедия Эпистемологии и Филосо-
фии Науки. М., 2009. С. 440–441.

6. Логические исследования в России и СССР // Энциклопедия Эпи-
стемологии и Философии Науки. М., 2009. С. 450–454. (в соавторстве
с В.А. Бажановым)

7. Логическое следование // Энциклопедия Эпистемологии и Филосо-
фии Науки. М., 2009. С. 457–458.



154 Список трудов А.С. Карпенко

8. Ложь // Энциклопедия Эпистемологии и Философии Науки. М.,
2009. С. 460.

9. Металогика // Энциклопедия Эпистемологии и Философии Науки.
М., 2009. С. 489.

10. Неклассические логики // Энциклопедия Эпистемологии и Филосо-
фии Науки. М., 2009. С. 592–594.

11. Немонотонные логики // Энциклопедия Эпистемологии и Философии
Науки. М., 2009. С. 594.

12. Нечеткая логика // Энциклопедия Эпистемологии и Философии На-
уки. М., 2009. С. 603–604.

13. «Принципы математики» («Principia Mathematica») // Энциклопе-
дия Эпистемологии и Философии Науки. М., 2009. С. 739–740.

14. Символическая логика // Энциклопедия Эпистемологии и Филосо-
фии Науки. М., 2009. С. 859–860.

15. Фатализм логический // Энциклопедия Эпистемологии и Философии
Науки. М., 2009. С. 1031.

16. Философская логика // Энциклопедия Эпистемологии и Философии
Науки. М., 2009. С. 1084–1086.

17. Алгебра логики // Новая философская энциклопедия. Т. 1. М.:
Мысль, 2010 С. 75–76.

18. Логика в России // Новая философская энциклопедия. Т. 2. М.:
Мысль, 2010. С. 409–414.

19. Логика высказываний // Новая философская энциклопедия. Т. 2. М.:
Мысль, 2010. С. 415–418.

20. Логика символическа // Новая философская энциклопедия. Т. 2. М.:
Мысль, 2010. С. 429–431.

21. Логический фатализм // Новая философская энциклопедия. Т. 2. М.:
Мысль, 2010. С. 443.

22. Ложь // Новая философская энциклопедия. Т. 2. М.: Мысль, 2010.
С. 447–448.



Список трудов А.С. Карпенко 155

23. Лукасевич // Новая философская энциклопедия. Т. 2. М.: Мысль,
2010. С. 456–457. (В соавторстве с В.Н. Порусом)

24. Многозначные логики // Новая философская энциклопедия. Т. 2. М.:
Мысль, 2010. С. 586–588.

25. Неклассические логики // Новая философская энциклопедия. Т. 3.
М.: Мысль, 2010. С. 49–51.

26. Непротиворечия закон // Новая философская энциклопедия. Т. 3. М.:
Мысль, 2010. С. 77. (В соавторстве с В.А. Смирновым)

27. Паранепротиворечивая логика // Новая философская энциклопедия.
Т. 3. М.: Мысль, 2010. С. 198–199.

28. Пост Эмиль Леон // Новая философская энциклопедия. Т. 3. М.:
Мысль, 2010. С. 292–293.

29. Смирнов Владимир Александрович // Новая философская энцикло-
педия. Т. 3. М.: Мысль, 2010. С. 574–575.

30. Философская логика // Новая философская энциклопедия. Т. 4. М.:
Мысль, 2010. С. 246–247.

31. Логика // Новая Российская Энциклопедия. Т. IX(2). М.: Издатель-
ство «Энциклопедия», «ИНФРА-М», 2012. С. 492–495.

32. Логика в России // Новая Российская Энциклопедия. Т. IX(2). М.:
Издательство «Энциклопедия», «ИНФРА-М», 2012. С. 498–500.

33. Неклассические логики // Большая Российская Энциклопедия. Т. 22.
М.: Издательство «Большая Российская Энциклопедия», 2013. С. 323.

Публикации в материалах научных мероприятий

1. Каков истинностный статус утверждений о будущих событиях? //
Модальные и интенсиональные логики (Тезисы координационного со-
вещания, Москва, июнь 5-7, 1978 г.) М.: ИФАН, 1978. С. 66–70.

2. Фактор-семантика и классы многозначных систем логики // Ре-
левантные логики и теория следования (Материалы II Советско-
финского коллоквиума по логике. Москва, декабрь 3–7, 1979 г.) М.:
ИФАН, 1979. С. 67–75.



156 Список трудов А.С. Карпенко

3. The T-F-interpretation of some n-valued logics // 6th International
Congress for Logic, Methodology and Philosophy of Science. Abstracts.
Section 5. Hannover, 1979. P. 98–102.

4. Матричная логика для простых чисел // Модальные и интенсиональ-
ные логики (Материалы VIII Всесоюзной конференции «Логика и ме-
тодология науки»). М.: ИФАН, 1982. С. 51–54.

5. Характеристическая матрица для простых чисел и ее свойства //Ше-
стая Всесоюзная конференция по математической логике. Тбилиси,
1982. С. 76.

6. Аристотель и «морское сражение» // Симпозиум по логике Аристо-
теля. Тезисы докладов. Тбилиси, 1983. С. 51–54.

7. Будет или не будет завтра морское сражение? // Логика Аристотеля
(Материалы симпозиума). Тбилиси, 1985. С. 98–111.

8. Истинностные значения // Интенсиональные логики и логическая
теория теорий (Тезисы докладов IV Советско-финского коллоквиу-
ма по логике). Тбилиси, 1985. С. 72–73.

9. Логика как теория истинностных значений // Философские пробле-
мы истории логики и методологии науки. Материалы Всесоюзной
конференции. Часть 1. М.: ИФАН, 1986. С. 80–83.

10. Логика как истинностное значение // Логика и системные методы
анализа научного знания. Тезисы докладов к IX Всесоюзному сове-
щанию по логике, методологии и философии науки. М., 1986. С. 135–
137.

11. Logic as truth-value // 8th International Congress of Logic, Methodology
of Philosophy of Science. Moscow. Section 5. 1987. P. 263–265.

12. Связь импликации Лукасевича с импликацией Гейтинга // Семиоти-
ческие аспекты формализации интеллектуальной деятельности. Тези-
сы докладов и сообщений. М., 1988. С. 79. (В соавторстве с В.Л. Ва-
сюковым)

13. T-F-sequences and their sets as truth-values // Intensional logic, history
of philosophy and methodology. Budapest, 1988. P. 109–119.

14. Истинностные значения. Что это такое? // Исследования по некласси-
ческим логикам. VI Советско-финский коллоквиум. М.: Наука, 1989.
С. 38–53.



Список трудов А.С. Карпенко 157

15. Взаимоотношение между n-значными логиками Лукасевича  Ln и Гё-
деля Gn // X Всесоюзная конференция по логике, методологии и фи-
лософии науки. Тезисы докладов и выступлений (секции 1–5). Минск,
1990. С. 68–69.

16. Classification of implicational logics // 9th International Congress on
Logic, Methodology and Philosophy of Science. Abstracts. Vol. 1.
Section 5. Uppsala, 1991. P. 131.

17. Проблема о расширении H→ // Одиннадцатая Межреспубликанская
конференция по математической логике. Казань, 1992. С. 69.

18. Classical propositional logic as the 7-dimensional cube // Book of
abstracts of XIX World Congress of Philosophy. Moscow, 1993. Section 4.
С. 274.

19. Классификация пропозициональных логик // Логика, методоло-
гия, философия науки (XI Международная конференция, Москва–
Обнинск, 1995). Т. 2. С. 33–36.

20. Classification of propositional logic // 10th International Congress on
Logic, Methodology and Philosophy of Science. Volume of Abstracts.
Florence, 1995.

21. Функциональная предполнота и закон порождения простых чисел //
Современная логика: Проблемы теории, истории и применения в на-
уке. Тезисы докладов. СПб., 1996. С. 22–26.

22. Два трехзначных изоморфа классической логики и их комбинации //
Международная конференция «Развитие логики в России: Итоги и
перспективы». М.: МГУ, 1997. С. 31–33.

23. Максимальная решетка импликативных логик // Международная
конференция «Смирновские чтения». М., 1997. С. 18–19.

24. Two three-valued isomorphs of classical propositional logic and their
combinations // 1st International Congress of Paraconsistent Logic.
Brussel, 1997. P. 92–94.

25. The law of prime numbers generation: Logic and computer realization //
International Conference on Information and Control. Proceedings. Vol. 2.
St. Petersburg, 1997. P. 494–495.



158 Список трудов А.С. Карпенко

26. Трехзначные импликативно-негативные паранепротиворечивые логи-
ки // Современная логика: Проблемы теории, истории и применения
в науке. Материалы V Ощероссийской научной конференции. СПб.,
1998. С. 137–140.

27. Булевы каскады импликативных логик // Смирновские чтения. 2.
Международная конференция. М.: ИФРАН, 1999. С. 41–44.

28. Молекулярная паранепротиворечивая логика со свойством Сетте //
Второй Российский Философский Конгресс. Екатеринбург, 1999.
С. 246.

29. Two lattices of implicational logics // 11th International Congress of
Logic, Methodology of Science and Philosophy. Krakow, 1999.

30. Логика: Феномены XX века // Современная логика: Проблемы тео-
рии, истории и применения в науке. Материалы VI Общероссийской
научной конференции. СПб., 2000. С. 461–465.

31. Подструктурные логики: гильбертовские исчисления // 3 Между-
народная конференция «Смирновские чтения». М.: ИФРАН, 2001.
С. 36–38.

32. Логика и логические системы // Современная логика: Проблемы тео-
рии, истории и применения в науке. Материалы VII Общероссийской
научной конференции. СПб., 2002. С. 455–458.

33. Современные исследования в философской логике // 4 Международ-
ная конференция «Смирновские чтения». М.: Институт философии
РАН, 2003. С. 95–100.

34. Опыт преподавания спецкурса по многозначным логикам для сту-
дентов философского факультета МГУ // Проблемы преподавания
логики и дисциплин логического цикла (Материалы Международной
научно-практической конференции). Киев, 2004. С. 42.

35. Логика и логики // Смирновские чтения по логике (Материалы
5-ой конференции). М.: ИФРАН, 2007. С. 143–144.

36. Вклад А.А. Зиновьева в многозначную логику // Зиновьевские чте-
ния (1-я Международная конференция). М.: Изд-во Московского гу-
манитарного ун-та, 2007. С. 90–93.



Список трудов А.С. Карпенко 159

37. P -логики // Современная логика: проблемы теории, истории и приме-
нения в науке. Материалы X Общероссийской научной конференции,
26–28 июня 2008 г., Санкт-Петербург. СПб., 2008. С. 278–280.

38. Проблема континуальности трехзначных логик // Шестые Смирнов-
ские чтения по логике. М.: Современные тетради, 2009. С. 13–18.

39. Логика истинности Tr // Современная логика: Проблемы теории и
истории. Материалы XI Международной конференции. СПб., 2010.
С. 442–444.

40. Логика, обучение логике и протологика // Проблемы преподавания
логики и дисциплин логического цикла. Киев, 2010. С. 18–19.

41. Philosophical problems of foundations of logic // Седьмые Смирновские
чтения по логике. М., 2011. С. 76–79.

42. Тезис Сушко и его функциональное опровержение // Восьмые Смир-
новские чтения: Междунар. науч. конф., Москва, 19–21 июня 2013 г.
С. 15–17.

43. Non-classical logics vs. classical logic // Philosophy and Logic – 2013,
International Workshop, May 23–25, 2013. URL: http://logic.univ.
kiev.ua/wp-content/uploads/2013/03/Karpenko.docx (дата обраще-
ния — 25.04.20)

44. Решетка фундаментальных четырехзначных модальных логик // 9-е
Смирновские чтения: материалы Междунар. науч. конф. (г. Москва,
17–19 июня 2015 г.). М., 2015. С. 24–26.

45. Lattice of Three-Valued Literal Paralogics // Логико-философские шту-
дии. 2016. Том 13. № 2. Материалы XII Международной конферен-
ции «Современная логика: проблемы теории и истории, СПб., 2016.
С. 176–178. (В соавторстве с Н.Е. Томовой)

Методические пособия

1. Учебно-методические материалы по спецкурсу «Пропозициональная
многозначная логика» (для студентов старших курсов). М.: МГУ,
1986.

2. Введение в многозначную пропозициональную логику М.: Институт
философии РАН. Государственный университет гуманитарных наук,
2003. 112 с.

http://logic.univ.kiev.ua/wp-content/uploads/2013/03/Karpenko.docx
http://logic.univ.kiev.ua/wp-content/uploads/2013/03/Karpenko.docx


160 Список трудов А.С. Карпенко

Публицистика, поэзия, проза

1. Псевдонимы / Составление А.С. Карпенко. М.–СПб.: ЦГИ, 2011.
224 с.

2. Альтернативная реальность: Гай Юлий Цезарь // Литературная Рос-
сия. 30.05.2014. № 22(2657). С. 14.

3. Александр Чаха. Дневник Белого Кардинала. М.–СПб.: ЦГИ, 2017.
280 с.



Информация для авторов

• Журнал «Логические исследования» принимает к публикации руко-
писи, содержащие изложение оригинальных результатов из различных
областей современной логики, ранее не публиковавшиеся и не представ-
ленные к публикации в других изданиях. (Рубрики см. на сайте журнала
http://logicalinvestigations.ru)

• Все статьи, планируемые к публикации в журнале «Логические иссле-
дования», проходят процедуру анонимного рецензирования.

• Pешение о публикации текста принимается главным редактором с уче-
том мнения редколлегии и оценки рецензентов. Решение о публикации
принимается в течение двух месяцев с момента предоставления рукописи.

• Плата за опубликование рукописей не взимается.

• Рукопись должна быть представлена в электронном виде и оформлена
в формате LATEX2ε (по согласованию с редколлегией — в MS Word
с обязательным предоставлением pdf-файла).

• При подготовке рукописи в LATEX2ε необходимо использовать стилевой
класс LIarticle.cls и шаблон LI_template.tex (если рукопись на рус-
ском языке) или LI_template_eng.tex (если рукопись на английском
языке), которые размещены в правилах предоставления рукописей на сай-
те http://logicalinvestigations.ru. Здесь же размещены подробные
рекомендации по подготовке рукописи.

• Объем рукописи не должен превышать 25 стр. (60 тыс. знаков), включая
ссылки, примечания, списоки литературы, аннотации (на русском и ан-
глийском языках).

Статьи следует направлять в электронном виде в редакцию через сайт
logicalinvestigations@gmail.com

http://logicalinvestigations.ru
http://logicalinvestigations.ru
mailto:logicalinvestigations@gmail.com


Information for authors

• Logical Investigations accepts for submission papers containing original
results in all areas of logic. The papers should not have been published or
simultaneously submitted to another publication. (Sections of the journal:
http://logicalinvestigations.ru)

• All materials published in Logical Investigations undergo peer review process.

• The Editor in Chief makes the decision which of the submitted articles
should be published, with due account for opinions of the Editorial Board
and the reviewers. The decision is made within two months since the date of
submission of the manuscript.

• Authors are not charged for the publication.

• Papers should be submitted electronically in the LATEX2ε format (special
permission of the editorial board is needed for submissions to be made in the
MS Word format).

• While typesetting a paper, the class file LIarticle.cls and the tem-
plate LI_template_eng.tex should be used; both files can be accessed
at http://logicalinvestigations.ru. Here you can also find detailed
guidelines for preparing your paper.

• Papers should not exceed 25 pages in the above mentioned format (including
the notes, the bibliography, the abstract).

Submissions should be sent in electronic form through the website:
logicalinvestigations@gmail.com

http://logicalinvestigations.ru
http://logicalinvestigations.ru
mailto:logicalinvestigations@gmail.com


Научно-теоретический журнал

Логические исследования / Logical Investigations

2020. Том 26. Номер 1

Учредитель и издатель: Федеральное государственное бюджетное
учреждение науки Институт философии Российской академии наук

Свидетельство о регистрации СМИ: ПИ № ФС77-61228 от 03.04.2015 г.

Главный редактор: В.И. Шалак

Ответственный секретарь: Н.Е. Томова

Технический редактор: Е.А. Морозова, А.В. Конькова

Художник: Н.Н. Попов, С.Ю. Растегина

Подписано в печать с оригинал-макета 29.05.2020.
Формат 70х100 1/16. Печать офсетная. Гарнитура Computer Modern.
Для набора греческого текста исользован пакет Teubner.
Усл. печ. л. 13,22. Уч.-изд. л. 10,18. Тираж 1 000 экз. Заказ № 11.

Оригинал-макет изготовлен в Институте философии РАН

Разработка LATEX-класса стилевого оформления оригинал-макета: А.Е. Коньков

Компьютерная верстка: Н.Е. Томова

Отпечатано в ЦОП Института философии РАН
109240, г. Москва, ул. Гончарная, д. 12, стр. 1

Информацию о журнале «Логические исследования» см. на сайте:
http://logicalinvestigations.ru

http://logicalinvestigations.ru

	Оглавление
	  Diderik  Batens 
	Aim Of This Paper
	Preliminaries
	The Problem
	Solving the Problem
	A Puzzle In Inconsistency-Adaptive Logics
	In Conclusion

	  Ilkka  Niiniluoto 
	Introduction
	Hintikka on Propositional Attitudes
	The Logic of Perception
	Quantifiers and Propositional Attitudes
	Concluding Remarks

	  Graham  Priest 
	Introduction
	Truth
	Validity: Preliminary Considerations
	Paraconsisent Validity
	Validity and Detachment
	Dialetheic Validity
	Conclusion

	  Gabriel  Sandu 
	Gödel incompleteness theorem
	The representability of the syntax in arithmetic

	Tarski's truth theory
	Tarski's semantical argument

	Feferman's program
	The justification of the extensions

	  Jean-Yves  Béziau 
	Many-Valuedness and Universal Logic
	Many-Valued Logic(s), Many-Valuedness and Universal Logic
	A Short Short History of Many-Valuedness
	Dichotomy and Polytomy
	The Value of Reduction to Bivalence
	Singularity vs. Universality
	Many-Valuedness and the Universe of Logical Systems
	Philosophy of Many-Valuedness
	Applications of Many-Valuedness
	Dedication and Personal Recollections

	  Bruno R.  Mendonça, Walter A.  Carnielli 
	Introduction
	Truth-conditional semantics for urn logics
	Hintikka normal forms for urn logics
	Characterization theorems
	How have we avoided the scandal of deduction?

	  Janusz  Ciuciura 
	Introduction
	Paracomplete calculi. Axioms
	Paracomplete calculi. Semantics
	A hierarchy of the paracomplete calculi

	  В.К. Финн 
	Информация для авторов

