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1. Introduction

Instead of writing a detailed introduction to this special issue of Logical
Investigations and thereby putting some timely research issues into perspective,
the guest-editors decided to directly delve into the topic by posing a number of
questions to one of the world-wide leading experts on the logical study of the
concept of negation, Prof. J. Michael Dunn. The questions address focal and
partly contentious issues related to negation. Unfortunately, Prof. Dunn was
no longer able to answer the questions submitted to him. Michael Dunn passed
away on 5 April 2021, and we decided to dedicate the present special issue of
Logical Investigations to his memory and to present the unanswered questions.
We hope they stimulate replies by other logicians interested in the notion of
negation.

Prof. J. Michael Dunn (1941–2021)

2. Nine questions to Michael Dunn concerning negation

Michael Dunn has been known as one of the central and major contributors
to Relevance Logic. Systems of relevance logic are paraconsistent logics
since they reject the idea of ex contradictione quodlibet both as an inference,
{A,¬A} ` B, and as a theorem in formal languages with conjunction and
implication, (A ∧ ¬A) → B. Moreover, Dunn was one of the developers of a
system that is frequently called Belnap-Dunn logic, or first-degree entailment
logic, a fundamental and especially natural four-valued paraconsistent logic
that has found many applications in various areas ranging form the philosophy
of information to artificial intelligence, see, for example, [Omori and Wansing,
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2017]. According to Graham Priest, there exists a slippery slope that leads from
the endorsement of a paraconsistent logic, in order to enable non-trivial incon-
sistent theories, to a metaphysical position, dialetheism, according to which
there exist true contradictions. Of course, advocates of a system of paracon-
sistent logic need not be dialetheists, yet it is interesting to see how scholars
who investigate paraconsistent logics think about dialetheism. This prompted
our first question to Michael Dunn, Q1. The topics of paraconsistency and
relevance figure prominently in Arnon Avron’s contribution to this special issue
Implication, equivalence, and negation.

Q1 Can you briefly comment on your general attitude towards paraconsistent
logic and dialetheism, and how would you locate the Belnap-Dunn logic, or the
Sanjaya-Belnap-Smiley-Dunn Four-valued Logic, as you suggested in [Dunn,
2019], in your picture?

Some well motivated expansions of Belnap-Dunn logic turned out to be non-
trivial contradictory logics, such as the logic of logical bilattices investigated by
Ofer Arieli, Arnon Avron, Melvin Fitting, and other logicians. Negation in-
consistency is a very remarkable property that makes these systems orthogonal
to classical logic. According to Karl Popper, [Popper, 1962, p. 322], “The ac-
ceptance of contradictions must lead ... to the end of criticism, and thus to
the collapse of science.” If contradictions are provable in the logic on which a
scientific theory is based, this is certainly a challenging feature. How are we to
think about this thought-provoking property? Well, we wanted to know how
Michael Dunn thought about it, Q2.

Q2 The Belnap-Dunn logic has been extremely fruitful in considering some
expansions, such as the logic of bilattices, as well as the connexive logic C.
We highlight these because of their shared feature of being negation incon-
sistent, namely for some formulas, both the formula and its negation are
valid/derivable. Do you have any thoughts on this kind of inconsistent logics?

A semantics in terms of information states for a non-trivial contradictory
logic has it that not only a state may both support the truth as well as the
falsity of one and the same formula, but that there are formulas such that
every state supports both their truth and their falsity. Thomas Studer in his
paper A conflict tolerant logic of explicit evidence does not exactly take such
a bold step. He presents a justification logic, CTJ, that accepts two different
pieces of evidence such that one justifies a proposition whereas the other piece
of evidence justifies the negation of that proposition. Yet, CTJ has no room
for pieces of evidence that justify both a proposition and its negation. If one
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would think of justifications in terms of proofs in a logical system, however,
two formulas A and ¬A may both have different proofs.

Paraconsistency is a property a logical system has or fails to have chiefly in
virtue of a negation connective occurring in its language. The famous paracon-
sistent Belnap-Dunn logic enjoys several semantical characterizations. In par-
ticular, negation can be captured by means of a four-valued semantics but
also by means of a two-valued semantics. Negation on the so-called “Aus-
tralian plan” models the negation connective as a point shift operator in a
two-valued semantics, famously especially in the Routley star semantics. The
four-valued approach of the so-called “American plan” can be combined with a
state semantics, but negation essentially flip-flops (support of) truth and falsity
at a given state, i.e., point of evaluation. Questions Q3 and Q4 address the
two plans.

Q3 Here is another question continuing with the Belnap-Dunn logic. Given
that there are two semantics for negation in the Belnap-Dunn logic, the
American plan and the Australian plan, and that you have contributed im-
mensely to the developments of both plans, we are interested in your basic
picture concerning negation. Is the following quote from one of your earlier
papers something you are willing to defend?

Tim Smiley once good-naturedly accused me of being a kind of
lawyer for various non-classical logics. He flattered me with his
suggestion that I could make a case for anyone of them, and in
particular provide it with a semantics, no matter what the merits
of the case [. . . ] But I must say that my own favourite is the 4-valued
semantics. I am persuaded that ‘¬φ is true iff φ is false’, and that
‘¬φ is false iff φ is true’. And now to paraphrase Pontius Pilate,
we need to know more about ‘What are truth and falsity?’. It is
of course the common view that they divide up the states into two
exclusive kingdoms. But there are lots of reasons, motivated by
applications, for thinking that this is too simple-minded. [Dunn,
1999, p. 49]

Q4 A question related to the previous question concerns the recent discussions
of the Australian plan of negation defended by Francesco Berto and Greg Restall
in [Berto, 2015; Berto and Restall 2019] and criticized in [De and Omori, 2018].
What might be the lesson we should learn from the Australian plan, if one’s
preferred approach is the American plan?
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Suppose we want to have a conditional that validates modus ponens and the
deduction theorem. Then the two plans in many cases fall apart. Whereas the
contraposition rule is valid on the Australian plan, on the American plan, in the
presence of such an implication connective, the contraposition rule can be easily
invalidated. The validity of contraposition is but one of several properties that
have been discussed as characteristic features of negation. The double negation
laws, the De Morgan laws, and the Law of Excluded Middle have also been
discussed as criteria of negationhood. The latter principle is at center stage in
the invited contribution by Jc Beall and Graham Priest, A tale of excluding the
middle, in which the authors discuss an argument for the dialetheic nature of
the liar sentence. Our next question, Q5, turns to properties of negation.

Q5 Continuing from the previous question, some defend the rule of contra-
position, namely if A ` B then ¬B ` ¬A as the essential rule for negation, but
as you have taught all of us, this rule requires some very delicate treatment
in the context of the Belnap-Dunn logic. What is your opinion on the rule
of contraposition? Do you think any of the properties of negation will stand
out as essential? Do you also have thoughts on the minimal requirement for
negation, i.e. for some atomic formulas p and q, p 6` ¬p and ¬q 6` q, sugges-
ted by Wolfgang Lenzen [Lenzen, 1996] and João Marcos [Marcos, 2005] and
later adopted by Ofer Arieli, Arnon Avron, and Anna Zamansky in [Arieli et
al., 2011]?

Prof. J. Michael Dunn and Prof. Nuel D. Belnap
Pittsburgh, April 2018

(Photo: courtesy of Prof. Anil Gupta)
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In §1 of Entailment. Vol. I, Alan Anderson and Nuel Belnap explain that
they “take the heart of logic to lie in the notion ‘if ... then −’ ”. It may there-
fore seem especially significant to consider the relationship between implication
and negation. If the negation connective is meant to express falsity, then the
question about the relationship between implication and negation boils down
to asking about the falsity conditions of implications. That’s what question Q6
is doing by contrasting the negation in David Nelson’s constructive logics and
the understanding of negated implications in certain (hyper)connexive logics.

Q6 Given the developments related to the relevant logicR, for example, there
are some clear interactions between the treatment of negation and the treatment
of implication. Do you have any thoughts how we should think about the
interactions? Would there be any guiding principles for you to think about
the interactions? In particular, in the Kripke semantics for David Nelson’s
constructive logics with strong negation, usually denoted by “∼”, we have the
classical falsity condition for negated implications insofar as a state verifies
∼(A → B) iff it verifies A and falsifies B, so that ∼(A → B) ↔ (A ∧ ∼B) is
valid. In certain connexive logics, however, the falsity condition of implications
is such that ∼(A → B) ↔ (A → ∼B) is valid, cf. [Omori and Wansing,
2019; Wansing, 2020]. Do you have an opinion on this matter?

The non-involutive weakening of strong negation in the three-valued para-
complete version of Nelson’s logic is investigated in the contribution by Thiago
Nascimento da Silva and Umberto Rivieccio, Negation and implication in quasi-
Nelson logic, where quasi-Nelson algebras are presented as a generalization of
both Heyting algebras and Nelson algebras.

Question Q6 gives rise to a plethora of further considerations. One of the
semantical assumptions that underlie classical logic is bivalence, the view that
there are exactly two truth values, true and false, and that in a given situation
every meaningful statement takes exactly one of these values. In many-valued
logic, this is a subtle issue as a distinction can be drawn between algebraic and
inferential values, where the latter are usually given by a bi-partition of the set
of algebraic values into a non-empty set of designated values and it’s nonempty
complement, cf. [Malinowski, 1993; Malinowski, 1994; Malinowski, 2009; Bla-
sio et al., 2017]. It is the latter sets of values that are used in definitions
of semantical consequence. In a bivalent setting, a statement is false exactly
when it is not true. In a many-valued setting, however, being untrue, respect-
ively, non-designated, and being false, respectively anti-designated, fall apart.
Gilberto Gomes in his contribution Negation of conditionals in natural language
and thought, discusses the external negation of natural language conditionals
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expressed by means of “it is not the case that” and “it is not true that”, keeping
in mind a distinction between implicative and concessive conditionals. Gomes
concludes that in English conditionals If A, then B entail It is not the case that
if A, then not B, but presents counterexamples to the converse. On may wonder
whether native speakers of English are ready to draw a distinction between “it
is not the case that A” and “it is definitely false that A”.

The non-contraposible negation as falsity in Nelson’s logics is but one type
of negation, and several other ways of trying to capture semantic opposition
by means of a unary sentential operator or formalizing negation phenomena in
natural languages are known from the literature. QuestionsQ7 andQ8 address
two such notions: negation as cancellation and demi-negation.

Q7 Quite a few different kinds of negation have been distinguished between
in the literature. We would like to know your opinion on some of those listed in
the Stanford Encyclopedia of Philosophy entry on negation [Horn and Wansing,
2020]. One such concept is the notion of negation as cancellation or erasure that
has been discussed by Richard and Valerie Routley [Routley and Routley, 1985]
and Graham Priest [Priest, 1999], and that has been very heavily criticized more
recently in [Wansing and Skurt, 2018]. The Routleys [Routley and Routley,
1985, p. 205] characterize negation as cancellation as follows:

∼A deletes, neutralizes, erases, cancels A (and similarly, since the
relation is symmetrical, A erases ∼A), so that ∼A together with
A leaves nothing, no content. The conjunction of A and ∼A says
nothing, so nothing more specific follows. In particular, A ∧ ∼A
does not entail A and does not entail ¬A.

This idea is closely related to the slogan ex contradictione nihil sequitur (nothing
follows from a contradiction), see [Wagner, 1991]. Do you think that this is a
reasonable and viable conception of negation?

Q8 There is also the notion of negation by iteration, i.e., the idea to obtain
a negation by a double application of a connective called “demi-negation” in
[Humberstone, 1995], or “square root of negation”,

√
not, in quantum com-

putational logic, e.g. in [Paoli, 2019]. In [Omori and Wansing, 2018] it is
speculated that double demi-negation as negation could be used to analyze
the phenomenon of negative concord in certain natural languages (or natural
language dialects) such as in “She don’t eat no biscuit”, and it is discussed
whether certain demi-negations are indeed negations. Have you ever thought
about demi-negations?
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The proper context of ex contradictione nihil sequitur is non-monotonic
reasoning. If one wants to keep the reflexivity of the derivability relation, then,
obviously, blocking the step from A ` A to A ∧ ¬A ` A will make inferences
non-monotonic. Yet another type of negation is negation as failure to derive.
It has been clear that logic programming needs in addition to negation as failure
as a non-monotonic inference rule another kind of negation, explicit negation.
Both types of negation are studied in Reinhard Kahle’s paper Default negation
as explicit negation plus update.

In the last question, Q9, the attention is directed to the treatment of
negation in proof-theoretic semantics. The term “proof-theoretic semantics”
was coined by Peter Schroeder-Heister, and not the least through his efforts,
proof-theoretic semantics is now an established and very active research area.
Like other areas within logic, it has seen a certain preoccupation with positive
notions such as assertion and verification, but when negation comes into focus,
their negative counterparts are in the spotlight. One logical system, in which
there is a kind of duality between verification and refutation and between
implication and a concept of co-implication is Heyting-Brouwer logic, also
known as bi-intuitionistic logic, BiInt. Whereas in its Kripke semantics the
co-implication of BiInt is a backwards-looking existential quantifier, the co-
implication of the likewise bi-intuitionistic logic 2Int is a forward-looking uni-
versal quantifier. Paolo Maffezioli and Luca Tranchini in their contribution
Equality and apartness in bi-intuitionistic logic discuss the concepts of identity
and apartness in the context of Heyting-Brouwer logic.

Q9 Let us finally come to the interplay between negation and consequence
relations. In your paper “Partiality and its Dual” [Dunn, 2000] and elsewhere,
you consider various semantically defined consequence relations that differ in
whether valuations permit truth-value gaps, gluts, or both. The permission of
gaps, gluts, or both is certainly a negation-related topic. One of the systems you
deal with in the mentioned paper is a well-known expansion of Belnap-Dunn
logic, viz. Almukdad and Nelson’s constructive four-valued logic, nowadays
known as N4. On the proof-theoretic side, N4 has been arrived at via dif-
ferent roads, one being what is often called “bilateralism,” the view that con-
cepts like falsity, denial, and refutability should be considered in their own
right and as being as important as their positive counterparts truth, assertion,
and provability. As a result, this approach may lead one to making use of two
separate derivability relations: provability and disprovability (or refutability).
In that context, it has also been suggested, e.g. in [Wansing, 2013; Wansing,
2017; Drobyshevich, 2019], to consider in addition to implication as a connect-
ive that internalizes in the logical object language the preservation of (support
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of) truth, a co-implication connective that internalizes preservation of (support
of) falsity. The meaning of a logical operation is then to be specified proof-
theoretically by its inferential roles in both proofs and disproofs. What would
you say about such a conception of meaning?

Prof. J. Michael Dunn meeting for lunch
with two of the guest editors during
Logic, Rationality, and Interaction.

6th International Workshop, LORI 2017,
Sapporo, Japan, September 11–14, 2017
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Prologue

Negation is one of the most important logical notions, and its properties
are, and always have been, contentious. Many have held that satisfying the
Principle of Excluded Middle is one of its properties. Many have denied this.
Indeed, the Principle has been denied to provide an account of the open future,
to allow for the identification of truth and provability in mathematics, to solve
the liar paradox, and for a number of other reasons.

One could write a book (or two) on these matters. Our aim here is much
less ambitious; it’s to trace one strand of the story about the Principle. The
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liar paradox will be a central player in this, but so will truth and validity. The
upshot of our story will be some important lessons about all these things.

Act I: In Which the Liar Paradox is Introduced

The Liar paradox is a familiar creature. For our purposes, we set it up as
follows.

Angle brackets are a name-forming functor, and T is a truth predicate,
satisfying the T -Schema rules of Capture and Release, respectively:

α T 〈α〉
T 〈α〉 α

A falsity predicate F 〈α〉 may be defined as T 〈¬A〉, so that the familiar dual
F -Schema rules are enforced:

¬α F 〈α〉
F 〈α〉 ¬α

The Principle of Excluded Middle (PEM), that every (declarative) sentence
is either true or false, can be expressed by the schema T 〈α〉 ∨ F 〈α〉. Given
Capture and Release, and standard rules concerning disjunction, the PEM can
equivalently be expressed by the schema α ∨ ¬α.1

The Liar sentence is a sentence λ equivalent to F 〈λ〉. The Liar paradox is
now given by the following natural-deduction argument:

T 〈λ〉
λ

F 〈λ〉 T 〈λ〉
¬λ λ

F 〈λ〉 F 〈λ〉
¬λ λ

T 〈λ〉 ∨ F 〈λ〉 λ ∧ ¬λ λ ∧ ¬λ
λ ∧ ¬λ

Clearly, one can break the argument if one rejects the PEM, as several logicians
have argued should be done.2 Those, like your narrators (JCB and GP), who
think that the Liar serves as a strong witness to ‘true contradictions’ (gluts,
dialethias) – true sentences of the form α∧¬α (dual of ¬α∨α) – and who think
that the Liar paradox (as per the above derivation) serves as a sound argument

1The two ways of expressing the PEM can, of course, come apart if the standard rules
for disjunction fail, as they do, for example, on the familiar supervaluation account of van
Fraassen [Fraassen, 1966], which validates the schema α∨¬α, though α may be neither true
nor false in an interpretation.

2E.g., [Kripke, 1975; Field, 2008].
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for just such a result, are naturally motivated to advance an argument for the
PEM. And so the history unfolds.3

Act II: In Which the Teleological Account of Truth is Explained

In Chapter 4 of the first edition of In Contradiction,4 GP, partly with a
defense of the soundness of the Liar derivation in mind, advanced an argument
for the PEM that rests on the teleological account of truth. This Act reviews
the account; the next Act reviews the target argument for PEM.

The teleological account of truth is essentially Dummett’s. Dummett notes
that some notions are fully understandable only via an understanding of their
point or telos. Thus, consider the notion of winning, as of a game. One could
know what constitutes a winning position in a game of chess (or bridge, or
cricket) and what constitutes a losing position, without understanding what it
is to win. To understand this, one must know that the aim or point of playing
a game, as such, is to achieve a winning position, not a losing one.

Similarly, says Dummett, one might know what constitutes a true state-
ment and what constitutes a false statement without understanding what truth
is. The T -Scheme for α states the condition under which α is true, and the
F -Schema for α states the condition under which α is false. But if you don’t
understand what the point of calling something ‘true’ is, you don’t understand
truth.

What is the point (telos) of truth? The answer, according to Dummett, is
that truth is the institutional (as opposed to personal) aim of assertion – the
aim of asserting something.5 As he puts it:6

it is part of the concept of truth that we aim at making true asser-
tions.

Or again:7

the class of true sentences is the class the utterance a member of
which a speaker of language is aiming at when he employs what is
recognizably the assertoric use.

3One of us (viz., JCB) rejects the soundness of the Liar argument above without in-
dependent reason to accept the PEM, but JCB thinks that the methodological quest for
completeness – sorting all sentences of the language of our theories into ‘The True’ or ‘The
False’ – that drives systematic, truth-seeking theorists sufficiently pushes towards a glutty
account of λ. We note this only to set it aside. For some discussion, see [Beall, 2017; Beall,
2018]. Both of us remain committed glut theorists, and equally interested in arguments for
PEM.

4[Priest, 1987]. In what follows, page references are to the second (viz., 2006) edition.
5And, one might add, other cognitive acts, such as believing.
6[Dummett, 1959, p. 143].
7[Dummett, 1973, p. 320].
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Thus, as In Contradiction (§4.5) points out, if for whatever reason people played
games in such a way as to realize what we currently take to be a losing position
then winning would become losing, and vice versa. Similarly, if the institution of
assertion morphed in such a way that it became the aim to assert the sentences
we now take to be false (‘the moon is a cube’, ‘3+2 is not 5’, etc.), people would
understand these as expressing the opposite of what they are currently taken
to express: the sense of a sentence would flip to what is currently expressed by
its negation.

Now, one might think that the notion of truth (as applied to sentences,
beliefs, propositions, etc.) is univocal, but one might not. Either way, at least
with respect to the meaning of ‘truth’ that Dummett is talking about, his
point is well taken. Without an understanding of the point of this notion,
truth and falsity would be formally symmetrical notions, with nothing to break
the symmetry. It is the way that they are applied in use that distinguishes
them.

In what follows, it is truth in the given teleological sense with which we are
chiefly concerned. Unless otherwise explicitly noted, when we speak of truth or
falsity in what follows, we mean truth or falsity in this sense (if there is more
than one).

Intermission: For the Sake of Transparency

Before our story continues, some points of clarification are useful. Call the
following two-way rule the Contraposed T -Schema Rule:

¬A
¬T 〈A〉

The T -Schema rules do not by themselves give the contraposed form. Nor is
there anything in the teleological account of truth that delivers them; for the
account says nothing about negation. On the other hand, just because of this,
it is open to someone who endorses the teleological account of truth to endorse
an account of negation that delivers the contraposed T -schema rule.

For the rest of this essay, we will call an account of truth transparent if
for any A, A and T 〈A〉 are intersubstitutable salva veritate in all extensional
contexts. If the only other contexts in play are those delivered by conjunction
and disjunction (and those that can be defined from them and negation), and
given that these behave in a standard fashion, transparency is equivalent to the
T -schema rules plus the contraposed T -schema rules. Hence it is quite possible
for someone to endorse an account of teleological truth that is transparent
(the intersubstitutability holds), just as it’s possible for someone to endorse an
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account of teleological truth that fails to be transparent (intersubstitutability
fails).

JCB, in a variety of works, uses the word ‘transparency’ for an account of
truth according to which there is neither more nor less to truth than is captured
by (as he says) ‘the transparency rules’ – the given intersubstitutability rules
in the above sense. Clearly, the transparency account of truth, so understood,
is not compatible with the teleological account of truth. JCB has also argued
that transparency in this sense – and so the relevant T -schema and F -schema
rules – arise from the thought that (the target transparency notions of) truth
and falsity are predicates that reflect (indeed, are just defined as ‘abstractions
from’) the behavior of the logical connectives ¬ and † (the last of these being
the monadic truth function whose output is identical with its input).8

Whether such an account of truth and the teleological account of truth are
rivals or simply characterise different notions, is an issue on which we express no
view here. As observed, both views deliver the T -Schema rules (viz., Capture
and Release). For the teleological account of truth – our principal concern – it is
exactly these rules that tell us which sentences are true. For JCB’s account, it
is the fact that truth ‘supervenes’ (in a sense that needn’t detain us here) on †.
Moreover, arguably Capture and Release govern any notion of truth worth the
name. (As Tarski noted, such is a condition of adequacy on any account of
truth.) And, given this, all notions of truth are extensionally equivalent. For
if T1 and T2 are any such notions, T1 〈α〉 a` α a` T2 〈α〉. Given the F -Schema
rules, a similar equivalence holds for falsity.

Act III: In Which an Argument for the PEM is Seen to Crash

Now to the argument for the PEM mentioned at the beginning of Act II.
Deploying the teleological account of truth, Dummett notes (with a quali-

fication meant to take certain complications off of the agenda) that if one utters
something, one either achieves the point of doing so or one fails. Anything less
than success is failure. As he puts it – in distinctly Dummettian terms:9

A sentence, so long as it is not ambiguous or vague, divides all
possible states of affairs into just two classes. For a given state
of affairs, either the statement is used in such a way that a man
who asserted it but envisaged the possibility of that state of affairs
as a possibility, would be held to have spoken misleadingly, or the
assertion of the statement would not be taken as expressing the
speaker’s exclusion of that possibility. If a state of affairs of the

8Further on these matters, see [Beall, 2009, Chapter 1], and especially [Beall, 2021].
9[Dummett, 1959, p. 149] f. Italics original.
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the first kind obtains, the statement is false. If all actual states of
affairs are of the second kind, it is true. It is therefore prima facie
senseless to say of any statement that in such-and-such a state of
affairs it would be neither true nor false.

The game analogy is illuminating here. In many games, there are three possible
outcomes: winning, losing, and drawing. But in some games, there are only
two: winning and losing. In such games, not to win is, ipso facto, to lose.
In asserting, there is nothing that corresponds to drawing. Anything less than
success is, ipso facto, failure. In Contradiction (§4.7) used this point to argue
for the PEM. The last sentence of the last quote by Dummett clearly sounds
like a version of this.

In ‘True Contradictions’10 Terry Parsons criticised the argument from the
teleological account of truth to the PEM. For Dummett’s point, ‘false’, he said,
has to be interpreted as untrue, not as having a true negation, as required by the
PEM. And that seems right: nothing in Dummett’s reflections says anything
about how sentences containing negation work. And to appeal to the inference
from ¬T 〈α〉 to F 〈α〉 would clearly beg the question.

The argument from teleology for the PEM thus fails to achieve its goal. But
the play goes on: there is importantly more to the matter than this.

Act IV: In Which the Liar Paradox Reappears

In the second edition of In Contradiction (§19.6) GP accepted Parson’s
criticism, and whilst pointing out that the teleological account of truth still
puts the onus of proof on one who wishes to draw a distinction within the
category of untruths, he agreed with Parsons that Dummett’s point shows only
that (p. 267):

anything that fails to live up to the aim of assertion is ipso facto
not true.

But then there is a footnote (fn 13):

Note that this conclusion, on its own, is not without its sting. It
establishes, even if one denies the Law of Excluded Middle in gen-
eral, that particular instances of the form T 〈α〉 ∨ ¬T 〈α〉 still hold.
These are precisely the ones that give the “strengthened liar” its
punch, as I noted in discussing ch. 1.

10[Parsons, 1990].
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Matters are left there; but the import of the point can be brought out much
more simply and directly, as follows.11

Instead of considering the Liar paradox in the form ‘this sentence is false’,
consider it in the form ‘this sentence is untrue’. Thus, let λ∗ be a sentence of
the form ¬T 〈λ∗〉. Given the preceding discussion, we have, as noted, T 〈λ∗〉 ∨
¬T 〈λ∗〉, and a contradiction quickly follows. Merely consider the following
argument in natural-deduction form:

T 〈λ∗〉 ∨ ¬T 〈λ∗〉

T 〈λ∗〉
λ∗

¬T 〈λ∗〉 T 〈λ∗〉
T 〈λ∗〉 ∧ ¬T 〈λ∗〉

¬T 〈λ∗〉
λ∗

T 〈λ∗〉 ¬T 〈λ∗〉
T 〈λ∗〉 ∧ ¬T 〈λ∗〉

T 〈λ∗〉 ∧ ¬T 〈λ∗〉

Hence, without relying on PEM the teleological notion of truth delivers a direct
argument for true contradictions, an argument for the truth and – assuming
double negation – falsity of ¬T 〈λ∗〉, that is, λ∗, and so for the truth of the
contradiction λ∗ ∧ ¬λ∗.

We end this Act by noting a corollary concerning transparency. The scheme
T 〈α〉 ∨ ¬T 〈α〉 is obviously a restricted case of PEM; let us call it Restricted
Excluded Middle (REM). If truth is transparent12 then T 〈¬α〉 is equivalent to
¬α, which is equivalent to ¬T 〈α〉. That is, truth commutes with negation.
In this case, REM clearly delivers PEM. Hence the argument in Act I for the
contradictory nature of λ goes through as well as that for λ∗.

Act V: In Which Validity Comes Onstage

What we have discussed so far concerns the truth of the REM and PEM,
not their logical validity, which is a quite different matter. Indeed, the preced-
ing discussion does not require these to be logically true (i.e., logically valid
schemata, each instance of which is logically valid), simply true; and it is per-
fectly coherent to take them to be true without being logically so.

To show this, we need some machinery to deliver an account of validity; we
shall take this to be model-theoretic machinery. To handle the inconsistency of
Liars, a paraconsistent validity relation is required. Some paraconsistent logics,
such as LP , defended by GP in In Contradiction, validate PEM, and so cannot
be used to show this. But, FDE, preferred by JCB,13 does not validate PEM.

11Perhaps GP overlooked the point; perhaps he forgot it. It was noted by JCB in a talk
given at a conference at the National Autonomous University of Mexico in 2019, where GP
was in the audience.

12As [Beall, 2009] and [Field, 2008] hold, though [Priest, 1987, §4.9] does not.
13[Beall, 2017; Beall, 2018].
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So we can use this. The semantics of FDE can be set up in many equivalent
ways. We use the four-valued semantics, where the values are t (true only),
f (false only), b (both), and n (neither). t and b are the designated values.
LP has the same semantics, except that it does not use the value n.14

Let the language be a first-order one that contains a monadic truth predic-
ate, T , and for every expression e in the language, a suitable name, 〈e〉. The
extension of any monadic predicate P (including T ) is the set of objects in
the domain which the interpretation of P maps to t or b; the anti-extension
is the set of objects it maps to f or b. If in every interpretation every sen-
tence is in either the extension or anti-extension of T then REM is validated
(that is, it is true on every interpretation over which the given validity relation
is defined) but, crucially, PEM is not thereby validated, since the validity of
REM is compatible with some formulas (not involving T ) having value n.

Such interpretations may not validate the T -Schema rules, but they can be
made to do so if, in addition, every sentence, α, has the value t or b iff T 〈α〉
does. But PEM is still not validated. Again, suppose that P is some (other
monadic) predicate and ‘a’ is the name of some object which is in neither the
extension nor anti-extension of P . Then Pa has the value n, and neither Pa nor
¬Pa is in the extension of T , and so (by assumption) is in its anti-extension.

Matters are more complicated if the truth predicate is transparent in every
interpretation. For then, α and T 〈α〉 have the same value in every interpreta-
tion. So if the REM holds in an interpretation then, for any α, T 〈α〉 or ¬T 〈α〉
holds. But then T 〈α〉 has the value t, b, or f , and so, given transparency,
α does too. Hence α ∨ ¬α is true in all interpretations.15

However, with a small change, one can accommodate the situation in which
T behaves (let us say) ‘transparently at a distinguished interpretation’ (but not
at all interpretations), REM is true at the given interpretation, but PEM is not
valid (true at all interpretations). Fix on some interpretation, @. One may
think of @ as an interpretation which verifies some true theory – maybe the
theory of T itself – or is, in some other way, such that everything that holds
in it is actually true (simpliciter) – whatever one takes that to mean. The
way that T behaves in this interpretation may well not be the way in which it

14See [Priest, 2008, chs. 8 and 22]. For natural-deduction systems for for FDE, LP , and
related systems, see [Priest, 2019]. For a wider discussion of FDE see [Omori and Wansing,
2017; Omori and Wansing, 2019].

15This result is implicit in the discussion of an FDE-based ‘compromise’ in [Beall, 2009,
p. 104], which shows that if a PEM-demanding negation-like device (‘exhaustive device’ in
said work) is added to a language with its own transparent truth predicate then the only
models of the resulting theory are LP models: one kicks out any sentence that can be gappy,
that is, has value n. In a language with its own transparent truth predicate, imposing REM
is, then, tantamount to imposing a PEM-satisfying negation.
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behaves at other interpretations. After all, interpretations represent situations.
These may be actual, they may be possible, or they may be impossible. What
validity gives is a way of preserving truth-in-an-interpretation in all of these.

In particular, then, @ may ‘make true’ REM and the transparency of truth
(at @), and so likewise the schema α ∨ ¬α. But there is no reason why these
should hold in other interpretations too. In other words, they can hold (at @),
but not be valid – not hold at all interpretations. And let us stress, again,
that the argument that λ∗ is a true contradiction requires only that the REM
(or PEM) be true, not that it be valid.

Act VI: In Which an Old Adage is Dissected

Of course, whether the PEM is logically valid is another matter. FDE is
prima facie a more attractive account of validity than LP , simply because of
its symmetry. It also accommodates naturally the apparent duality between
the liar and the truth-teller, ‘this sentence is true’. The liar looks like a case
of overdetermination (both); the latter looks like a case of underdetermination
(neither).16 So it is fair to say that if someone prefers LP to FDE as an
account of logical validity, the onus is on them to make the case.

This is not the place to go into this matter, since it raises the whole question
of the methodology determining the rational choice of logical theory.17 But
since truth has been very much a major concern of what has gone before, let us
conclude this story by discussing just one aspect of the matter, which concerns
truth. It involves the natural thought expressed in the old adage:

• truth-in-a-model ought to be a model of truth

that is, truth-in-an-interpretation should behave in the same way as does truth
simpliciter (whatever, exactly, one takes this to be). Exactly how to under-
stand this thought might be debated but one may naturally take it to have
the following consequence. If PEM is true (i.e., all instances are true), so that
for any α, either T 〈α〉 or T 〈¬α〉 holds, then either α or ¬α should be true
in an interpretation. But if either α or ¬α holds in every interpretation, then
nothing has the value n in any interpretation, and we have the semantics of
LP (not FDE). So on this understanding of the adage, the truth of the PEM
entails its validity.

The adage may well be resisted, however. As observed, when we reason,
we reason about all sorts of situations, actual, possible, and maybe impossible.
And there is no reason why truth at such situations must behave like truth
simpliciter. Thus, suppose the actual situation to be as classical as one likes.

16But on this, see In Contradiction, p. 66, and [Mortensen and Priest, 1981].
17For some discussion, see [Priest, 2014], and similarly [Beall, 2019].



A Tale of Excluding the Middle 29

We may yet want to reason about situations that are gappy or glutty. One may
think of these as merely possible or impossible situations. And, one needs a
canon of inference which preserves what holds at every one of these interpret-
ations. Truth in some interpretations will not, then, mirror truth simpliciter.

Certain understandings of the adage may, in fact, be problematic even if
one takes LP to deliver the correct notion of logical validity. For if both T 〈α〉
and ¬T 〈α〉 may hold then, it might be thought to follow, there should be
interpretations where α can both hold and not hold; that is, where α may both
have the value t or b, and not. Obviously this cannot be the case in a consistent
semantics. The possibility may be accommodated by moving to a semantics
itself formulated in a paraconsistent logic. However, that raises many issues of
its own, and this is not the theatre for that tale.18

Epilogue

This brings our story to an end. Of course, we know that there are likely
to be many other players in the wings who will want to jump on stage. And
there may well be other acts to be written. Nonetheless, we think our tale an
illuminating one, and trust that the reader has enjoyed it.
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1. Introduction

The relevant deduction property (RDP) for a binary connective→ is a weak
form of the classical-intuitionistic deduction theorem which has (somewhat im-
plicitly) motivated the design of the intensional fragments (R→ and R ¬→) of the
relevance logic R ([Anderson, Belnap, 1975; Dunn, Restall, 2002]).1 In [Avron,
2015] we showed that with one exception, in the pure language of {→} → has in

1The RDP is also the key condition that should be satisfied by what is called in [Avron,
2015] ‘semi-implication’. The other condition, included to avoid degenerate cases, is that not
every case in which an implication holds is a case in which its converse also holds.
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a finitary logic L the RDP iff L has a strongly sound and complete Hilbert-type
system which is an axiomatic extension (i.e. an extension by axiom schemas)
of HR→ (the standard axiomatization of R→). The only exception is a logic
which, like R→, is an axiomatic extension of LL→ (the purely implicational
fragment of Linear Logic): CL↔, the pure equivalential fragment of classical
logic (where the biconditional is denoted by →).

The fact that↔ has in CL↔ the RDP raises the question to what extent it
can actually be used as an implication connective. A crucial criterion here is the
richness of the languages in which it might serve as such, that is: what useful
connectives can be added to it. It can easily be seen that it is impossible to add
to CL↔ a ‘conjunction’ ∧ such that both ϕ∧ ψ ↔ ϕ and ϕ∧ ψ ↔ ψ would be
valid, since this would immediately trivialize the logic. Similarly, one cannot
add to CL↔ a ‘disjunction’ ∨ such that ϕ ↔ ϕ ∨ ψ and ψ ↔ ϕ ∨ ψ would be
valid. It follows that among the connectives used in linear logic and in relevance
logics, one may add to CL↔ only what are called in linear logic ‘multiplicative’
connectives, and in relevance logics ‘intensional’ connectives. The most basic
such connective is negation (which together with the implication connective of
linear and relevant logics suffices for defining the rest of them). Accordingly,
the main goal of this paper is to investigate the equivalence-negation fragment
of classical logic, and corresponding proof systems.

2. Preliminaries

In the sequel L is a propositional language, ϕ,ψ, θ vary over its formulas,
p, q over its atomic formulas, and T ,S over its theories (i.e. sets of formulas).

Definition 1. A (Tarskian) consequence relation for a language L is a binary
relation between theories in L and formulas in L satisfying the following three
conditions:
[R] Reflexivity : ψ ` ψ (i.e. {ψ} ` ψ).
[M] Monotonicity : if T ` ψ and T ⊆ T ′, then T ′ ` ψ.
[C] Cut (Transitivity): if T ` ψ and T ′, ψ ` ϕ then T ∪ T ′ ` ϕ.

Definition 2. Let ` be a Tarskian consequence relation for L.

• ` is structural , if for every L-substitution θ and every T and ψ, if T ` ψ
then θ(T ) ` θ(ψ).

• ` is non-trivial if p 6` q for distinct atomic formulas p, q.

• ` is finitary, if for every theory T and every formula ψ such that T ` ψ
there is a finite theory Γ ⊆ T such that Γ ` ψ.
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Definition 3. A (propositional) logic is a pair L = 〈L,`L〉, where L is a pro-
positional language, and `L is a structural and non-trivial Tarskian consequence
relation for L.2 A logic L = 〈L,`L〉 is finitary if `L is finitary.

Definition 4. Let L = 〈L,`L〉 be a propositional logic, and let ⊃ be a (prim-
itive or defined) connective of L. L has the relevant deduction property (RDP)
for ⊃ if it satisfies the following condition:

T , ϕ `L ψ iff either T `L ψ or T `L ϕ ⊃ ψ.

Remark 1. If a finitary logic L has a connective ⊃ with the RDP, then the
following holds for every theory T and formula ϕ: T `L ϕ iff there exist
ψ1, . . . , ψn ∈ T (n ≥ 0) such that `L ψ1 ⊃ (ψ2 ⊃ (· · · (ψn ⊃ ϕ) · · · )).

Definition 5. Let L→ = {→}, L↔ = {↔}.

1. HLL→ is the system in L→ presented in Figure 1.

Axioms:

[Id] ϕ→ ϕ (Identity)

[Tr] (ϕ→ ψ)→
(
(ψ → θ)→ (ϕ→ θ)

)
(Transitivity)

[Pe]
(
ϕ→ (ψ → θ)

)
→
(
ψ → (ϕ→ θ)

)
(Permutation)

Rule of inference:

[MP]
ϕ ϕ→ ψ

ψ

Fig. 1. The proof system HLL→

2. HR→ is the extension of HLL→ by the following axiom:

[Ct] (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) (Contraction)

3. HLL↔ is the system in L↔ which is obtained from HLL→ by using ‘↔’
instead of ‘→’. HCL↔ is the extension of HLL↔ by the following axiom:

[Eq] (ϕ↔ (ϕ↔ ψ))↔ ψ (Equivalence)
2This is the notion of propositional logic which has been used in [Avron, 2015], as well as

in [Avron et al., 2018].
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The following three theorems have been proved in [Avron, 2015].

Theorem 1. A logic L is finitary and has a connective → which has in L
the RDP iff L has a strongly sound and complete Hilbert-type system which is
equivalent to an extension by axiom schemas of either HR→ or HCL↔.3

Theorem 2. HCL↔ is strongly sound and complete for the equivalence frag-
ment of classical logic (i.e. T `HCL↔ ϕ iff by interpreting → as the classical
biconditional ↔, we get that every assignment that satisfies T also satisfies ϕ).

Theorem 3. CL↔ has no proper extension in its language.4

3. The Logic CL ¬↔ and the System HCL ¬↔

Definition 6. CL ¬↔ is the equivalence-negation fragment of classical logic.
MCL¬↔

is the two-valued matrix which induces CL ¬↔.

Proposition 1. CL ¬↔ does not have the RDP.

Proof. Although ¬p, p `CL¬↔
q, neither ¬p 6`CL¬↔

q, nor ¬p 6`CL¬↔
p↔ q. �

Definition 7. Let L = {↔,¬}. The Hilbert-type proof system HCL ¬↔ is
presented in Figure 2. LHCL¬↔ is the logic induced by HCL ¬↔.

Remark 2. The axioms given in Figure 2 are actually not independent, since
[N2] can be dropped. This can be seen by substituting ¬ψ for ϕ in both [Id]
and [N1]. By applying [MP] to the resulting formulas we get ψ ↔ ¬¬ψ. From
this we can get [N2] by using HCL↔ and Theorem 2.5

Remark 3. In Chapter 11 of [Avron et al., 2018] a notion was introduced of
a negation associated with a given binary connective that has the RDP. It was
shown there that a logic possesses a binary connective → that has the RDP
together with a negation ¬ associated with it iff it is induced by some axiomatic
extension of the system HLL ¬→. The latter is the standard Hilbert-type system
(given in [Avron, 1988]) for the multiplicative fragment (without the multiplic-
ative constants) of linear logic ([Girard, 1987]). It is obtained from HCL ¬↔ by
deleting the axiom [Eq], and then changing ↔ in all axioms and rules to →.
By adding to HLL ¬→ the contraction axiom, we get the standard Hilbert-type
system for R ¬→, the intensional fragment of the relevance logic R.

3It seems that the RDP was first raised as being of interest to relevance logic in [Diaz,
1980].

4 A weaker result, that CL↔ is Post-complete in the sense that one cannot (consistently)
add any new axiom to it in its language, had already been shown by Prior in [Prior, 1962].

5I am indebted to an anonymous referee for this observation.
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Axioms:

[Id] ϕ↔ ϕ (Identity)

[Tr] (ϕ↔ ψ)↔
(
(ψ ↔ θ)↔ (ϕ↔ θ)

)
(Transitivity)

[Pe]
(
ϕ↔ (ψ ↔ θ)

)
↔
(
ψ ↔ (ϕ↔ θ)

)
(Permutation)

[Eq] (ϕ↔ (ϕ↔ ψ))↔ ψ (Equivalence)

[N1] (ϕ↔ ¬ψ)↔ (ψ ↔ ¬ϕ) (Contraposition)

[N2] ¬¬ϕ↔ ϕ (Double neg.)

Rule of inference:

[MP]↔
ϕ ϕ↔ ψ

ψ

Fig. 2. The proof system HCL ¬↔

Theorem 4. Let the logic L be induced by some axiomatic extension (i.e. ex-
tension by axiom schemas) of HCL ¬↔. Then L has the RDP for ↔.

Proof. Immediate from Theorem 1. �

Theorem 5. HCL ¬↔ is strongly sound for CL ¬↔. (I.e., if T `HCL¬↔ ϕ then by
interpreting↔ as the classical biconditional↔, and ¬ as the classical negation,
we get that every assignment that satisfies T also satisfies ϕ.)

Proof. Obviously, [MP]↔ is a valid rule of inference for the classical bicondi-
tional↔. It is also easy to check that every axiom ofHCL ¬↔ becomes a classical
tautology if ↔ is interpreted as the classical biconditional. Hence HCL ¬↔ is
strongly sound for the equivalence-negation fragment of classical logic. �

Corollary 1. Let ϕ be a formula in the language of CL ¬↔.

1. There is a formula ψ in the language of CL↔ such that:

• If the number of negations in ϕ is even then `CL¬↔
ϕ↔ ψ.

• If the number of negations in ϕ is odd then `CL¬↔
ϕ↔ ¬ψ.

2. ϕ is a classical tautology iff the number of negations in ϕ is even, and for
each atomic p the number of occurrences of p in ϕ is even too.6

6According to [Church, 1956], the second item of this Corollary has independently been
observed by McKinsey and Mihailescu. As far as I know, the first item was first proved in
[Mihailescu, 1937].
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Proof. Obviously, HCL ¬↔ has the replacement property. (This is true for
every axiomatic extension of HLL ¬↔.) It is also easy to show that θ1 ↔ ¬θ2
and ¬θ1 ↔ θ2 are both equivalent in HCL ¬↔ to ¬(θ1 ↔ θ2). Using these two
equivalences and axiom [N2], we can constructively find for ϕ a formula ψ in
the language of CL↔ such that `HCL¬↔ ϕ ↔ ψ or `HCL¬↔ ϕ ↔ ¬ψ according
to the parity of ϕ’s number of negations. Hence Theorem 5 implies item 1.

For the second item, note that if ψ is in the language of CL↔, then ¬ψ is
not a tautology, since we can refute it by assigning t to all atomic formulas.
Therefore the second part follows from the first, using Leśniewski’s famous
criterion for being a tautology in↔. (See e.g. Corollary 7.31.7 in [Humberstone,
2011].) �

Theorem 6. No Hilbert-type system which has [MP] for ↔ as its sole rule of
inference can be strongly sound and complete for CL ¬↔.

Proof. Suppose that such a system H exists. From Theorem 5 it follows that
we may assume that H is an axiomatic extension of HCL→. Hence Theorem 1
implies that H has the RDP. Therefore it follows from the strong soundness
and completeness of H that so does CL ¬↔, This contradicts Proposition 1. �

Corollary 2. LHCL¬↔ 6= CL ¬↔, i.e. HCL ¬↔ is not strongly complete for CL ¬↔.7

Next we present semantics for HCL ¬↔ for which this system is strongly
sound and complete.

Definition 8. Let L = {↔,¬}. CL{↔,id} is the two-valued logic which is ob-
tained by interpreting↔ as the classical biconditional↔, and ¬ as the identity
connective. MCL{↔,id} is the two-valued matrix which induces CL{↔,id}.

For the next proof, we need the following easy lemma, which is directly
proved in [Avron, 2015] (but also easily follows via an appeal to Lesniewski’s
criterion, mentioned at the end of the proof of Corollary 1).

Lemma 1.

1. `HCL↔ (ϕ↔ ψ)↔ (ψ ↔ ϕ)

2. `HCL↔ ϕ↔ (ψ ↔ (ϕ↔ ψ))

Theorem 7. LHCL¬↔
= CL ¬↔ ∩ CL{↔,id}. In other words: T `HCL¬↔ ϕ iff

T `CL¬↔
ϕ and also T `CL{↔,id} ϕ.

7This fact was first noticed in [Avron, 2020] (Corollary 14).
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Proof. The strong soundness of HCL ¬↔ for CL{↔,id} follows from Theorem 2.
This and Theorem 5 imply the strong soundness ofHCL ¬↔ forCL ¬↔∩CL{↔,id}.
To prove strong completeness, assume that T 6`HCL¬↔ θ. Extend T to a max-
imal theory T ∗ such that T ∗ 6`HCL¬↔ θ. Obviously, ϕ ∈ T ∗ iff T ∗ `HCL¬↔ ϕ,
and ϕ 6∈ T ∗ iff T ∗, ϕ `HCL¬↔ θ. Therefore the RDP implies that

(∗) ϕ 6∈ T ∗ iff ϕ↔ θ ∈ T ∗

Now define a valuation v as follows:

v(ϕ) =

{
t if ϕ ∈ T ∗

f if ϕ 6∈ T ∗

Obviously we have:

(**) v(ϕ) = t for every ϕ ∈ T ∗, while v(θ) = f .

Next we show that v respects the truth table of the classical biconditional.

• Suppose v(ϕ) = v(ψ) = t. Then ϕ ∈ T ∗ and ψ ∈ T ∗. Therefore it
follows from the second item of Lemma 1 that T ∗ `HCL¬↔ ϕ↔ ψ. Hence
ϕ↔ ψ ∈ T ∗, and so v(ϕ↔ ψ) = t.

• Suppose v(ϕ) = t and v(ψ) = f . Then ϕ ∈ T ∗, while ψ 6∈ T ∗. Because of
the presence of [MP]↔, these facts immediately imply that ϕ↔ ψ 6∈ T ∗,
and so v(ϕ↔ ψ) = f in this case.

• Suppose v(ϕ) = f and v(ψ) = t. By the previous item this implies
that ψ ↔ ϕ 6∈ T ∗. Therefore the first item of Lemma 1 implies that
ϕ↔ ψ 6∈ T ∗, and so v(ϕ↔ ψ) = f in this case too.

• Suppose v(ϕ) = v(ψ) = f . Then ϕ 6∈ T ∗ and ψ 6∈ T ∗. By (*) above, it
follows that ϕ↔ θ ∈ T ∗ and ψ ↔ θ ∈ T ∗. By the first item of Lemma 1,
the second fact implies that θ ↔ ψ ∈ T ∗. Using [Tr] this last fact and
the fact that ϕ ↔ θ ∈ T ∗ together imply that ϕ ↔ ψ ∈ T ∗, and so
v(ϕ↔ ψ) = t in this case.

To determine the behavior of v with respect to ¬ we have two cases to consider.

¬θ ∈ T ∗

• Suppose v(ϕ) = t. Then ϕ ∈ T ∗. By the second item of Lemma 1,
this implies in this case that ϕ ↔ ¬θ ∈ T ∗. It follows by [N1] that
θ ↔ ¬ϕ ∈ T ∗, and so ¬ϕ ↔ θ ∈ T ∗ by the first item of Lemma 1.
Hence (*) entails that ¬ϕ 6∈ T ∗, implying that v(¬ϕ) = f in this
case.
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• Suppose v(ϕ) = f . Then ϕ 6∈ T ∗. Hence (*) entails that ϕ ↔
θ ∈ T ∗. By [N1] and [N2], this implies that ¬θ ↔ ¬ϕ ∈ T ∗, and so
¬ϕ ∈ T ∗ (since we are assuming that ¬θ ∈ T ∗). Therefore v(¬ϕ) = t
in this case.

It follows that v is a legal valuation of the classical equivalence-negation
matrixMCL¬↔

. Hence T 6`CL¬↔
θ in this case.

¬θ 6∈ T ∗

• Suppose v(ϕ) = t. Then ϕ ∈ T ∗. Suppose that ¬ϕ 6∈ T ∗. Then by
(*), ¬ϕ ↔ θ ∈ T ∗, and so the first item of Lemma 1 implies that
θ ↔ ¬ϕ ∈ T ∗. Hence [N1] entails that ϕ↔ ¬θ ∈ T ∗. Since ϕ ∈ T ∗,
¬θ ∈ T ∗ too. A contradiction. It follows that ¬ϕ ∈ T ∗, and so
v(¬ϕ) = t.

• Suppose v(ϕ) = f . Then ϕ 6∈ T ∗, implying by (*) that ϕ↔ θ ∈ T ∗.
Hence the first item of Lemma 1 implies that θ ↔ ϕ ∈ T ∗. Using
[N1], [N2], and Lemma 1, we get from this that ¬ϕ ↔ ¬θ ∈ T ∗.
Since ¬θ 6∈ T ∗, this means that ¬ϕ 6∈ T ∗ too, and so v(¬ϕ) = f .

We have shown that v is a legal valuation of the classical equivalence-
identity matrixMCL{↔,id} . Hence T ∗ 6`CL{↔,id} θ in this case.

It follows that if T 6`HCL¬↔ θ then either T 6`CL¬↔
θ or T 6`CL{↔,id} θ. �

4. Proof-theoretical Characterizations of CL ¬↔

Theorem 8. T `CL¬↔
ϕ iff T ,¬ϕ `HCL¬↔ ϕ.

Proof. Suppose T `CL¬↔
ϕ. Then T ,¬ϕ `CL¬↔

ϕ. Obviously, T ,¬ϕ `CL{↔,id}
ϕ as well. Hence Theorem 7 implies that T ,¬ϕ `HCL¬↔ ϕ.

For the converse, let T ,¬ϕ `HCL¬↔ ϕ. Suppose that T 6`CL¬↔
ϕ. Then

there is a a valuation v in MCL¬↔
such that v(ψ) = t for every ψ ∈ T , while

v(ϕ) = f . The latter fact implies that v(¬ϕ) = t, and so v is a model inMCL¬↔
of T ∪ {¬ϕ} which is not a model inMCL¬↔

of ϕ. Since T ,¬ϕ `HCL¬↔ ϕ, this
contradicts Theorem 5. �

Theorem 9. HCL ¬↔ is weakly complete for CL ¬↔: `HCL¬↔ ϕ iff `CL¬↔
ϕ.

Proof. Theorem 5 implies the ‘only if’ part. For the converse, let `CL¬↔
ϕ. By

Theorem 8, it follows that ¬ϕ `HCL¬↔ ϕ. Hence Theorem 4 implies that either
`HCL¬↔ ¬ϕ ↔ ϕ, or `HCL¬↔ ϕ. The first option is impossible by Theorem 5,
since v(¬ϕ↔ ϕ) = f for every valuation v inMCL¬↔

. Hence `HCL¬↔ ϕ. �
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Remark 4. Theorem 9 easily follows also from Corollary 1 and Theorem 2.8

Theorem 10. Let HCL?¬↔ be obtained from HCL ¬↔ by adding to it the Ex
Falso rule ¬ϕ ϕ

ψ as a rule of inference. Then HCL?¬↔
is strongly sound and

complete for CL ¬↔.

Proof. That HCL?¬↔ is strongly sound for CL ¬↔ follows from Theorem 5, and
the strong soundness in classical logic of the special rule of HCL?¬↔.

To show strong completeness, let T `CL¬↔
ϕ. Then T ,¬ϕ `HCL¬↔ ϕ by

Theorem 8. By Theorem 4, either T `HCL¬↔ ¬ϕ ↔ ϕ, or T `HCL¬↔ ϕ. In the
second case we are done. Assume the first. Since `CL¬↔

¬(¬ϕ↔ ϕ), it follows
by Theorem 9 that T `HCL¬↔ ¬(¬ϕ↔ ϕ) as well. Hence an application of the
Ex Falso rule of HCL?¬↔ yields that T ? `CL¬↔

ϕ. �

Corollary 3.

1. If T `HCL?
¬↔
ϕ, then there is a proof of ϕ from T in HCL?¬↔ that includes

at most one application, made at the end of that proof, of its extra rule.

2. T `CL¬↔
ϕ iff either T `HCL¬↔ ϕ or T is inconsistent in HCL ¬↔.

Proof. The first part easily follows from the proof of Theorem 10. The second
one follows from that theorem together with the first part. �

Turning to a corresponding Gentzen-type System, we note that in [Avron,
Lev, 2005] an algorithm has been given for finding a cut-free sound and complete
Gentzen-type system for every logic which has a two-valued characteristic mat-
rix (or even non-deterministic matrix). By applying that algorithm to CL ¬↔,
we get the system GCL ¬↔ presented at Figure 3. In this presentation Γ and ∆
vary over finite sets of formulas.

Theorem 11.

1. GCL ¬↔ is strongly sound and complete for CL ¬↔.

2. The cut-elimination theorem obtains for GCL ¬↔: if `GCL¬↔ Γ⇒ ∆, then
Γ⇒ ∆ has a cut-free proof in GCL ¬↔.

Proof. This is a special case of Theorem 4.7 of [Avron, Lev, 2005] and its
proof. �

8Theorem 9 was essentially first proved in [Mihailescu, 1937]. (See also [Bennett, 1937].)
The system used there is easily seen to be equivalent to HCL¬↔.
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Axioms: ϕ⇒ ϕ

Rules: cut, weakening, and the following logical rules:

Γ, ϕ, ψ ⇒ ∆ Γ⇒ ∆, ϕ, ψ

Γ, ϕ↔ ψ ⇒ ∆

Γ, ψ ⇒ ∆, ϕ Γ, ϕ⇒ ∆, ψ

Γ⇒ ∆, ϕ↔ ψ

Γ⇒ ∆, ϕ

Γ,¬ϕ⇒ ∆

Γ, ϕ⇒ ∆

Γ⇒ ∆,¬ϕ

Fig. 3. GCL ¬↔

Remark 5. A model of a sequent Γ⇒ ∆ in a two-valued matrixM is usually
taken to be a valuation v inM such that v(ϕ) = f for some ϕ ∈ Γ, or v(ϕ) = t
for some ϕ ∈ ∆. Let S ∪ {s} be a set of sequents. Define: S `M s if every
model of S inM is also a model of s. The first item of Theorem 11 means that
S `CL¬↔

s iff S `GCL¬↔ s.

5. The Expressive Power of CL ¬↔

To make our treatment of CL ¬↔ complete, we include also a characterization
of the set of two-valued connectives that are definable in the language of CL ¬↔.
For this it would be convenient to use 1 and -1 as our truth-values.

Definition 9. Let H : {1,−1}n → {1,−1}, and let x1, . . . , xn be n variables.

• For 1 ≤ i ≤ n, xi is a dummy variable of H(x1, . . . , xn) if

H(x1, . . . , xi−1,−xi, xi+1, . . . , xn) = H(x1, . . . , xi−1, xi, xi+1, . . . , xn)

for every x1, x2, . . . , xn ∈ {−1, 1}.

• For 1 ≤ i ≤ n, xi is a flipping variable of H(x1, . . . , xn) if

H(x1, . . . , xi−1,−xi, xi+1, . . . , xn) = −H(x1, . . . , xi−1, xi, xi+1, . . . , xn)

for every x1, x2, . . . , xn ∈ {−1, 1}.

Theorem 12. A function H : {1,−1}n → {1,−1} is definable by a formula
of CL ¬↔ iff for every 1 ≤ i ≤ n, xi is either a dummy variable or a flipping
variable of H(x1, . . . , xn).9

9This theorem can most probably be extracted from Post’s discussion in [Post, 1941].



Implication, Equivalence, and Negation 41

Proof. That any function which is definable by a formula ϕ of CL ¬↔ satisfies
the condition is easily proved by induction on the structure of ϕ.

For the converse, suppose H : {1,−1}n → {1,−1} satisfies the condition.
Let ψ = ψ1 ↔ · · · ↔ ψn, where ψi = pi ↔ pi if xi is a dummy variable of
H(x1, . . . , xn), ψi = pi if xi is a flipping variable of H(x1, . . . , xn). It is not
difficult to see that ψ defines H in case H(1, 1, . . . , 1) = 1, while ¬ψ defines H
in case H(1, 1, . . . , 1) = −1. �

Corollary 4. The classical conjunction, disjunction, and (material) implication
are not definable by a formula of CL ¬↔.10

6. Extensions of LHCL¬↔
Theorem 13. Let HCLid¬↔ be obtained from HCL ¬↔ by adding to it ϕ ↔ ¬ϕ
as an axiom. Then HCLid¬↔ is strongly sound and complete for CL{↔,id}.

Proof. The proof is almost identical to that of Theorem 7. We only need to
observe that in the presence of the additional axiom, the case in which ¬θ ∈ T ∗
is impossible. Hence we remain with the case in which T ∗ 6`CL{↔,id} θ. �

Theorem 14. CL ¬↔ and CL{↔,id} are the sole non-trivial proper extensions
of LHCL¬↔ in its language.

Proof. Let L be a logic in the language of HCL ¬↔ which is a proper extension
of LHCL¬↔

. Then there is a theory T and a formula θ such that T `L θ,
but T 6`HCL¬↔ θ. By Theorem 7 there is an assignment v in either MCL¬↔

or
MCL{↔,id} such that v(ϕ) = t for every ϕ ∈ T , while v(θ) = f . Pick some
atomic formula p, and define a substitution S by:

S(q) =

{
p↔ p if v(q) = t

p if v(q) = f

Let T ? = {S(ϕ) | ϕ ∈ T }, θ? = S(θ). Since L is a logic, T ? `L θ?. On the
other hand, the obvious fact that v(S(ϕ)) = v(ϕ) for every formula ϕ implies
that v |= T ?, while v 6|= θ?. It follows by Theorem 7 that T ? 6`HCL¬↔ θ?.

Now from Theorem 9 it follows (and it can also easily be shown directly) that
every formula which has p as its sole atomic subformula is equivalent in HCL ¬↔
to one of the formulas in {p,¬p, p↔ p,¬(p↔ p)}. Hence T ? ∪{θ?} is a subset
of this set. Moreover, the fact that `HCL¬↔ p↔ p implies that θ? 6= p↔ p, and

10This result has been shown directly in [Massey, 1977]. It is also proved there that there is
no single truth-function that generates precisely the functions definable by formulas of CL¬↔.
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that we may assume that p ↔ p 6∈ T ?. Hence T ? ∪ {θ?} ⊆ {p,¬p,¬(p ↔ p)}.
However, since `HCL¬↔ p ↔ ¬p ↔ ¬(p ↔ p) by Theorem 9, any element of
{p,¬p,¬(p ↔ p)} follows in HCL ¬↔ from the other two. Therefore we remain
with the following six cases.

p `L ¬(p↔ p): Substituting p↔ p for p, we get that `L ¬((p↔ p)↔ (p↔ p).
But by Theorem 9, ¬((p ↔ p) ↔ (p ↔ p) is equivalent in HCL ¬↔ to
¬p↔ p, and so `L ¬p↔ p. Hence L extends CL{↔,id}.

p `L ¬p: Substituting p↔ p for p, we again get that CL{↔,id} ⊆ L.

¬p `L ¬(p↔ p): Substituting ¬(p↔ p) for p, we again get that CL{↔,id} ⊆ L.

¬p `L p: Substituting ¬(p↔ p) for p, we again get that CL{↔,id} ⊆ L.

¬(p↔ p) `L p: Since `HCL¬↔ q ↔ ¬q ↔ (¬(p ↔ p)) by Theorem 9, we get
that q,¬q `L p. Hence L extends CL ¬↔ in this case (by Theorem 10).

¬(p↔ p) `L ¬p: Here we get by a similar argument that q,¬q `L ¬p. Substi-
tuting ¬p for p, it follows (using [N2]) that q,¬q `L p. Hence L extends
CL ¬↔ in this case too.

We have shown that L extends either CL ¬↔ or CL{↔,id}. However, since these
are two-valued logics, neither of them has a proper non-trivial extension, by
a general theorem in [Rautenberg, 1981]. (These two cases can also be shown
directly using an analysis which is very similar to — though shorter and easier
than — that given above for LHCL¬↔ .) Hence L is necessarily one of them. �

Corollary 5. HCLid¬↔ is the sole non-trivial proper axiomatic extension of
HCL ¬↔.11

Remark 6. Recall that theorems 2 and 3 imply Prior’s result that HCL↔ is
Post-complete (footnote 4). Corollary 5 means that in contrast, HCL ¬↔ is not
Post-complete.12 However, the difference from HCL↔ is small: HCL ¬↔ has
just one proper axiomatic extension.

7. Is LHCL¬↔
a Paraconsistent Logic?

In Chapter 2 of [Avron et al., 2018] a propositional L for a language with a
unary connective ¬ is defined to be ¬-paraconsistent if p,¬p 6`L q whenever p
and q are distinct variables, and ¬ is a negation of L. LHCL¬↔ certainly satisfies

11This fact was first proved in [Avron, 2020] (Theorem 16).
12That CL¬↔ has no Post-complete axiomatization has already been noted in [Prior, 1962].
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the first condition.13 Hence the question whether it is ¬-paraconsistent depends
on whether its connective ¬ can be viewed as a negation. This, in turn, depends
of course on the definition of negation that one adopts.

In the literature one can find many different definitions of “negation” in L.
Some make very weak demands. The minimal ones might be that if p is atomic
then p 6`L ¬p and ¬p 6`L p. A more extensive set of negative conditions of this
sort (divided into two groups, called ‘verificatio’ and ‘falsificatio’) is given in
[Marcos, 2005]. It is also possible to add some positive conditions, like that
p `L ¬¬p and ¬¬p `L p. All these conditions are satisfied in LHCL¬↔

. So
according to weak definitions of this sort, LHCL¬↔ is indeed a ¬-paraconsistent
logic.

In [Avron et al., 2018], a more restrictive definition of negation has been
used. ¬ is called there a negation for L if it is possible to define in the language
of L a binary connective � which is either a disjunction for L, or a conjunc-
tion for L, or a semi-implication for L, such that the {¬, �}-fragment of L
is contained in the corresponding fragment of classical logic. In order to see
that no such connective � is available in LHCL¬↔

, we do not need to repeat
the definitions given in Chapter 1 of [Avron et al., 2018] of these notions. It
suffices to recall the following facts about them. (They all easily follow from
the definitions.)

• If a connective ∧ is a conjunction for a logic L, then for every ϕ and
ψ: ϕ ∧ ψ `L ϕ, ϕ ∧ ψ `L ψ, and ϕ `L ϕ ∧ ϕ. From Theorem 7 it easily
follows that such a connective should have inMCL¬↔

the truth-table of the
classical conjunction. Hence Corollary 4 implies that no such connective
is available in LHCL¬↔

.

• If a connective ∨ is a disjunction for a logic L, then for every ϕ and
ψ: ϕ `L ϕ ∨ ψ, ψ `L ϕ ∨ ψ, and ϕ ∨ ϕ `L ϕ. From Theorem 7 it easily
follows that such a connective should have inMCL¬↔

the truth-table of the
classical disjunction. Hence Corollary 4 implies that no such connective
is available in LHCL¬↔

.

• If a connective ⊃ is a semi-implication for a logic L, then it has in L
the RDP. Suppose now that ⊃ is such a connective in LHCL¬↔

. Then
`HCL¬↔ p ⊃ p for every atomic p. Hence `HCL¬↔ (p ⊃ q) ⊃ (p ⊃ q)

(by structurality). Therefore two applications of the RDP for ⊃ yield
p, p ⊃ q `HCL¬↔ q. By two other applications of the RDP, this time for↔,

13In fact, LHCL¬↔
satisfies the stronger condition p,¬p 6`L ¬q. So if we accept its con-

nective ¬ as a negation, then according to [Avron et al., 2018] it would even be strongly
¬-paraconsistent.
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we get that `HCL¬↔ (p ⊃ q)↔ (p↔ q). It follows that ϕ ⊃ ψ and ϕ↔ ψ

are equivalent in LHCL¬↔
. Therefore `HCL¬↔ (p ⊃ (p ⊃ q)) ⊃ q. Hence

the {¬,⊃}-fragment of LHCL¬↔
is not contained in the corresponding

fragment of classical logic.

It follows from the above considerations that LHCL¬↔
is not a paraconsistent

logic according to the definition used in [Avron et al., 2018].
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1. Introduction

Negation in natural language involves complexities that are not at first sight
evident. Horn [Horn, 2001, xiii] notes that, by contrast with ‘the simplicity of
the one-place connective of propositional logic (...), the form and function of
negative statements in ordinary language are far from simple’. Quantification is
one reason for the need to distinguish contrary from contradictory opposition.
All A is B and No A is B are contraries, since they cannot be both true, but
not contradictories, since they can be both false. The contradictory of All A is
B is Some A is not B, which is entailed by No A is B, while the contradictory of

© Gomes G.

http://dx.doi.org/10.21146/2074-1472-2021-27-1-46-63
mailto:ggomes@uenf.br
http://dx.doi.org/10.21146/2074-1472-2021-27-1-46-63
http://dx.doi.org/10.21146/2074-1472-2021-27-1-46-63


Negation of Conditionals in Natural Language and Thought 47

the latter is Some A is B, which is entailed by All A is B. This set of relations
is summarized in the well-known square of opposition. Another complication
involves the Aristotelian distinction between term negation (A is not-B) and
predicate denial (A is not B), and the distinction between these and the external
negation of the Stoics (Not: A is B), to which the modern Fregean negation
can be traced [Horn, 2001, pp. 14–30].

Horn & Wansing [Horn and Wansing, 2020] note that we do not usually
find negation in natural languages in the place propositional logic would lead
us to look, that is, in “sentence- or clause- peripheral position, as an external
one-place connective (. . .)”. However, external negation can and does occur
in natural languages by means of the phrases it’s not the case that, it isn’t
true that, it’s false that or similar ones. Horn [Horn, 2001, pp. 364–365] views
sentences using such phrases as cases of metalinguistic negation, and notes that
they do not guarantee a presupposition-free reading of the negated sentence.
However, this does not exclude that they are a form of external negation, nor
does it preclude their use in our discussion of the negation of conditionals.

Thus, we can identify a form of external negation which consists in a complex
sentence in which the main clause denies the truth of the proposition expressed
in the subordinate clause. For example:

(1) It’s not true that Phil was a good student.

Sentences of this type are usually employed to deny something that was said
by someone else, or something that might be thought by someone else. In this
sense, they are metalinguistic. Most frequently, negation of a sentence is dis-
played as internal negation:

(2) Phil wasn’t a good student.

Although (1) and (2) would be used in different situations, to express different
speaker intentions, as far as truth/falsity conditions are concerned, it can be
accepted that they usually express propositions having the same truth/falsity
conditions: if Phil was not a good student, the proposition they both usually
express is true; if Phil was a good student, this proposition is false.

In the case of complex sentences with a subordinate clause, negation is
usually obtained by adding the negative particle to the verb of the main clause.
For example:

(3) A:When he lived with his father, Phil was a good student.
B: No. When he lived with his father, Phil wasn’t a good student.
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As far as truth/falsity conditions are concerned, (3)B is usually equiva-
lent to:

(4) No. It isn’t true that, when he lived with his father, Phil was a good
student.

The subordinate clause in examples (3) and (4) is an adverbial clause
(of time). The antecedent of a conditional sentence is also an adverbial clause.
However, conditional clauses are a peculiar type of adverbial clause. The pro-
position expressed by the main clause of a sentence that has an adverbial clause
of time, for example, is usually independently asserted by the utterance of the
sentence. If we suppress the adverbial in (3) A, for example, we are left with
Phil was a good student. We no longer know when A asserts this to have been
the case, but we still have the information that Phil was a good student, at some
time in the past, according to A. Not so with conditional sentences. Consider
for example:

(5) If you study, you’ll pass.

The person who utters this sentence is not thereby asserting that you will
pass. If we suppress the adverbial in (5), we are left with the sentence You’ll
pass, and the proposition usually expressed by this sentence was not independ-
ently asserted by the utterance of the original sentence. This may be the reason
why external and internal negations of a conditional may have different mean-
ings:

(6) It’s not true that if you study, you’ll pass.

(7) If you study, you won’t pass.

One way to explain this difference is to accept that external negation in-
volves a denial of the conditional relation between the two clauses, which is
not equivalent to a conditional denial of the proposition expressed by the main
clause, as given by internal negation. What is being denied in (6) is a depend-
able relation between studying and passing. (7), by contrast, either suggests a
paradoxical causal relation between studying and not passing, or is intended to
express a concessive conditional (Even if you study, you still won’t pass). With
regard to truth/falsity conditions, if in reality you study and pass, (7) will have
been shown to be false, but not (6). According to (6), you might have studied
and not passed, but the possibility of studying and passing was not excluded.

Some philosophers have argued that the natural way to deny a conditional
is to deny its consequent. According to this view, external negation of a con-
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ditional is exceptional, and when it occurs, it has the same meaning as the con-
ditional presenting the negation of the original consequent. Thus, the negation
of a conditional is in fact a conditional negation of its consequent. I argue in
this paper that this is wrong. In section 6, I give a long list of attested examples
of external negation in three languages, and in many of these there is a clear
difference in meaning, including truth/falsity conditions, between the external
negation of a conditional and the conditional with a negated consequent.

It is important to make clear that this is not a paper about the semantics of
conditionals, but rather about their pragmatics, and its interest for logic. There
is no consensus among the authors on how the distinction between semantics
and pragmatics should be drawn. Here I will treat semantics as the study
of the coded meaning of words and sentences, that is, of that part of their
meaning that pertains to the language spoken by a certain population at a
certain extended period of time and is relatively independent of the context of
utterance and of the intentions of the speaker. By contrast, pragmatics here
refers to the use of language by a speaker, or the understanding of language by
a listener, in a certain context. It studies the meaning intended by the speaker
and understood by the listener, which depends on the particular contexts in
which words and sentences are used.

Many philosophers of language believe that the truth conditions of sentences
are entirely provided by semantics. Contrary to this prevalent conception, I ac-
cept that pragmatics is sometimes necessary to establish the truth conditions of
a sentence (for a defense of truth-conditional pragmatics, see [Recanati, 2010]).
In particular, the point of view adopted in this article is that semantics must
be supplemented by pragmatics in order to be able to explain how conditionals
are used in human reasoning. Accordingly, in this paper I repeatedly refer to
the meaning intended by the speaker when s/he uses a conditional, rather than
to the meaning that a conditional sentence may have in itself.

In the following, ‘negation of a conditional’ is understood as the external
negation described above applied to a conditional sentence. By contrast, a con-
ditional ‘with opposite consequent’ is one presenting internal negation of an
originally affirmative consequent, or an affirmative consequent instead of an
originally negative one.

2. A conditional entails the negation of a conditional
with the same antecedent and opposite consequent

A distinction between two types of conditionals will be essential in the
following discussion. This is the distinction between concessive and implicative
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conditionals.1 In a recent paper, I have argued that this distinction is best
viewed as a pragmatic distinction, not as a semantic one [Gomes, 2020]. There
are semantic elements that contribute to a conditional receiving either a con-
cessive or an implicative interpretation; for example, the presence of then for the
latter, and of even if for the former. These semantic elements do not guarantee
the respective interpretations, however, since there are pragmatically concessive
conditionals without even if (some speakers may even admit in them the pres-
ence of then), and pragmatically implicative conditionals with even if [Gomes,
2020].

From a pragmatic point of view, implicative conditionals are those in which
the truth of the antecedent appears as a sufficient condition for the truth of the
consequent, in a given context [Gomes, 2009]. They are the conditionals that
are most interesting from the point of view of logic, since they are the ones
that are used in making inferences. By contrast, concessive conditionals, from
the pragmatical point of view, are those in which the consequent is asserted as
true (counterexamples in the literature are pragmatically implicative, though
they have even if). In them, the antecedent usually expresses a condition that
is somehow opposed to what the consequent expresses. While an implicative
conditional conveys that the truth of its antecedent is a sufficient condition for
the truth of the consequent, a concessive conditional conveys that the truth of
its antecedent is an insufficient condition for the falsity of its consequent.

In so-called classic logic, the negation of a conditional entails the truth of
its antecedent and the falsity of its consequent, a result that does not agree
with the use of conditionals in natural language. This is a reason for those who
think that the material conditional expresses the truth conditions of natural
language conditionals to say that the negation of a conditional in natural lan-
guage really means a conditional with opposite consequent. This is empirically
false, however, or so I argue. Another interesting fact about classic logic is that
it does not support Boethius’ theses:

(A→ B)→ ∼(A→ ∼B) and (A→ ∼B)→ ∼(A→ B)

Intuitively, however, these entailments are very appealing and seem to be
supported in inferential reasoning and in natural language use of conditionals.
Let us begin our examination of the relation between the a conditional and the
negation of a conditional with the same antecedent and opposite consequent by
the case in which the former conditional is concessive and the latter implicative.
For example:

1Implicative conditionals have been called standard or prototypical by [Ducrot, 1972], genu-
ine by J. Barker [Barker, 1973], strong by [Davis, 1983], robust by [Lycan, 2001] and implicative
by [Declerck and Reed, 2001].
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(8) Even if she goes, I won’t go.

(9) It’s not the case that if she goes, then I’ll go.

In human reasoning and discourse, it seems natural to agree that (8) en-
tails (9). The fact that a concessive conditional entails the negation of an im-
plicative conditional with opposite consequent was noted by [Chisholm, 1946,
p. 301] and [Goodman, 1947, p. 114]. Later developments in the theory of
conditionals, however, tended to obscure the distinction between implicative
and concessive conditionals, since it is difficult to attest by a purely semantic
approach, and this observation by Chisholm and Goodman tended to be for-
gotten.

However, it is also to be noted that, conversely, implicative conditionals
entail the negation of a concessive one with opposite consequent, as shown in
the following examples.

(10) If he comes, then, as a consequence, I’ll leave. Therefore: It is not the
case that even if he comes, I won’t leave.

(11) If butter is heated to 150 ◦ F, then it melts. Therefore: It is not the case
that even if butter is heated to 150 ◦ F, it still doesn’t melt.

(12) If she had been invited, then she’d be here. Therefore: It is not the case
that even if she had been invited, she wouldn’t be here.

This means that a concessive conditional may be denied by an implicative
one with opposite consequent, and conversely, an implicative conditional may
be denied by a concessive one with opposite consequent.

3. The contradictory of a conditional

The fact noted in the previous section raises the question of what the con-
tradictory of a conditional is. A sure way to form the contradictory of a condi-
tional, of course, is to use ‘It is not the case that’ before it:

(13) If it rains, the match will be cancelled.

(14) It is not the case that if it rains, the match will be cancelled.

According to Stalnaker’s formal system, “the denial of a conditional is equi-
valent to a conditional with the same antecedent and opposite consequent
(provided that the antecedent is not impossible)” [Stalnaker, 1968, pp. 48–49].
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This equivalence involves the principle of conditional excluded middle, according
to which either If A,B or If A,∼B must be true. So (14) would be equivalent to:

(15) If it rains, the match will not be cancelled.

According to this equivalence, (13) and (15) are contradictories. This ex-
ample seems to confirm the proposed equivalence. It might be objected, how-
ever, that someone who asserts (14) may not have (15) in mind, but rather the
following:

(16) If it rains, the match may be cancelled (if it rains heavily), but it may also
not be cancelled (if it rains lightly).

In this case, (13) and (15) would be neither true nor false, because the ex-
pression it rains, in both of them, is not sufficiently precise for the case being
considered. [Stalnaker, 1981] argues that conditional excluded middle is a prin-
ciple of the abstract semantics of conditionals that may fail to apply to natural
language sentences due to semantic indeterminacy. Some sentences should thus
be considered as neither true nor false. However, there are examples for which
Stalnaker’s equivalence fails and do not seem to involve any indeterminacy.

(17) A:If Bill goes to the party, Mary will go.
B:No. If Bill goes to the party, Mary won’t go.

From a pragmatical point of view, B may have three different reasons for
asserting the conditional present in his answer: (i) it may be intended as a
concessive conditional, equivalent to: Even if Bill goes to the party, Mary still
won’t go; (ii) it may be asserted because B thinks that if Bill goes to the party,
it is because Mary will not go (since he will only go if she does not); and (iii) it
may be intended as equivalent to: If Bill goes to the party, then as a consequence
Mary won’t go (e.g. because she does not want to meet him).2

Now, suppose that in fact Mary will go to the party if she finishes her work
in time, regardless of Bill’s going or not, and that Bill will go to the party
if he gets better from his cold, regardless of Mary’s going or not. In these
circumstances, A’s conditional is false since it is possible that Bill goes to the
party and Mary does not. Consequently, its external negation is true:

(18) It is not the case that if Bill goes to the party, Mary will go.

2This means that (17) B will have different speaker meanings according to these three
possibilities. The same sentence, with arguably the same semantic meaning, would be used
in three different contexts with different speaker meanings. This difference is not relevant,
however, to the argument made here, and is mentioned only to be sure that all possibilities
of interpretation have been covered.
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However, in the same circumstances, B’s conditional is also false, whether
it is asserted for any of the three reasons mentioned above, because Bill and
Mary may very well both go to the party.

Now, is there any indeterminacy in either conditional that might justify
their being considered as neither true nor false? In its natural interpretation,
A’s conditional establishes a relation between Bill’s going to the party and
Mary’s going to the party. B’s conditional may be interpreted as establishing
the lack of such a relation (if interpreted as a concessive conditional) or as
establishing a relation between Bill’s going to the party and Mary’s not going
to the party. Saying that someone will go or not to a party does not involve any
vagueness (at least not any that is relevant to the evaluation of the conditional).
It will definitely prove true or false when the party occurs. As to the relation in
question, different theories of conditionals will explain it differently. However,
it is difficult to see what indeterminacy might be present in it that would justify
these conditionals being considered as neither true nor false.

Of course, assuming Stalnaker’s theory, one can always say that A’s and B’s
conditionals in (17) do not establish in a determinate way the world in which
Bill goes to the party that is most similar to ours, and are therefore neither
true nor false. However, the argument is question-begging. It presupposes the
theory that we want to put to test. Moreover, it contradicts the intuition that
each of these sentences must be either true or false.

In order to make this point clearer, let’s compare (13)–(15) with (17)–(18).
There is a relevant vagueness in If it rains which accounts for the indeterminacy
of (13) and (15) in truth value. If we precisify this antecedent in a way suitable
for the context considered, e.g. with heavily or lightly, the indeterminacy van-
ishes. According to what was supposed in (16), if it rains heavily, the match
will be cancelled, while if it rains lightly, it will not.

Regarding (17) (If Bill goes to the party, Mary will/won’t go), by contrast,
there is no available precisification of its antecedent that would render either
conditional true in the context considered. If in reality Mary will go to the
party if she finishes her work in time, regardless of Bill’s going or not, there is
no relevant vagueness in the conditional clause If Bill goes to the party.

We conclude that, pragmatically, the contradictory of a conditional is not
a conditional with same antecedent and opposite consequent. This means that
with regard to their use in reasoning and discourse, two conditionals with the
same antecedent and opposite consequents are contraries, because they cannot
be both true, but may be both false. A more complex form using It’s not the
case that or It’s not true that is necessary for making the contradictory of a
conditional.
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4. A concessive conditional denies an implicative conditional
with the same antecedent and opposite consequent
and vice versa

Going back to the rain/match example, it is certain that (15) (If it rains,
the match will not be cancelled) can also be used to deny (13) (If it rains, the
match will be cancelled), because – in accordance with Boethius’ thesis – it
entails (14) (It is not the case that if it rains, the match will be cancelled). It
was probably on the basis of such uses that Stalnaker proposed the previously
mentioned equivalence, failing to acknowledge the difference between contrary
and contradictory denials involved here.

However, it must be noted that, in their most natural pragmatic interpret-
ation, (13) suggests a context in which it is used as an implicative conditional,
while (15), in the same context, would be used as a concessive conditional,
meaning the same as:

(19) Even if it rains, the match will not be cancelled.

However, both could have a different pragmatic meaning, in a different
context. Suppose that the president of the club has asked the players to paint
the exterior walls of the club and the best time to do this is the time the match
is scheduled to be played. So the match will probably be cancelled. Then one
of the players, who is eager to play, utters (15) (If it rains, the match will not
be cancelled). Since painting the exterior walls would not be possible under the
rain, he reasons, the match will not be cancelled if it rains. In this context,
(15) is not pragmatically concessive, but implicative. This is shown by the fact
that it would accept a paraphrase with then, as a consequence:

(20) If it rains [oh, how nice!], then, as a consequence, the match will not be
cancelled [since we won’t be able to paint the exterior walls of the club].

What conditional could be used to negate this sentence, in this context?
Suppose a second player replies to the one who uttered (13) or (20):

(21) No, you’re wrong. If it rains, the match will be cancelled. [Because the
interior walls of the club also need painting, and the rain will not prevent
painting them.]

We see that here it is (13) (If it rains, the match will be cancelled) that is
used to deny (15) (If it rains, the match will not be cancelled), and not vice
versa. The painting vs. playing context, however, imposes an interpretation
to (13) which is different from the usual one. Here, the conditional does not
accept a paraphrase with then, as a consequence. By contrast, it means the
same as:
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(22) Even if it rains, the match will still be cancelled.

We conclude that, when a conditional is used to deny another with the same
antecedent and opposite consequent, if the latter is implicative, the former will
usually be concessive. Moreover, when it is a concessive conditional that is
denied by another with the same antecedent and opposite consequent, the latter
will usually be implicative, as shown in the following example:

(23) A: If it rains, the match won’t be cancelled.
B: No. If it rains, the match will be cancelled.

In their most probable interpretation, (23)A is pragmatically a concessive
conditional (equivalent to a paraphrase with Even if) and (23)B is in this case an
implicative conditional (equivalent to a paraphrase with then as a consequence).

There are also cases, however, in which an implicative conditional If A,B
may be denied by a conditional If A,∼B that is also interpreted as implicative,
but one needs additional reason for the latter interpretation. For example:

(24) A: If Bob comes, Linda will come—because she loves him.
B: No, if Bob comes, then Linda WON’T come—because he has rejected
her.

Here, speaker B does not mean that Bob’s coming will be an insufficient
reason for Linda to come and [therefore] she will not come, as B would if s/he
had used a concessive conditional. B is suggesting instead that Bob’s coming, if
it occurs, will be a sufficient reason for Linda NOT to come, that is, to refrain
from coming (for the reason mentioned, that he has rejected her), even if she
might have a different reason to do so. Although usual, it is not necessary,
therefore, that the two conditionals with the same antecedent and opposite
consequents that deny each other are one implicative and other concessive, from
a pragmatic point of view. They may, in special cases, be both implicative, or
both concessive.

5. The negation of a conditional does not entail a conditional
with the same antecedent and opposite consequent

Some logical systems also accept the converses of Boethius’ theses:

∼(A→ B)→ (A→ ∼B) and ∼(A→ ∼B)→ (A→ B)

These are valid in classical logic, in Stalnaker’s conditional logic (as dis-
cussed above), in Wansing’s C system and the first of them is valid in intu-
itionist logic [Wansing, 2005]. However, I argue here that the use of conditionals
in natural discourse and reasoning does not support the converses of Boethius’s
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theses. Statements with the phrase It’s not true that preceding an implicative
conditional do not entail the same conditional with an opposite consequent.

It must be noted, however, that Wansing’s connexive logic C uses a strong
type of negation that does not express untruth, but rather definite falsity. It
is the De Morgan negation from the four-valued first-degree entailment logic
(FDE), in a language with implication. Four truth values are admitted: true,
false, neither true nor false, and both true and false. Therefore, the falsity
conditions in the semantics of C are not conditions of when a formula is not
true, but conditions that specify when a formula is definitely false. Thus,
negation in C is neither suitable nor has it been intended to formalize an
external natural language negation expressed by It’s not true that or It’s not
the case that. It must also be noted that, although it validates the converses of
Boethius’s theses, C does not validate conditional excluded middle.3

It must be recognized that there are many cases in which If A, not B seems
equivalent to the external negation of If A,B. The following are two attested
examples of such cases:

(25) It’s not true that if your employer isn’t paying you, you’re therefore un-
employed. (Paraphrasable as: If your employer isn’t paying you, you’re
not therefore unemployed.)

(26) If God does not exist, then it’s not the case that if I pray, my prayers will
be answered. (Paraphrasable as: If God does not exist, then if I pray, my
prayers will not be answered.)

It should also be noted, however, that the conditional with the same ante-
cedent and opposite consequent that seems to be entailed by the negation of
an implicative conditional is usually interpreted as a concessive conditional. In
(25) and (26), for example, the paraphrases given are in turn paraphrasable as:

(27) Even if your employer isn’t paying you, you’re not therefore unemployed.)

(28) If God does not exist, then even if I pray, my prayers will not be answered.)

However, (6), (9), (18) are examples in which the negation of an conditional
cannot be paraphrased by a conditional with opposite consequent. Here are
other examples:

(29) It is not the case that if Beth and Nick both have blood type AB, their
child will not have blood type A.

(30) If Beth and Nick both have blood type AB, their child will have blood
type A.

3I am grateful to Heinrich Wansing for these observations.
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(31) Even if Beth and Nick both have blood type AB, their child will have blood
type A.

Example (29) does not entail either (30) or (31), because (29) is true (since
it is possible for the child of such a couple to have blood type A), but (30) and
(31) are certainly false (since it is also possible for such a child to have blood
types B or AB).

(32) It’s false that if you use an underarm deodorant you’ll get breast cancer.

Agreeing with this sentence certainly does not entail believing that under-
arm deodorant use is an effective means to avoid the development of breast
cancer:

(33) If you use an underarm deodorant you won’t get breast cancer.

Nor does it entail believing the corresponding concessive conditional to be
true:

(34) Even if you use an underarm deodorant, you won’t get breast cancer.

The latter conveys that you will not get breast cancer, while (32) is a more
cautious statement that does not implicate this conclusion.

6. Negation of a conditional in natural language

Although David Lewis (unlike Stalnaker) recognizes that conditionals with
opposite consequents may be both false (see section 7), he also failed to properly
evaluate the use of negation of conditionals in natural language, as shown in
the following quotation, where he discusses a settlement of the problem of ties
regarding the similarity of worlds (one in which both A2→F and A2→∼F are
considered false):

This reasonable settlement, however, does not sound so good in
words. A2→F and A2→∼F are both false, so we want to as-
sert their negations. But negate their English readings in any
straightforward and natural way, and we do not get ∼(A2→F ) and
∼(A2→∼F ) as desired. Rather negation moves in and attaches
only to the consequent, and we get sentences that seem to mean
A2→∼F and A2→∼∼F (...) ([Lewis, 1973, p. 61])

It is true that in many contexts If A,∼B seems a more straightforward and
natural way of denying If A,B. This is not to say, however, that the more
elaborate form ∼(if A,B) is not available and widely used in natural language
(English or other). A search in the Internet provides one with lots of examples.
Here is a sample of attested examples in three languages:
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It is not true that if some is good then more is better.
Hence it is not true that if K is such a composant of M every point of M is a
limit point of K.
It is not true that if you dream about someone they are thinking of you. It’s
not true that if I owned all of those things, that would make me happy.
It is not true that if a person talks about suicide, they will not kill themselves.
It is not true that if you touch a baby bird the parents will reject it.
It’s not true that if you go to “any tiny village in China”, they have an internet
café.
It’s not true that, if I’m rich, I’m happy.
It’s not true that if a technology has benefits, it will automatically get accepted
by the public.
It’s not true that if you’re unhappy, so are your children.
It isn’t true that if we can’t think of something right away then we don’t know it.
It isn’t true that if you liked the Don Williams album, then you’ll buy the Vern
Gosdin album.
I definitely know it isn’t true that if you are having periods your estrogen is
“fine”.
It isn’t true that if someone looking at you thinks you’re beautiful, then you
are.
However, it’s not the case that if your camera does not have one or other of
these modes then it cannot do that sort of photography.
It’s not the case that if one candidate wins all three then he or she should be
the nominee.
It’s not the case that if we just feel bad enough about ourselves we will be
motivated to change.
It’s not the case that if you make it through the first 10 years, your marriage is
divorce-proof.
It’s not the case that if you’re eligible you’ll get the money.
It is not the case that if we don’t immediately solve the Futenma issue we can’t
deepen relations.
It is not the case that if one has faith then one’s reason is canceled out.
It is not the case that if the US isn’t powerful enough, then China, Russia, or
some caliphate will be.
It’s not true that wisdom teeth crowd your teeth if they grow in impacted. It’s
not true that wasps don’t sting you if you keep still.
In addition, it’s not true that all intruders will flee if confronted.
It’s not true that you will suffer if you come out with your ideas in public. It’s
not true that you gain weight if you’re on birth control.
It’s false that if others change, we will also change.
It’s false that if your gutters are falling off, you must replace them.
It’s false that if we keep running large deficits then we get increases to our
debt-to-GDP ratio (. . . ).
Ce n’est pas vrai que si dans l’année un homme marié n’a pas régularisé il ne
fera jamais.
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Ce n’est pas vrai que si le sexe va bien, tout va bien entre 2 personnes.
Ce n’est pas vrai que si les ordinateurs fonctionnent c’est grâce à notre ma1̂trise
de la physique quantique !
Ce n’est pas vrai que si le citoyen qui se fait arrêter n’est pas armé le policier
ne devrait pas se servir de son arme.
Ce n’est pas vrai que si un enfant n’a pas suivit [sic] un programme éducatif
avant l’école il aura des difficultés d’apprentissage.
C’est faux que si l’on fait un vœu, il se réalise.
[C]’est faux que si on ne paye pas la pension[,] il y a abandon.
(. . . ) il est faux que si un sujet croit que a est F, alors il existe quelque chose a,
à propos duquel le sujet croit qu’il est F.
No es verdad que, si se promueve el desarrollo económico, después se obtendrá
la dictadura.
No es verdad que si un triángulo tiene tres ángulos entonces un cuadrado tiene
cuatro ángulos.
No es verdad que si usas aceite sintético una vez tienes que seguir poniéndole
para siempre.
No es verdad que si no eres gaditano no te respeten en el carnaval.
Por otro lado no es verdad que si dedicaran más dinero a mejorar sus productos
no tendr1́an que anunciarlos.
No es verdad que “si estudias aprobas” [sic].
No es verdad que si el niño balbucea o emite sonidos, no tiene problemas en el
o1́do.
[E]s falso que si cocemos una seta con una cuchara de plata y ésta ennegrece, se
trata de una seta tóxica, y si no, es comestible.
Es falso que si te arrancas una cana, saldrán más (...).
Es falso que si uno fuma marihuana[,] termina consumiendo coca1́na

It is thus clear that there are many, many cases in which negation does not –
and sometimes indeed cannot – move in and attach only to the consequent, as
Lewis states.

Consider one more example:

(35) It’s not true that if Jones loves his children, then he’s not a criminal.

It is quite obvious that the truth of (35) does not entail (36):

(36) If Jones loves his children, then he’s a criminal.

And interpreting (36) as a concessive conditional would not help to make
it viable as a paraphrase for (35), as shown by the following unambiguously
concessive version of it:

(37) Even if Jones loves his children, he’s a criminal.

Someone who asserts (37) is convinced that Jones is a criminal, while
someone who asserts (35) is just admitting that this is possible, even if he
loves his children.
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7. Conditional excluded middle

Our conclusion entails that the principle of conditional excluded middle
is not valid for natural language conditionals. According to this principle,
either A → B or A → ∼B must be true. However, examples such as (5)–(7),
(17)–(18), (29)–(30), (32)–(33) and (35)–(36) show that it is possible in nat-
ural language to consider two conditionals with same antecedent and opposite
consequent as both false.

Lewis rejected the principle of conditional excluded middle, but for a differ-
ent reason. He noted that there may be ties in comparative similarity among
possible worlds, so that a world in which Bizet and Verdi are both French
may be as similar to ours as one in which they are both Italian [Lewis, 1973,
p. 61]. Thus, he does not believe that either If Bizet and Verdi were compat-
riots, they would be French or If Bizet and Verdi were compatriots, they would
not be French must be true. As regards the external negation of conditionals
in natural language, he seems rather (as shown in the previous section) to sub-
scribe to the mistaken notion of an equivalence between the linguistic forms
corresponding to ∼(if A,B) and If A,∼B, respectively [Lewis, 1973, p. 61].

A problem for the rejection of conditional excluded middle seems to be the
distributivity of the conditional operator over disjunction (see [Bennett, 2003,
p. 185]):

A→ (B ∨ C) ∴ (A→ B) ∨ (A→ C)

Replacing C by ∼B, we get:
A→ (B ∨ ∼B) ∴ (A→ B) ∨ (A→ ∼B)

Since A→ (B∨∼B) is a logical truth, the principle of conditional excluded
middle seems to be proved. However, distributivity of the conditional operator
over disjunction is valid in classic propositional logic, in which this operator is
the material conditional operator, but need not be valid for other varieties of
the conditional connective.

Concerning the implicative use of natural language conditionals in reasoning
and discourse, distributivity over disjunction is certainly not valid, as shown
by the following example:

(38) If Anna has blood type A, then her genotype is either AA or AO.

This is true, but does not entail that either (39) or (40) is true, since they
are both pragmatically false:

(39) If Anna has blood type A, then her genotype is AA.

(40) If Anna has blood type A, then her genotype is AO.
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The proposition conveyed by the uttering of (39) would be pragmatically
true if any person having blood type A (and not just Anna, if she does have it)
had genotype AA (which is not the case), and similarly for (40) in relation to
genotype AO. We conclude that distributivity over disjunction is not a reason
for accepting conditional excluded middle for natural language conditionals,
and that conditional excluded middle must in fact be rejected, as shown by the
counterexamples given above.

8. Conditional squares of opposition

The relations among negations of conditionals and conditionals with op-
posite consequents may thus be summarized in three squares of opposition, as
follows (contradictories indicated by the diagonals).

If A, then B Even if A, ∼B

∼(Even if A, ∼B) ∼(If A, then B)

contradictories

en
ta
ils

entails

contraries

subcontraries

If A, then B If A, then ∼B

∼(If A, then ∼B) ∼(If A, then B)

contradictories

en
ta
ils

entails

contraries

subcontraries
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Even if A, B Even if A, ∼B

∼(Even if A, ∼B) ∼(Even if A, B)

contradictories
en
ta
ils

entails

contraries

subcontraries

9. Conclusions

(i) Not (if A, then B) cannot always be paraphrased as If A, then not B, so
the former does not entail the latter in natural language.

(ii) Similarly, Not (if A, then B) does not entail Even if A, not B.

(iii) Moreover, Not (even if A,B) does not entail If A, then not B.

(iv) Similarly, Not (even if A,B) does not entail Even if A, not B.

(v) On the other hand, If A, then B entails Not (even if A, not B).

(vi) Similarly, Even if A, B entails Not (if A, then not B).

(vii) Moreover, If A, then B also entails Not (if A, then not B).

(viii) And similarly, Even if A, B also entails Not (even if A, not B).

(ix) Therefore, If A, then B and Even if A, not B are contraries, not contra-
dictories. Similarly, the pair If A, then B and If A then not B and the
pair Even if A, B and Even if A, not B are also pairs of contraries, not
of contradictories.

(x) Therefore, the principle of conditional excluded middle does not apply to
the use of conditionals in natural language.
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explicit negation with update. We show that dynamic logic programming which is based on
default negation, even in the heads, can be interpreted in a variant of updates with explicit
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1. Introduction

Negation is still one of the controversial concepts underlying logic pro-
gramming. While the negation-as-failure interpretation is operationally well-
understood, the logical interpretation of negation gives rise to discussions.
Starting from the two most prominent approaches – Reiter’s closed world as-
sumption [Reiter, 1978] and Clark’s completion [Clark, 1978] – there “are very
successful attempts to discover the underlying logic of negation as failure. Their
disadvantage is that the logics involved are more complicated and less familiar
than classical logic so that they are not likely to help the naive programmer
express his problem by means of a logic program, or to check the correctness
of a program” [Shepherdson, 1998, p. 364]. In this paper we argue that default
negation in logic programming can be understand as explicit negation in an
update framework, as long as we consider stable model semantics. This reading
may also give a “naive programmer” some help to deal with default negation in
logic programming.
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The question of treating updates in a logic programming framework is a
research project in itself. There are several attempts to deal with updates and
different semantics have been proposed, based on stable models or answer sets,
cf. e.g. [Alferes et al., 2000; Buccafurri et al., 1999; Eiter et al., 2002; Leite
and Pereira, 1998a; Leite and Pereira, 1998b; Leite, 2003; Sakama and Inoue,
1999; Zhang and Foo, 1998]. In all these frameworks updates are represented
by a sequence of logic programs. Here, we focus on dynamic logic programming,
introduced by Alferes, Leite, Pereira, Przymusinska, and Przymusinski [Alferes
et al., 2000]. It is based on generalized logic programs which allow default
negation in the head of rules. Its semantics is based on causal rejection, i.e.,
a rule can be rejected if there is a more recent one that conflicts with it.

We show that default negation as used in dynamic logic programming, gen-
eralized logic programming, and normal logic programming can be treated as
explicit negation in an analogous update framework. For the technical result
we can build on work of Leite in his dissertation [Leite, 2003]. However, with
respect to the understanding of default negation, the result allows a different
perspective to it. In particular, it questions the status of default negation as a
special form of negation, different from the classical one. In contrast, default
negation can be seen as involving an update aspect (which could also be con-
sidered as a temporal aspect), which can be expressed in an update framework
with explicit negation.

In the following section we introduce the technical preliminaries for logic
programs with default and with explicit negation. In the third section we
introduce an update framework for explicit negation. With it we can state
our main result in section 4, which also provides a short illustrating example.
In section 5 we review dynamic logic programming, as it is defined in [Alferes
et al., 2000] and [Leite, 2003]. It is used in the sixth section to prove a general
translation of dynamic logic programs into the explicit update framework. From
it, the main result follows as an immediate corollary. The final section is devoted
to a discussion of the given result with respect to the closed world assumption,
normal logic programming and the combination of default and explicit negation.
We shortly address the question of well-founded semantics and the relation to
the transformational semantics for dynamic logic programming and include a
reference to abductive frameworks.

2. Preliminaries

In logic programming, for both, default and explicit negation, it is conveni-
ent to work syntactically with pure Horn theories. In this case, negated literals
are introduced as new atoms (disjoint from all other atoms) which are form-
ally positive. The difference of positive and negative literals is build in on the
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semantical level only. Thus, for default negation we will use atoms not_a, for
explicit negation atoms neg_a.

Here, we do not consider programs which combine default and explicit neg-
ation. Let us first define the technicalities for the case of default negation.

2.1. Default negation
Given an arbitrary set K of propositional variables (which do not begin

with “not”), the propositional language LKnot is defined as the set {a : a ∈
K} ∪ {not_a : a ∈ K}. Elements of LKnot are called literals, positive literals
if they belong to K, negative literals otherwise. While normal logic programs
allow default negation only in the body of a clause, we consider generalized
logic programs where default negation is also allowed in the heads of rules.
Generalized logic programs, introduced in [Alferes et al., 2000], are a simplified
version of the programs introduced by Lifschitz and Woo [Lifschitz and Woo,
1992]. Formally, a generalized logic program consists of a (finite or infinite) set
of rules of the form L <- L1,. . .,Ln, where L,L1, . . . , Ln are literals from LKnot.

We use the usual notational conventions in logic programming. If a is a
positive literal, not a is not_a, and for a negative literal not_b, not not_b is
b. If r is the rule L <- L1,. . .,Ln we write H(r) for the head L and B(r) for
the body L1,. . .,Ln.

A 2-valued interpretation M of LKnot is a subset of LKnot such that for all a ∈ K
precisely one of the literals a or not_a belong to M . An interpretation M of
LKnot satisfies a rule r if H(r) belong to M , or some literal in B(r) does not
belong to M . A model M of a generalized logic program P is an interpretation
which satisfies all its rules. Let M+ be the set of positive literals in M , and
M− the set of negative literals in M . A model N is p-smaller than M , if N+

is a proper subset of M+, N+ ⊂M+. A model of P is called p-least if it is the
p-smallest model of P .1 Now, the definition of stable models reads as follows,
cf. [Alferes et al., 2000, Def. 2.1].

Definition 1. An interpretation M of LKnot is a stable model of a generalized
logic program P if M is the p-least model of the Horn theory P ∪M−, i.e.,

M = p-least(P ∪M−).

For normal programs this definition is equivalent to the original definition
of stable models by Gelfond and Lifschitz [Gelfond and Lifschitz, 1988]. In
[Alferes et al., 2000] it is shown that this definition coincides with the answer
set semantics given by Lifschitz and Woo, [Lifschitz and Woo, 1992], if it is
restricted to generalized logic programs.

1We say “p-least”, since we consider the positive literals, only. Later on, for explicit
negation, we will define leastness with respect to all literals.
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2.2. Explicit negation

Extended logic programs are well-known as the extension of normal logic
programs with explicit negation. The answer-set semantics given for this class
of programs allows the use of explicit negation in both, the body and the head
of a clause, [Gelfond and Lifschitz, 1991].

As for the default literals, explicit negated literals are introduced as new
atoms, and consistency (as well as coherency in the presence of default negation)
is treated on the semantical level.

Here, we even dispense with default negation, and consider programs with
explicit negation only. For convenience we tactically call them explicit logic
programs. This class of programs, in itself, is without particular interest. But,
in connection with update it allows us to give an easy interpretation of default
negation.

The formal preliminaries are completely analogous to the case of dynamic
logic programming. The only difference is that we replace the “prefix” not for
default negation by neg for explicit negation.

Given a set of propositional variables K, we consider now the language
LKneg = {a : a ∈ K} ∪ {neg_a : a ∈ K}. As before, we will speak of positive and
negative literals, and only if needed we speak about default negated literals or
explicit negated literals. Instead of not a, which we used for default negation,
we write neg a for the complementary literal with respect to explicit negation.

The notion of model differs from the default case. Since we cannot assume
negative literals “by default” we have to ask for support of them as for posit-
ive literals. In the default case, we consider least models with respect to the
positive literals only. Now, we have to consider least models with respect to
both, positive and negative literals. Therefore, we start with consistent inter-
pretations, which do not have to be 2-valued. Thus, an interpretation M is
an subset of LKneg such that for no literal a ∈ K, a and neg_a belong to M .
With the usual notion of satisfiability we define a pre-model M of an explicit
logic program which is an interpretation satisfying all rules of the program.
It is called “pre-model” since later we are interested in 2-valued models only.
We order the pre-models with respect to both, positive and negative literals.
A model N is smaller than M , if it is a proper subset of M . A pre-model of
P is called least if it is a smallest pre-model of P . A 2-model M of an explicit
logic program is a least pre-model which is 2-valued with respect to explicit
negation, i.e., M contains for all a ∈ K precisely one of the literals a or neg_a.

Definition 2. An interpretation M of LKneg is the 2-model of an explicit logic
program P if M is 2-valued and the least pre-model of P , i.e., M = least(P ).
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With the given definition the very most of explicit logic programs will
not have a 2-model. As a very easy example, let us consider the genera-
lized logic program P : not_a <- not_a and the explicit logic program E:
neg_a <- neg_a. P has {not_a} as single stable model, while E does not
have a 2-model. In general, for explicit logic programs, it would be more nat-
ural to consider a three valued semantics. However, for our specific aim to
interprete default negation in an update framework with explicit negation, it
turns out that the existence of 2-models is always guaranteed.

3. Explicit dynamic logic programs

In this section we will give an adaptation of dynamic logic programming as
introduced in [Alferes et al., 2000] to explicit logic programs.2

An explicit dynamic logic program E is a finite sequence of explicit logic
programs E1, . . . , En, written as

E1 ⊗ E2 ⊗ · · · ⊗ En.

Its semantics is – in analogy to dynamic logic programming – based on
causal rejection: A rule can be rejected by a more recent one if the latter rule
has as head the negated literal of the former one, and the body of the latter
one is true in the considered model.

Formally we introduce the following notion of conflicting rules:

Definition 3. Two rules r and r′ are called conflicting with respect to explicit
negation, denoted by r

neg
./ r′ iff H(r) = neg H(r′).

Let
⋃
E be the union of all rules of all explicit logic programs of an explicit

dynamic logic program. Then, we define 2-model of E as follows:

Definition 4. Let E = {Ei : 0 ≤ i ≤ n} be an explicit dynamic logic program.
An interpretation M is a 2-model of E , if

1. M is 2-valued and

2. M = least((
⋃
E) \ Reject(E ,M)),

where Reject(E ,M) is the set

{r ∈ Ei : ∃r′ ∈ Ej , i < j ≤ n& r
neg
./ r′&M |= B(r′)}.

2We will review dynamic logic programming only later in Section 5. It is not needed to
state the main result of this paper (Proposition 1), but it will be instrumental for the proof
of it.
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4. Default Negation as Explicit Negation plus Update

We now state the main proposition of our paper. A generalized logic pro-
gram P can be translated into an explicit dynamic logic program E such that
the stable models of P coincide with the 2-models of E . That means that the
sets of positive literals in both sets are the same, and the default negated literals
of a model of P coincide with the explicit negated literals in the corresponding
model of E . In fact, E is an explicit dynamic logic program with one update
only.3

Definition 5. Let K be a set of propositional variables.

1. E0 is defined as the set of all explicit negated literals in the language K:

E0 := {neg_a : a ∈ K}.

2. Given a generalized logic program P in LKnot, we define the explicit logic
program E = P in LKneg as the program where every occurrence of a default
negation in P is replaced by an explicit negation.

3. For a set S of literals of LKnot, we define S as the set of literals of LKneg where
all default negated literals are replaced by their corresponding explicit
negated ones.

Of course, E0 has the trivial 2-model where all negative literals are true.
Therefore, when we start an explicit dynamic logic program with the initial
program E0, we guarantee the 2-valuedness of its model.

Proposition 1. Let P be a generalized logic program in the language K. Let
E be the explicit dynamic logic program E0 ⊗ P . Then,

M is a stable model of P if and only if M is a 2-model of E .

Analogously we have for normal logic programs the following proposition:

Proposition 2. Let P be a normal logic program in the language K. Let E be
the explicit dynamic logic program E0 ⊗ P . Then,

M is a stable model of P if and only if M is a 2-model of E ,

and P does not use negation in the heads.

These propositions are corollaries of Theorem 1 which will be stated and
proven below.

3To some extend, the study of a single update (instead of sequences of updates) has its
own interest. For instance, in the original definition of dynamic logic programming, [Alferes
et al., 2000], the authors even start with the definition of one update, and define dynamic
logic programs as a generalization of it.
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Example
To illustrate our result, let us consider the following normal logic program:

P = {a <- not_b, b <- not_a}.

It has the two stable models M1 = {a, not_b} and M2 = {b, not_a}. The
translation of P into an explicit dynamic logic programs yields

E = {neg_a, neg_b} ⊗ {a <- neg_b, b <- neg_a}.

Now, we have to check whether M1 = {a, neg_b} and M2 = {b, neg_a} are
the only 2-models of E according to Definition 4. Of course, both are 2-valued.

For M1, we have that Reject(E ,M1) = {neg_a}, since it is rejected by the
rule a <- neg_b whose body is true in M1. Therefore, M1 has to be the least
pre-model of {neg_b, a <- neg_b, b <- neg_a} which is the case.

Analogously, for M2, neg_b is rejected, and we get that it is the least pre-
model of {neg_a, a <- neg_b, b <- neg_a}.

There are only two other possibilities for 2-models of E , N1 = {a, b}
and N2 = {neg_a, neg_b}. For N1, Reject(E , N1) is empty, so neg_a and
neg_b are facts, and N1 cannot be a 2-model. For N2 the situation is dif-
ferent, since Reject(E , N2) = {neg_a, neg_b}. But the least pre-model of
{a <- neg_b, b <- neg_a} is the empty set, i.e., this program does not have a
2-model, in particular not N2. Thus, M1 and M2 are the only 2-models of E .

5. Dynamic logic programming

For the proof of the Propositions 1 and 2 we will use a more general res-
ult, translating dynamic logic programs into explicit dynamic logic programs.
Therefore, we review briefly the definition of dynamic logic programs.

A dynamic logic program P consists of a finite sequence of generalized logic
programs P1, . . . , Pn, written as

P1 ⊕ P2 ⊕ · · · ⊕ Pn.

As for the 2-models of extended dynamic logic programming, the stable
model semantics of a dynamic logic program is based on causal rejection. The
idea of default negation is build in by assuming all negated literals for which
there is no rule with the positive literal as head and a true body.

For the formal definition, we need again the notion of conflicting rules, cf.
[Leite, 2003, Def. 27, p. 35]:

Definition 6. Two rules r and r′ are called conflicting, denoted by r ./ r′, iff
H(r) = not H(r′).
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Using
⋃
P for the union of all rules of all generalized logic programs of

a dynamic logic program P, we can define stable models of P as follows, cf.
[Leite, 2003, Def. 37, p. 48].

Definition 7. Let P = {Pi : 1 ≤ i ≤ n} be a dynamic logic program. An in-
terpretation M is a stable model of P, if

M = p-least([(
⋃
P) \ Reject(P,M)] ∪Default(P,M)),

where Reject(P,M) is the set

{r ∈ Pi : ∃r′ ∈ Pj , i < j ≤ n& r ./ r′&M |= B(r′)},

and Default(P,M) is the set

{not_a : ¬∃r ∈
⋃
P.(H(r) = a) &M |= B(r)}.

6. Embedding of dynamic logic programming
in explicit dynamic logic programming

We now extend the translation of generalized logic programs in extended
dynamic logic programs to dynamic logic programs. With the notation of
Definition 5 we set:

Definition 8. For a dynamic logic program P = P1 ⊕ . . . ⊕ Pn, P is defined
as P1 ⊗ · · · ⊗ Pn.

The general theorem can now be stated as follows:

Theorem 1. Let K be a set of propositional variables. Let P = P1 ⊕ . . .⊕ Pn
be a dynamic logic program in LKnot. Let E be the explicit dynamic logic program
E0 ⊗ P1 ⊗ · · · ⊗ Pn. Then,

M is a stable model of P if and only if M is a 2-model of E.

The theorem is a consequence of the following proposition, proven by Leite
in his dissertation, [Leite, 2003, Prop. 28 and Cor. 29, p. 54].

Proposition 3. Let P be a dynamic logic program. Let P ′ be the dynamic
logic program such that P ′ = PK⊕Pnot K⊕P. An interpretationM is a stable
model of P iff

M = p-least((
⋃
P ′) \ Reject(P ′,M)),

where PK is the set of all positive literals in the language K and Pnot K the set
of all default negated literals in the language K.
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Proof. (Theorem 1) We will use Proposition 3. However, the use of PK is
redundant, since Pnot K is immediately rejecting all literals of PK. Therefore,
we can choose for P ′ also the dynamic logic program Pnot K ⊕ P. So, E = P ′.

The assertion of the theorem seems to be a notational variant where de-
fault negation is replaced by explicit negation. However, since dynamic logic
programming was formulated by use of p-least models we have to check that
the least pre-models used for the semantics in explicit dynamic logic program-
ming are coincide with them, modulo the substitution of default and explicit
negation.

For the direction from the left to the right, let M be a stable model of P.
With the proposition we get that M is the p-least model of PM := (

⋃
P ′) \

Reject(P ′,M). Translating this program into an explicit logic program, we get
that M is a 2-valued pre-model of EM := (

⋃
E) \ Reject(P ′,M). We have to

show that it is the least pre-model. Assume there is another pre-model N of
EM , with N ⊂M . If N+ is a proper subset of M+, then there is a model K of
PM with N = K. So K+ is a subset of M+ which contradicts the assumption
that M was the p-least model of PM . Now, let N− be a proper subset of M−.
So there is a literal neg_b in M which is not in N . Since E0 contains the fact
neg_b, there has to be a rule r in Reject(P ′,M) with H(r) = b and the body
of r is true in M . However, with this condition M could not be a 2-model of
EM since it has to contain both neg_b and b. Thus, we have a contradiction,
and M is the least pre-model of EM , i.e., M is a 2-model of E .

For the direction from the right to the left we start with a 2-model N of E .
So N is the least pre-model of EN := (

⋃
E) \ Reject(E , N). Of course, there

is an interpretation M of LKnot such that N = M . We have to show that M is
a stable model of P. Using the proposition above, we have to show that M is
a stable model of PM := (

⋃
P ′) \ Reject(P ′,M). Since EN = PM , and N is a

pre-model of EN , M is a model of PM . It remains to show that M is p-least.
Assume that there is another model K of PM with K+ ⊂M+. Without loss of
generality, we can assume that K = M \ {b} for some positive literal b. Since
K is a model of PM , there is no rule r in PM with H(r) = b and the body of
r is true in K. But that means, there is no rule r′ in EN such that H(r′) = b
and the body of r′ is true in K = N \ {b}. Therefore, N \ {b} is a pre-model
of EN which contradicts the assumption that N was a 2-model of E . Thus, M
is the p-least model of PM , i.e., M is a stable model of P ′ and P. �

7. Discussion

In this section we discuss our reading of default negation as explicit negation
plus update in different respects.
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7.1. The closed world assumption

Our explanation of default negation has a certain relation to the closed
world assumption. In the closed world assumption “only” those negative liter-
als are assumed for which the positive literal is not derivable from a program.
In contrast, we assume all negative literals and update later on those for which
the positive literal holds in a model. By this update step we avoid the incon-
sistencies which result sometimes from the closed world assumption in the case
of indefinite information about ground literals, cf. [Shepherdson, 1998, p. 357].

7.2. Default negation in normal logic programming

Proposition 2 is more than a by-product of Theorem 1. It gives the default
negation as it is used in normal logic programming a reading in terms of ex-
plicit negation with updates. Normal logic programming is the basis of logic
programming, uncontroversial and well-understood. However, explicit negation
seems to be closer to classical negation as used in standard logic, and there-
fore more favorable in discussions outside the logic programming community.4

In fact, it is interesting to study the exact logical meanings of negation in lo-
gic programming, as it is done in the work of Pearce and others, cf. [Pearce,
1997; Pearce, 1999; Lifschitz et al., 2001]. Here, we have implemented explicitly
the idea of defaults as a sceptical view of truth: Every literal, for which one
cannot find a rule with a true body, is considered as false. In our reading just
the perspective is changed: Every literal is initially considered as false (by use
of the initial program E0) and then we think of the original program as an
update program which updates the initial scepticism.

There is a well-known correspondence, cf. [Bidoit and Froidevaux, 1991],
between the stable model semantics of normal logic programs and default logic,
[Reiter, 1980; Poole, 1994]. Now, we can even ask whether the reading of
default as explicit plus updates allows for an interpretation of default reasoning
as classical reasoning with updates. However, this question is outside the scope
of this paper.

7.3. The combination of default and explicit negation

A naive extension of our translation does not work when we allow default
and explicit negation together.

If one would translate both negations into explicit negation in explicit dy-
namic logic programming and keep the initial program E0 in the way that it
contains all negative literals, it would trivialize the difference between default
and explicit negation. In fact, E0 would give the original explicit negation the
same meaning as default negation.

4But see the remarks about explicit negation in the following subsection.
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Of course, one could think of restricting E0 to the negative literals coming
from default negation only. However, then, we will have problems to find
2-models for the resulting explicit dynamic logic program, if we have no support
for neither a nor neg_a.

In fact, the understanding of explicit negation in logic programming is con-
trary to the idea of a 2-valued semantics: Only if we explicit information about a
or neg_a we should accept either of it; if not, a should be considered as neither
true or false. Thus, although explicit negation is in its operational behavior
(as it should be guaranteed by the semantics) closer to “classical” negation,5

it does not support the “classical” principle of bivalence. This principle is bet-
ter supported by default negation, which guarantees the existence of 2-valued
models.

In our translation of default negation in terms of explicit negation, we com-
bine the two “classical” aspects: Since we use explicit negation, its operational
behavior is classical; since we start with initial program E0 which contains all
negative literals, we have the 2-valuedness guaranteed. And, the non-monotonic
aspect of default negation is resolved in the update step.

7.4. Default and explicit negation in dynamic logic programming

The original formulation of dynamic logic programming in [Alferes et al.,
2000] is based on default negation only. But it is argued that the addition
of explicit negation to dynamic logic programming is easy, cf. [Ibid., Sec. 5.2],
[Leite, 2003, p. 68]. The rejection of rules is still carried out by default negation
only. Therefore, strong negation rules not_a <- neg_a and not_neg_a <- a
are added which propagate the explicit negation to default negation.

We do not treat this combinations for the reasons given in the preceding
subsection.6 But we like to note, that the use of default negation together
with explicit negation gives dynamic logic programming interesting expressive
power. In fact, when Leite claims that “logic program updates constitute the
killer application for generalized logic programs” [Leite, 2003, p. 20], i.e., for the
use of default negation in the heads, he uses an example which makes essential
use of both, default and explicit negation.7

Here, we will not discuss the question of the meaning of default negation
in the heads, as used in dynamic logic programming. However, obviously, the

5It is a separate discussion “how classical” explicit negation is at the end. What we mean
when we say that its operational behavior is closer to classical negation (than the one of
default negation) is that we require only the consistency for explicit negation and nothing
else; in particular it does not involve a non-monotonic aspect.

6See [Slota et al., 2014] for a discussion of the combination; this paper also contains
additional references to the literature.

7The example is also given in [Slota et al., 2014, Example 1].
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proposed reading relates default negation in the heads to explicit negation, just
with the extra aspect of updates. Maybe, this could be used as an additional
justification for generalized logic programs. As general references, aside from
[Alferes et al., 2000] and [Lifschitz and Woo, 1992] which were already men-
tioned above, we can give [Inoue and Sakama, 1998] and [Damásio and Pereira,
1996]. However, the last reference deals mainly with the well-founded semantics
instead of the stable model semantics used here.

We should also mention that the treatment of default negation in the pres-
ence of explicit negation allows for variations. They relate to the question how
the set of rejected literals is defined, cf. e.g., [Leite, 1997; Leite, 2003], and, for
a comparison, [Leite, 2004].

As related work in this direction we like to mention the alternative approach
to dynamic updates proposed by Eiter et al. [Eiter et al., 2002]. It is based
on extended logic programming, i.e., it allows both negations, but only explicit
negation in the heads. The authors give a detailed discussion of the relation
to dynamic logic programming in the sense of [Alferes et al., 2000], cf. [Eiter
et al., 2002, Sec. 7.3].

For the question of combining different forms of negation, the work of Jonker
[Jonker, 1994] could be also of interest. She introduces a new form of nega-
tion, called imex negation which combines aspects of implicit (default) and
explicit negation. It is open whether updates based on this negation would
yield different results.

7.5. Stable models versus well-founded semantics
The given reading of default negation in terms of explicit negation plus

update is based on the stable model semantics for the default case. It suggests
itself to ask how the situation is in the case of well-founded semantics, [Gelder,
et al., 1991]. This question is open. A well-founded semantics for dynamic logic
programs was proposed by Banti, Alferes and Brogi, [Banti et al., 2004], and it
could serve as a starting point.

7.6. The transformational semantics

In contrast to [Leite, 2003], in [Alferes et al., 2000] dynamic logic program-
ming is introduced via a transformational semantics. In this case (which is
equivalent to the declarative semantics given above, cf. [Leite, 2003, Th. 40,
p. 66]) a dynamic logic program is translated in a generalized logic program
which is formulated in an extended language. It provides for every atom a
a new one a− for its explicit negation, and two pairs of them indexed by every
separate generalized program and indexed by the stage of the program. Here,
we do not give the (longish, but not complicated) definition of the transforma-
tional semantics, but just point out that it starts with an initial state 0 in which
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all positive literals are declared to be false in terms of the new negative atom.
It is given by default rules: a−0 for all positive literals of the language. This
initial state can serve as a motivation for the definition of E0 in our translation
above.

7.7. Negation as failure as abduction
There is at least a conceptional relation between our reading and the treat-

ment of logic programs as abductive frameworks, cf. [Kakas et al., 1998, Ch. 4;
in particular 4.1]. An abductive framework 〈P,A, I〉 consisting of a logic pro-
gram P , a set of abducibles A, and integrity constraints I. Given a query q,
one tries to find one (or more) subset(s) ∆ of A such that P ∪ ∆ |= q and
P ∪∆ satisfies I. A logic program with default negation can be translated into
an abductive framework where A contains the negated literals; technically, one
does not work with the negated literals themselves, but replaces them by new
symbols, such that the related system is entirely positive; I contains constraints
such that the new literals are correct and complete with respect to negation,
cf. [Kakas et al., 1998, p. 255f]. It is a result by Eshghi and Kowalski [Eshghi
and Kowalski, 1989] that there is a one to one correspondence between stable
models of a logic program and the abductive extensions of its abductive frame-
work. A fortiori, our reading can also be related to the abductive framework.
Somehow, we just assume all possible abducibles in E0, and the update step
rejects those which can not be used in a particular stable model. But, of course,
the remaining set of negative literals could be bigger than the ones needed in
a ∆. Thus, abduction allows for a finer analysis of the negative information
needed to derive something.

7.8. Logical properties
The interpretation of default negation as explicit negation with update car-

ries over the logical properties of default negation to the use of explicit negation
in an update of E0. Contraposition, for example, does not hold for default nega-
tion: {a <- not_b} has the only stable model {a, not_b} while {b <- not_a}
has only {b, not_a} as stable model. Equally, {neg_a, neg_b}⊗{a <- neg_b}
has only {a, neg_b} and {neg_a, neg_b}⊗{b <- neg_a} has only {b, neg_a}
as 2-models. This can be checked directly along the lines of the example in Sec-
tion 4.

Remark 1. The issue of contrapositive in logic programming is widely dis-
cussed, see, for instance, [Pearce, 1997, § 7.2]. We give here an example of
pedestrian lights which should illustrate how it ‘works’ in our case.
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Pedestrian lights are characterized by the two atoms red and green.
Whether one should cross the street is determined by two rules:

go :- green

neg_go :- red

Now, the idea of default negation implies that, as long as I don’t see the lights,
neither green nor red should be assumed but rather the contrary. Thus, in our
initial programme E0 we will have the two atoms: neg_red and neg_green.
In this way, one cannot conclude whether one could cross the street or not.
In this context, one can safely (in a literal sense!) assume the following rule:

red :- neg_green

It expresses that, as long as I don’t have positive information that the lights
are green, I ‘better’ assume that it is red (and, with the rules above, I conclude
not to go). In contrast, the contrapositive of the rule (i.e., green :- neg_red)
should not be assume (just imagine the lights are broken).

We added this example, as it illustrates two aspects of default negation,
as they becomes visible in our reading as explicit negation plus update: First,
the initial ‘agnostic’ state gives (total) preference to negative information; this
alone shoud not be used to conclude positive actions (here: to cross the street);
if there should be consequences concluded, they have to be given explicitely
(here: to consider the lights being red as long as one doesn’t have positive
information about green) — but these rules may be intensional as they should
not imply all of their consequences in classical logic. Secondly, updates allows
to overwrite default assumptions, for instance, when one is seeing the green
light.

One may ask how our approach works for double negation. Our syntax does
not allow to iterate neg, and one would, first, have to change the language,
introducing negation as an operator (rather than a prefix). The concept of
2-models would profit from an annulation of double negation. If this is not the
case, a new fact neg neg a would have to rule out neg a in a model (that’s
the minimum we would expect from a ‘negation’), but would not give support
for a, thus ‘distroying’ the 2-valuedness of a model. In consequence, our set-up
for explicit dynamic logic programs would fail, as updates could result in the
‘destruction’ of all models. The question how to deal with double negation in
our framework, thus, is subject to further investigation.

7.9. Disjunctive logic programming
The question whether we can extend our framework to disjunctive logic

programming [Minker, 1994] is even more challenging. Extended disjunctive
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logic programming is insofar out of reach, as we do not combine explicit and
default negation in the same framework (see § 7.3.). For normal disjunctive logic
programs, we would expect that our translation should work conceptionally;
however, in this case, where ‘disjunctions’ (given, for example, as lists of atoms)
can occur in the heads of rules, one would have, first, to redefine the update
operation, as the notion of conflicting rules (Definition 3 and 6) is not any
longer straightforward and as, in addition, the Reject operation (Definition 4)
needs to be significantly refined. This applies, of course, also to generalized
disjunctive logic programs [Lifschitz, 1996] where default negation may occur
in the disjunction of a head of a rule and general disjunctive programs [Shen and
Eiter, 2019], which take even into consideration arbitrary first-order formulas.
It is to expect that one can go along the increasing complexity of the heads in
disjunctive logic programming to introduce corresponding update frameworks,
but to develop such frameworks is future work.

8. Coda

In the present paper, we gave a reading of default negation as explicit
negation with update, which is a form to formalize the ‘commonsense law of
inertia, which is the principle that things do not change unless they are made
to’ [Przymusinski and Turner, 1997, p. 126].

Form the perspective of Computer Science, our approach may give rise to
more investigations of update phenomena in answer set programming [Slota
and Leite, 2010; Slota and Leite, 2014] and can be linked to action languages
(stemming from [Gelfond and Lifschitz, 1998]). Also, a more profound compar-
ison with other semantical approaches to Answer Set Programming, as equilib-
rium logic and ‘Here-and-There’-models [Pearce, 1997; Odintsov and Pearce,
2005; Pearce, 2006] and the related Strong-Equivalence-models [Turner, 2003].
This is or particular interest in view of the skeptical evaluation of these ac-
counts for updates in [Slota and Leite, 2014]. This will be investigated in the
future.

The purpose of this paper could be characterized as more philosophical: the
reading of default negation as explicit negation plus update illustrates how the
non-monotonic nature of default negation can be located in the update step.
Methodologically, it allows to modularize semantic questions, concerning the
default assumptions and updates. In this way, we hope to contribute to the
analysis of non-monotonicity, not only in logic programming, but in philosoph-
ical logic in general.
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C.A. Reyes, and J.A. González. Springer, 2004, pp. 397–407.

Bidoit and Froidevaux, 1991 – Bidoit, N., and Froidevaux, C. “General logic data-
bases and programs: Default logic semantics and stratification”, Information and
Computation, 1991, Vol. 91, No. 1, pp. 15–54.

Buccafurri et al., 1999 – Buccafurri, F., Faber, W. and Leone, N. “Disjunctive Logic
Programs with Inheritance”, in: Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), ed. by D. De Schreye. Cambridge: MIT Press,
1999, pp. 79–93.

Clark, 1978 – Clark, K.L. “Negation as failure”, in: Logic and Data Bases, ed. by
H. Gallaire and J. Minker. Plenum, 1978, pp. 293–322.

Damásio and Pereira, 1996 – Damásio, C.V., and Pereira, L.M. “Default Negation in
the heads: Why not?”, in: Extensions of Logic Programming, ELP’96, ed. by
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, Volume 1050 of Lecture Notes in
Artificial Intelligence. Springer, 1996, pp. 103–117.

Eiter et al., 2002 – Eiter, Th., Fink, M., Sabbatini, G. and Tompits, H. “On properties
of update sequences based on causal rejection”, Theory and Practice of Logic
Programming, 2002, Vol. 2, No. 6, pp. 711–767.

Eshghi and Kowalski, 1989 – Eshghi, K., and Kowalski, R.A. “Abduction compared
with negation as failure”, in: Proc. 6th International Conference on Logic Pro-
gramming, ed. by G. Levi and M. Martelli. MIT Press, 1989, pp. 234–255.

Gelder, et al., 1991 – Gelder, A. Van, Ross, K.A. and Schlipf, J.S. “The well-founded
semantics for general logic programs”, Journal of the ACM, 1991, Vol. 38, No. 3,
pp. 620–650.

Gelfond and Lifschitz, 1988 – Gelfond, M., and Lifschitz, V. “The Stable Model Se-
mantics for Logic Programming”, in: 5th International Conference on Logic Pro-
gramming, ed. by R. Kowalski and K. A. Bowen. MIT Press, 1988, pp. 1070–1080.

Gelfond and Lifschitz, 1998 – Gelfond, M., and Lifschitz, V. “Action Languages”,
Electronic Transactions on Artificial Intelligence, 1998, Vol. 2, pp. 193–210.

Gelfond and Lifschitz, 1991 – Gelfond, M., and Lifschitz, V. “Classical negation in
logic programs and disjunctive databases”, New Generation Computing, 1991,
Vol. 9, No. 3–4, pp. 365–385.

Inoue and Sakama, 1998 – Inoue, K., and Sakama, C. “Negation as failure in the
head”, Journal of Logic Programming, 1998, Vol. 35, pp. 39–78.



80 Reinhard Kahle

Jonker, 1994 – Jonker, C. “Constraints and Negations in Logic Programming”,
Ph.D. diss., Department of Philosophy, Utrecht University, 1994.

Kakas et al., 1998 – Kakas, A.C., Kowalski, R.A. and Toni, F. “The Role of Abduc-
tion”, in: Handbook of Logic in Artificial Intelligence and Logic Programming, ed.
by D.M. Gabbay, C.J. Hogger, and J.A. Robinson, Volume 5: Logic Programming.
Oxford, 1998, pp. 235–324.

Leite, 1997 – Leite, J.A. “Logic Program Updates”, Master’s thesis, Dept. de In-
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Università di Verona,
Strada le Grazie 15, 37134, Verona.
E-mail: paolo.maffezioli@univr.it

Luca Tranchini
Department of Computer Science
Universität Tübingen,
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1. Introduction

Bi-intuitionistic logic, introduced by [Rauszer, 1974a; Rauszer, 1974b] as
“H-B logic” and also called “subtractive logic” in [Crolard, 2001], is a conser-
vative extension of propositional intuitionistic logic obtained by the addition
of a new connective: co-implication 6⊃ (also referred to as “pseudo-difference”,
e.g., in Rauszer’s original work, or as “subtraction”, e.g., by Crolard).
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While implication relates to conjunction as follows:

A ∧B ` C iff A ` B ⊃ C

co-implication relates to disjunction as follows:

A ` B ∨ C iff A 6⊃ B ` C

Intuitively, a formula A 6⊃ B can be read as “A but not B” or “A excludes B”.
In the {∧,∨,∼}-fragment of the language of classical logic both implication

and co-implication can be defined, respectively as ∼A ∨ B and A ∧ ∼B. On
the other hand, in intuitionistic logic implication is independent from the other
connectives and a well-known result is that also co-implication is undefinable in
terms of the intuitionistic connectives, see e.g., Theorem 5.2 in [Urbas, 1996].

As implication is the distinctive connective of intuitionistic logic, the nat-
ural habitat of co-implication is dual-intuitionistic logic. In sequent calculi,
a system for intuitionistic logic can be obtained by restricting all sequents in
a calculus for classical logic to at most one formula in the succedent. Similarly,
a sequent calculus for dual-intuitionistic logic can be obtained by imposing the
dual restriction to classical sequents: at most one formula in the antecedent.

In classical logic, logical consequence can be equivalently characterized as
“forward” truth-preservation or as “backwards” falsity preservation in all inter-
pretations: a sequent Γ ⇒ ∆ is classically valid iff for every interpretation, if
all formulas in Γ are true, at least one formula in ∆ is true; or equivalently iff
for every interpretation, if all formulas in ∆ are false at least one formula in Γ
is false.

Informally, intuitionistic logic can be thought of as the result of replacing the
classical notion of truth with the constructive notion of proof, so that Γ ⇒ A
is intuitionistically valid iff a A is provable whenever all formulas in Γ are
provable. As argued by the second author [Tranchini, 2012], dual-intuitionistic
logic can be thought as the result of replacing the classical notion of falsity
with a constructive notion of refutation or disproof. Accordingly A ⇒ Γ is
dual-intuitionistically valid iff A is refutable whenever all formulas in Γ are
(here refutation is understood as a primitive notion, not to be defined in terms
of some object-language negation operator).

The constructive nature of the notions of proof and refutation induce the
rejection of certain classically valid principles in each of the two logics. The
rejection of these principle is rewarded by stronger meta-theoretical properties,
such as the disjunction property of intuitionistic logic (if A∨B is intuitionistic-
ally provable either A or B is) and its dual-intuitionistic counterpart (if A∧B
is dual-intuitionistically refutable either A or B is), which represent the corner-
stone of their constructive reading.
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One may expect that bi-intuitionistic logic could be given an informal inter-
pretation in terms of both proofs and refutations. This is, however, no obvious
task, due to the fact that the disjunction property and its dual do not hold in
bi-intuitionistic logic.

A further difficulty concerns the proper formulation of the duality un-
derlying bi-intuitionistic logic. The duality between intuitionistic and dual-
intuitionistic logic can be made precise by defining a mapping ()∗ from the
language of bi-intuitionistic logic to itself so that A∗ = A for atomic proposi-
tion, and

(>)∗ = ⊥
(⊥)∗ = >

(A ∧B)∗ = A∗ ∨B∗

(A ∨B)∗ = A∗ ∧B∗

(A ⊃ B)∗ = B∗ 6⊃ A∗

(A 6⊃ B)∗ = B∗ ⊃ A∗

The duality amounts to the fact that Γ ⇒ A is intuitionistically valid iff
A∗ ⇒ Γ∗ is dual-intuitionistically valid and A ⇒ Γ is dual-intuitionistically
valid iff Γ∗ ⇒ A∗ is intuitionistically valid. This duality extends to bi-
intuitionistic logic itself, so that Γ ⇒ ∆ is bi-intuitionistically valid iff ∆∗ ⇒
Γ∗ is.

The clauses for the connectives may suggest the following informal read-
ing of the duality: a proof of A is a refutation of A∗ and viceversa. This is
however, incompatible with the base clause: whereas ()∗ relates pairs of (dis-
tinct) connectives, the atomic propositions are the dual of themselves and this
blocks the possibility of informally reading the duality as exchanging the role
of proofs and refutations (for similar reasons [Crolard, 2001] refers to ()∗ as a
“pseudo-duality”, rather than a genuine duality).

A natural, although so far unexplored, way of solving this second difficulty
is that of considering the duality between theories rather than purely logical
systems and by introducing the dual of each primitive notion used in the form-
alization of a given theory.

The present paper aims to be a preliminary investigation in this direc-
tion. In particular, we consider one of the most elementary theories, that of
equality, and address the question as to whether the notion of apartness—well-
investigated in constructive mathematics—can be taken to play the role of the
dual of equality.

In constructive mathematics, the relation of apartness a 6= b is a “positive”
counterpart of the negative notion of inequality ¬a = b. In intuitionistic logic,
¬A is short for A ⊃ ⊥ and hence ¬a = b means that the assumption a = b
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leads to a contradiction. By contrast, two real numbers a and b are apart,
a 6= b, when there is a third one c measuring the distance of b from a on the
real line. On the constructive reading of the existential quantifier, a 6= b is
a stronger claim than just ¬a = b, since the latter does not imply that the
distance between a and b on the real line can be effectively computed.

In fact, given intuitionistic logic, one cannot define apartness by negating
equality, since the relation so defined fails to satisfy some characteristic prin-
ciples of apartness. At the same time, the intuitionistic negation of apartness
is a relation satisfying reflexivity, symmetry and transitivity, that is one can
define a notion of equality as negated apartness. The defined notion, however,
is not just an equivalence relation, but an equivalence relation which is also
stable, i.e., it satisfies the law of double negation elimination.

Thus whereas on the background of classical logic the notions of equality
and apartness are perfectly symmetric (in classical mathematics, two numbers
are apart iff they are not equal and they are equal iff they are not apart), this
is definitely not the case on the background of intuitionistic logic.

This asymmerty may suggest that apartness is not the best candidate to
act as the dual of equality. However, once the base clause of ()∗ is replaced
with the clauses

(x = y)∗ = x 6= y (x 6= y)∗ = x = y

the relation between the axioms of the theories of equality and apartness is the
same as the one observed above (i.e. if Γ⇒ ∆ is an axiom of equality, ∆∗ ⇒ Γ∗

is an axiom of apartness and vice versa).
Moreover, the bi-intuitionistic setting offers a natural way to remedy the

asymmetry between identity and apartness by considering two further notions
besides equality, apartness and their intuitionistic negations, namely their dual-
intuitionistic co-negations. In dual- and bi-intuitionistic logic one can define a
unary connective called co-negation ¬using 6⊃ and >, by taking ¬A as short
for > 6⊃ A. Co-negation is the dual of intuitionistic negation, i.e. ¬A = (¬A)∗

and ¬A = ( ¬A)∗.
In the present paper we will show that, as the intuitionistic negation of a

relation of apartness is an equality, the co-negation of an equality is a relation
of apartness. At the same time, as the intuitionistic negation of equality is not
an apartness, the co-intuitionistic negation of an apartness is not an equality.

Although the results presented do not exhaust the possibilities of investig-
ating equality and apartness in the context of bi-intuitionistic logic, we believe
that suggest so far unexplored, lines of research. In particular, they demon-
strate that bi-intuitionistic logic is not only interesting as a logical system, but
that it can be fruitfully applied to the study of mathematical theories.
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The paper is structured as follows. In Section 2. we present the semantics
and proof theory of bi-intuitionistic logic and in Section 3. we introduce the
theories of equality and apartness that will be discussed in the present paper.
In Section 4. we summarize the results concerning the intuitionistic theory of
equality and apratness as well as a strengthening of the former (the theory of
stable equality) and a weakening of the latter (here called the theory of weak
apartness). Although most results of this section are not new, they are here em-
bedded in a systematic picture and clearly formulated as (in some cases faithful)
interpretations of the above mentioned theories into each other. In Section 5.
we consider the four theories above on the background of bi-intuitionistic logic
and we show how co-negation allows to establish further relationships between
them. The resulting picture, however, does not seem to suggest a real sym-
metry between = and 6= in bi-intuitionistic logic. In Section 6., we dispel this
impression by considering two further theories (a weakening of the theory of
equality, that we call the theory of weak equality; and a strengthening of that
of apartness, the theory of co-stable apartness) and we show how intuitionistic
negation and dual-intuitionistic co-negation allow to interpret each theory into
any other. In Section 7. we discuss the significance of the results presented
and indicate several directions along which the present work can be further
developed.

2. Preliminaries

Assumed countably many individual variables, to be indicated with
x, y, z . . ., let L be the language defined by the following grammar (we indicate
formulas of L with A,B,C . . .):

L ::= x = y | x 6= y | (A ∧B) | (A ∨B) | (A ⊃ B) | A 6⊃ B | ⊥ | >

The negation ¬A of a formula A is defined as A ⊃ ⊥ and its co-negation
¬A as > 6⊃ A. We indicate with L= and L6= (respectively) the 6=-free and

=-free fragments of L, and with Li= and Li 6= the 6⊃-free fragments of the latter
languages.

A sequent over L is an expression of the form (Γ⇒ ∆), where Γ and ∆ are
multisets of formulas of L, called the antecedent and succedent of the sequent,
respectively. Outermost parenthesis will be mostly omitted. We indicate with
S(L) the set of sequents over L. We use similar notions and notation for the
fragments of L introduced above.

The semantics of L and its fragments is based on Kripke models. A bi-
intuitionistic Kripke frame consists of a non-empty set K of worlds α, β, γ, . . .
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pre-ordered by ≤ and a set D of objects a, b, c, . . . called domain. A bi-
intuitionistic Kripke modelM for L is a bi-intuitionistic Kripke frame equipped
with an interpretation function I assigning in each world α two relations =α

and 6=α on D to the symbols = and 6=, respectively. It is assumed that if α ≤ β
and a =α b, then a =β b and if α ≤ β and a 6=α b, then a 6=β b. Sometimes the
subscript in =α and 6=α will be omitted.

An assignment ϕ maps variables to elements in D. We define inductively
what it means for a formula A of L to hold at a possible world α with respect
to an assignment ϕ, in symbols α 
ϕ A.

α 1ϕ ⊥
α 
ϕ >
α 
ϕ x = y iff ϕ(x) =α ϕ(y)
α 
ϕ x 6= y iff ϕ(x) 6=α ϕ(y)
α 
ϕ A ∧B iff α 
ϕ A and α 
ϕ B
α 
ϕ A ∨B iff α 
ϕ A or α 
ϕ B
α 
ϕ A ⊃ B iff β 
ϕ B for all β ≥ α s.t. β 
ϕ A
α 
ϕ A 6⊃ B iff β 1ϕ B for some β ≤ α s.t. β 
ϕ A

It is easily verified that if α ≤ β and α 
ϕ A then β 
ϕ A. Moreover, observe
that α 
ϕ ¬A iff β 1ϕ A, for all β ≥ α; and that α 
ϕ ¬A iff β 1ϕ A for some
β ≤ α.

We can now define the notion of validity in a class of models. A sequent
holds at α with respect to ϕ, written α 
ϕ (Γ ⇒ ∆), when for all A ∈ Γ, if
α 
ϕ A, then α 
ϕ B, for some B ∈ ∆. A sequent (Γ ⇒ ∆) is valid in a
model M , written M 
 (Γ ⇒ ∆), when α 
ϕ (Γ ⇒ ∆) for all α ∈ K and
ϕ. Notice that the notion of validity in a model given here is local, see, for a
discussion[Goré et al., 2020]. A sequent is valid in a class of models C , indicated
as C 
 (Γ ⇒ ∆), when M 
 (Γ ⇒ ∆) for all M ∈ C . Opportune restrictions
of these notions to the various fragments of L will be used throughout.

By a theory over L we understand a subset of S(L) and similarly for its
fragments. We shall conveniently use Gentzen calculi to describe theories, so
that a theory will be identified with the set obtained by closing under the rules
of inference the set of initial sequents of the calculus. In the present paper
we will be almost exclusively concerned with three theories over Li= and three
theories over Li 6=. We describe them as extensions of a basic sequent calculus
for bi-intuitionistic logic with non-logical initial sequents corresponding to the
properties of equality and apartness. The underlying logical calculus G consists
of the initial sequents and logical rules given in Table 1 (this is in fact the
system LBJ1 of [Kowalski et al. 2017]).
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We observe that by the definition of (dual-)intuitionistic (co-)negation, the
following rules are derivable:

Γ⇒ ∆, A

¬A,Γ⇒ ∆
L¬

A,Γ⇒
Γ⇒ ¬A R¬

⇒ ∆, A

¬A⇒ ∆
L ¬

A,Γ⇒ ∆

Γ⇒ ∆, ¬A R ¬

We indicate with superscripts the restriction of G to the corresponding
fragments of L (so that e.g. Gi= is the restriction of G to Li=).

3. Six theories and their duality

We will consider theories obtained by extending (fragments of) G with the
sets of initial sequents schematically depicted in Table 2. For each such the-
ory T, we write T ` (Γ ⇒ ∆) iff the sequent belongs to the theory, i.e., it is
derivable in the sequent calculus describing T.

In particular, we call the result of adding to G= the set of initial sequents
eq (resp. weq/seq) the bi-intuitionistic theory of (resp. weak/stable) equality, to
be indicated with EQ (resp. WEQ/SEQ).

Similarly, we call the result of adding to G6= the set of initial sequents ap
(resp. wap/sap) the bi-intuitionistic theory of (resp. weak/stable) equality, to be
indicated with AP (resp. WAP/SAP).

Note that, given the rules for dual-intuitionistic co-negation, transitivity
and symmetry imply co-negative co-transitivity and co-negative symmetry (re-
spectively); and that, given the rules of intuitionistic negation, co-transitivity
and symmetry imply negative transitivity and negative symmetry (respect-
ively). Hence WEQ ⊂ EQ ⊂ SEQ and WAP ⊂ AP ⊂ SAP.

We will refer to the restrictions of EQ, (respectively SEQ) and AP (re-
spectively WAP) to the languages Li= and Li 6= as the intuitionistic theories of
(resp. stable) equality and (resp. weak) apartness, to be indicated with EQi,
(resp. SEQi) and APi (resp. WAPi). These four theories have been extensively
investigated in the literature, and the intuitionistic theory of weak apartness is
sometimes called “negative equality” in [Negri et al., 2001] or “defined equality”
in [Negri, 1999].1

From the perspective of bi-intuitionistic logic, the set of axioms eq and ap
suggests that the relationship between = and 6= should be the same as the
one between ∧ and ∨ and ⊃ and 6⊃ that we described in the introduction as
a duality. To spell it out properly we consider a further theory on the full

1Our terminological choice has the only purpose of making easier for the reader to remem-
ber which theories are based on the language Li 6= and which are based on Li=.
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language L, obtained by extending G with both eq and ap, to be referred to as
EA. Let ()∗ : L 7→ L be defined as described in the introduction, namely:

(x = y)∗ := x 6= y (x 6= y)∗ := x = y

(>)∗ := ⊥ (⊥)∗ := >
(A ∧B)∗ := A∗ ∨B∗ (A ∨B)∗ := A∗ ∧B∗

(A ⊃ B)∗ := B∗ 6⊃ A∗ (A 6⊃ B)∗ := B∗ ⊃ A∗

and let (Γ ⇒ ∆)∗ := (∆∗ ⇒ Γ∗), where Σ∗ is the multiset of all A∗ such that
A ∈ Σ. The following holds:

Theorem 1.
EA ` (Γ⇒ ∆) iff EA ` (Γ⇒ ∆)∗

Proof. The proposition is established by induction on the derivation of Γ⇒ ∆,
by constructing a derivation of (Γ ⇒ ∆)∗ that we call the dual of the given
derivation of Γ ⇒ ∆. If Γ ⇒ ∆ is an initial sequent it is easily verified that
(Γ ⇒ ∆)∗ is an initial sequent as well. If the derivation of Γ ⇒ ∆ ends
with an application of, e.g., R⊃ it suffice to apply the induction hypothesis
to the immediate sub-derivation and the dual of the original derivation can be
obtained by opportunely applying L6⊃. The other cases are treated analogously,
by exchanging an application of a left/right operational rules by an application
of the right/left rule for the dual connective (in the case of structural rules it
is enough to exchange left/right). �

As suggested in the introduction, in bi-intuitionistic logic the duality can
be informally understood as the possibility of obtaining meaning explanation
for the dual of a give formula by replacing the notions of proof and refutation
in the meaning explanations of the original formula.2 For example, the proof-
conditions of A ⊃ B can be expressed by saying that a proof of A ⊃ B is
a method to transform any proof of A into a proof of B; and the refutation-
conditions of A∗ 6⊃ B∗ can be expressed by saying that a refutation of A∗ 6⊃ B∗
is a method to transform any refutation of B∗ into a refutation of A∗. In
particular, a proof of ¬A is a method to transform proofs of A into proofs of
⊥ (which is by definition the proposition of which there is no proof); dually a
refutation of ¬A∗ is a method to transform refutations of A∗ into refutations
of > (which is by definition the proposition of which there is no refutation).

2However, as observed in the introduction, due to the fact that in bi-intuitionistic logic
both disjunction property and its dual fail, it is not wholly clear how should the notions of
proof of a disjunction and of refutation of a conjunction be informally characterized so as to
fit the bi-intuitionistic setting. Addressing this additional difficulty goes beyond the scope of
the present paper.
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Proposition 1 suggests to extend this informal interpretation to the case of =
and 6=, so that as we can read e.g., transitivity as saying that given proofs of
x = z and z = y we can construct a proof of x = z, we can read co-transitivity
as saying that given refutations of x 6= z and z 6= y then we can construct a
refutation of x 6= y.

As the results of Section 4. show, the set of initial sequents seq and wap
naturally aroused by studying the relationship between = and 6= using intu-
tuionistic negation. The two sets of initial sequents weq and sap are motivated
by considerations of duality: as the reader can easily verify, Proposition 1 holds
if one replaces the theory EA with either of the two theories that one obtains
by extending G with either weq and wap, or with seq and sap. The notion of
dual of a derivation, as defined in the proof of Proposition 1 extends to these
further two theories as well. We observe that by construction, if the deriva-
tion of Γ ⇒ ∆ is a derivation in EQ (resp. AP), its dual is a derivation in AP
(resp. EQ), and similarly for WEQ and WAP and for SEQ and SAP.

In this case as well, by duality we obtain an informal interpretation of
e.g. co-stability as warranting that from a refutation of ¬¬A one can obtain a
refutation of A (thus dualizing the informal reading of stability), and similarly
for co-negative co-transitivity and co-negative symmetry.

To establish the results below we will rely on the soundness of these theories
with respect to certain classes of bi-intuitionistic models. In particular, we
indicate with W E Q, E Q, S E Q, W A P A P and S A P the classes of
models in which all sequents in weq, eq, seq, wap, ap and sap (respectively) are
valid.

It is easy to see that each of the four theories considered is sound in the
corresponding class of models, that is:

Theorem 2 (soundeness). The following hold:

1. if WEQ ` (Γ⇒ ∆), then W E Q 
 (Γ⇒ ∆);

2. if EQ ` (Γ⇒ ∆), then E Q 
 (Γ⇒ ∆);

3. if SEQ ` (Γ⇒ ∆), then S E Q 
 (Γ⇒ ∆);

4. if WAP ` (Γ⇒ ∆), then W A P 
 (Γ⇒ ∆);

5. if AP ` (Γ⇒ ∆), then A P 
 (Γ⇒ ∆).

6. if SAP ` (Γ⇒ ∆), then S A P 
 (Γ⇒ ∆).

Proof. For each theory T the proof is by induction on the length of the
derivation of Γ ⇒ ∆. If Γ ⇒ ∆ is an initial sequent that is not of the form
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A ⇒ A the proposition is an immediate consequence of the way in which the
classes of models have been defined. The remaining cases are standard. �

If σ : L1 → L2 is a translation from L1 to L2 and (Γ⇒ ∆) = (A1, . . . , An ⇒
B1, . . . , Bm) we write σ(Γ ⇒ ∆) for σ(A1), . . . , σ(An) ⇒ σ(B1), . . . , σ(Bm).
Let X and Y be two theories over L1 and L2, respectively. We say that σ :
L1 → L2 is an interpretation of X in Y when for all (Γ ⇒ ∆) ∈ S(L1), if
X ` (Γ ⇒ ∆), then Y ` σ(Γ ⇒ ∆). Moreover, we say that σ preserves X
in Y when the converse holds, namely for no sequent (Γ ⇒ ∆) ∈ S(L∞),
Y ` σ(Γ ⇒ ∆) and X 0 (Γ ⇒ ∆) (we call such sequents, if they exists,
counterexamples to preservation). A preserving interpretation σ is said to be
faithful.

We shall assume throughout that translations are structural, i.e., σ(A◦B) :=
σ(A) ◦ σ(B), where ◦ is a binary connective, σ(⊥) := ⊥ and σ(>) := >.

We observe the following facts (proofs are obvious and left to the reader):

Fact 1. If X and Y are two theories over the same language L and X ⊆ Y,
then idL, (the identity function on L) is an interpretation of X in Y, but not
necessarily of Y in X. Moreover, idL preserves X in Y iff X = Y .

Fact 2. If σ and τ are interpretations of X in Y and of Y in Z, respectively,
then the composition τ ◦ σ is an interpretation of X in Z.

Fact 3. If σ is a faithful interpretation of X in Y and τ is a non-faithful
interpretation of Y in Z, τ ◦ σ is a faithful interpretation of X in Z iff no
counterexample (Γ⇒ ∆) to the faithfulness of τ is in the range of σ, i.e., there
is no (Σ⇒ Θ) such that σ(Σ⇒ Θ) = (Γ⇒ ∆).

We conclude this section by observing that although the theories we con-
sider could be formulated in a first-order setting as well, most of the results
below hold only for the propositional versions of the theories (see in particu-
lar footnote 3 below). Moreover, bi-intuitionistic logic is non-conservative over
first-order intutionistic logic (but only over the first-order logic of constant do-
mains). For these reasons we decided to limit our attention to propositional
theories.

4. Relating = and 6= with intuitionistic negation

In this section we will establish to which extent the two translations σ¬ :
Li= → Li 6= and τ¬ : Li 6= → Li=

σ¬(x = y) := ¬x 6= y τ¬(x 6= y) := ¬x = y

can be used to (faithfully) interpret the four theories EQi, SEQi, APi and WAPi

into each other.
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WAPi

APiEQi

SEQi

σ¬

τ¬

idLi=

idLi 6=

τ¬ ◦ σ¬

Fig. 1. Relating EQi, SEQi, APi and WAPi with intuitionistic negation

Informally, the translation σ¬ can be seen as an attempt to define of equality
in terms of apartness and negation by taking a proof of x = y to be a method
to transform a proof of x 6= y into a proof of ⊥; and the translation τ¬ can be
read as an attempt to define of apartness in terms of equality and negation by
taking a proof of x 6= y to be a method to transform a proof of x = y into a
proof of ⊥.

To enhance readability, we summarize the results to be established in Figu-
re 1, where single/double arrows indicate non-faithful/faithful interpretations
and in which we also indicate the non-faithful interpretations idLi= and idLi6=
of EQi in SEQi and of WAPi in APi respectively (see Fact 1 above).

Theorem 3. τ¬ is a non-faithful interpretation of WAPi in EQi.

Proof. To show that τ¬ is an interpretation of WAPi in EQi, it is enough to
show that EQi ` τ¬(x 6= x ⇒), EQi ` τ¬(¬x 6= z,¬z 6= y ⇒ ¬x 6= y) and
EQi ` τ¬(¬x 6= y ⇒ ¬y 6= x):

⇒ x = x
¬x = x⇒ L¬

x = z, z = y ⇒ x = y
¬x = y, x = z, z = y ⇒ L¬

¬x = y, x = z ⇒ ¬z = y R¬

¬x = y, x = z,¬¬z = y ⇒ L¬

¬x = y,¬¬z = y ⇒ ¬x = z R¬

¬x = y,¬¬x = z,¬¬z = y ⇒ L¬

¬¬x = z,¬¬z = y ⇒ ¬¬x = y R¬

x = y ⇒ y = x
¬y = x, x = y ⇒ L¬

¬y = x⇒ ¬x = y R¬

¬¬x = y,¬y = x⇒ L¬

¬¬x = y ⇒ ¬¬y = x R¬



94 Paolo Maffezioli, Luca Tranchini

To show that the interpretation is non-faithful, i.e., that τ¬ does not pre-
serve WAPi in EQi, we consider the sequent (¬¬x 6= y ⇒ x 6= y). Clearly,
EQi ` τ¬(¬¬x 6= y ⇒ x 6= y):

x = y ⇒ x = y
x = y,¬x = y ⇒ L¬

x = y ⇒ ¬¬x = y R¬

x = y,¬¬¬x = y ⇒ L¬

¬¬¬x = y ⇒ ¬x = y R¬

However, WAPi 0 (¬¬x 6= y ⇒ x 6= y). Consider a Kripke model M i
1 with

two worlds α and β such that α ≤ β and two objects a and b in D such that
a 6=β b and b 6=β a, i.e.,

α

a 6= b
b 6= a

β

Let ϕ(x) and ϕ(y) be a and b, respectively. Thus, α 
ϕ ¬¬x 6= y since for
all worlds δ ≥ α there is a world ε ≥ δ such that ε 
ϕ x 6= y. But clearly
α 1ϕ x 6= y. Therefore M i

1 1 ¬¬x 6= y ⇒ x 6= y. Moreover, it is easy to see
that M i

1 ∈ W A P i. We only show that M i
1 satisfies the negative transitivity

principle, namely M i
1 
 (¬x 6= y,¬y 6= z ⇒ ¬x 6= z). It suffices to show that

α 
ϕi (¬x 6= y,¬y 6= z ⇒ ¬x 6= z), for all i = 1, . . . , 8 such that:

1. ϕ1(x), ϕ1(y) and ϕ1(z) are a

2. ϕ2(x), ϕ2(y) are a, ϕ2(z) is b

3. ϕ3(x), ϕ3(z) are a, ϕ3(y) is b

4. ϕ4(y), ϕ4(z) are b, ϕ4(x) is a

5. ϕ5(y), ϕ5(z) are a, ϕ5(x) is b

6. ϕ6(x), ϕ6(z) are b, ϕ6(y) is a

7. ϕ7(x), ϕ7(y) are b, ϕ7(z) is a

8. ϕ1(x), ϕ1(y), ϕ1(z) are b

Cases (3) and (6) hold since the succedent is valid; all the remaining cases are
valid since they can be obtained from initial sequents using weakening. We
leave to the reader to verify that also the negative symmetry principles is valid
in M i

2. Thus, we conclude that W A P i 1 (¬¬x 6= y ⇒ x 6= y), hence by
soundness WAPi 0 (¬¬x 6= y ⇒ x 6= y). �

To establish the next proposition we will need the following:
Lemma 1. For all A ∈ Li=:

1. SEQi ` (A⇒ τ¬ ◦ σ¬(A))

2. SEQi ` (τ¬ ◦ σ¬(A)⇒ A)
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Proof. We establish the two claims by simultaneous induction on A:

• A is x = y. Clearly, SEQi ` (x = y ⇒ ¬¬x = y):

x = y ⇒ x = y
x = y,¬x = y ⇒ L¬

x = y ⇒ ¬¬x = y R¬

and obviously SEQi ` (¬¬x = y ⇒ x = y) given the stability initial
sequents.

• A is P ,> or ⊥. Obvious.

• A is B ⊃ C. We have that τ¬ ◦σ¬(A) = τ¬(σ¬(B ⊃ C)) = τ¬ ◦σ¬(B) ⊃
τ¬ ◦ σ¬(C). By induction hypothesis we have that

SEQi ` (B ⇒ τ¬ ◦ σ¬(B)) SEQi ` (τ¬ ◦ σ¬(B)⇒ B)

SEQi ` (C ⇒ τ¬ ◦ σ¬(C)) SEQi ` (τ¬ ◦ σ¬(C)⇒ C) and hence:

B ⇒ τ¬ ◦ σ¬(B) τ¬ ◦ σ¬(C)⇒ C

τ¬ ◦ σ¬(B) ⊃ τ¬ ◦ σ¬(C), B ⇒ C
L⊃

τ¬ ◦ σ¬(B) ⊃ τ¬ ◦ σ¬(C)⇒ B ⊃ C
R⊃

τ¬ ◦ σ¬(B)⇒ B C ⇒ τ¬ ◦ σ¬(C)

B ⊃ C, τ¬ ◦ σ¬(B)⇒ τ¬ ◦ σ¬(C)
L⊃

B ⊃ C ⇒ τ¬ ◦ σ¬(B) ⊃ τ¬ ◦ σ¬(C)
R⊃

• A is B ∧ C or B ∨ C. Similar to the previous case.

�

Corollary 1. τ¬ ◦ σ¬ is a faithful interpretation of SEQi into itself.

Proof. From the previous lemma it is almost immediate that SEQi ` (Γ⇒ ∆)
iff SEQi ` τ¬ ◦ σ¬(Γ ⇒ ∆) for any (Γ ⇒ ∆) ∈ Li=. Let (Γ ⇒ ∆) be
(A1, . . . An,⇒ B1, . . . , Bm). The corollary follows by n+m applications of the
Cut rule using derivations of Ai ⇒ τ¬ ◦ σ¬(Ai) and τ¬ ◦ σ¬(Bj)⇒ Bj for the
one direction, and derivations of Bj ⇒ τ¬ ◦ σ¬(Bj) and τ¬ ◦ σ¬(Ai) ⇒ Ai for
the other direction. �

Theorem 4. σ¬ is a faithful interpretation of SEQi in WAPi.

Proof. To show that τ¬ is an interpretation of SEQi in WAPi, it is enough
to prove that WAPi ` σ¬(⇒ x = x), WAPi ` σ¬(x = z, z = y ⇒ x = y),
WAPi ` σ¬(x = y ⇒ y = x), as well as WAPi ` σ¬(¬¬x = y ⇒ x = y).
The first three claims are obvious since the translation of each such sequent
is an initial sequent of WAPi. The last claim is established by a derivation of



96 Paolo Maffezioli, Luca Tranchini

(¬¬¬x 6= y ⇒ ¬x 6= y) that can be obtained by replacing = with 6= in the last
derivation used in the proof of Proposition 3.

To show faithfulness, we need to show that, for all (Γ ⇒ ∆) ∈ S(Li=),
if WAPi ` σ¬(Γ ⇒ ∆), then SEQi ` (Γ ⇒ ∆). We reason as follows. If
WAPi ` σ¬(Γ⇒ ∆), then SEQi ` τ¬ ◦ σ¬(Γ⇒ ∆) by Proposition 3 and hence
SEQi ` (Γ⇒ ∆) by (the faithfulness part of) Corollary 1. �

By composing the interpretations depicted in Figure 1, we obtain further
interpretations:

Corollary 2. The following hold:

1. τ¬ is an interpretation of WAPi in SEQi;

2. σ¬ is an interpretation of EQi in WAPi;

3. σ¬ is an interpretation of EQi in APi;

4. σ¬ is an interpretation of SEQi in APi.

5. τ¬ ◦ σ¬ is an interpretation of SEQi in EQi;

Proof. That the translations in (a)-(e) are interpretation of the appropriate
theories follows by the above theorems and by Fact 2. �

Theorem 5. The interpretations in 1-3 of Corollary 2 are not faithful. The
interpretations in 4 and 5 are faithful.

Proof. We discuss the interpretations separately:

1. Faithfulness fails for the same reasons seen in the proof of Proposition 3.

2./3. As seen in the proof of Proposition 3, the sequent σ¬(¬¬x = y ⇒ x = y)
is derivable in WAPi (and hence it is derivable in APi as well). Stability of
equality is clearly underivable in EQi (to see this replace apartness with
equality inM i

1, the countermodel to the stability of apartness in the proof
of Proposition 3), we conclude that σ¬ does not preserve EQi in either
WAPi or APi.

4. The faithfulness is a consequence of the main result of [Negri, 1999]. Negri
calls a formula A ∈ Li 6= negatomic iff all occurrences of x 6= y in A are
negated, and a sequent is called negatomic just in case it contains only
negatomic formulas. Negri shows that if AP ` (Γ⇒ ∆) thenWAP ` (Γ⇒
∆) if (Γ⇒ ∆) is negatomic, that is, that idLi6= is a faithful interpretation
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of WAP into AP if one restricts the attention to negatomic sequents. Since
σ¬(Γ ⇒ ∆) is negatomic for any (Γ ⇒ ∆) ∈ S(Li=), by Fact 3 we have
that σ = idLi 6= ◦ σ is a faithful interpretation of SEQ into AP.3

5. Suppose EQi ` τ¬ ◦ σ¬(Γ ⇒ ∆). Then, SEQi ` τ¬ ◦ σ¬(Γ ⇒ ∆) as well.
By Corollary 1 we have that also SEQi ` (Γ⇒ ∆).4

�

Thus, intuitionistic negation permits to interpret all theories we are consider-
ing in the theory of apartness APi. However, using σ¬ and τ¬ the theory of
apartenss APi cannot be interpreted into any other theory (except, of course,
itself).

This follows from the following:

Theorem 6. τ¬ is not an interpretation of APi in SEQi.

Proof. We need to show that there is a sequent (Γ ⇒ ∆) ∈ Li 6= such that
APi ` (Γ ⇒ ∆) and SEQi 0 τ¬(Γ ⇒ ∆). Let (Γ ⇒ ∆) be an instance of
co-transitivity x 6= y ⇒ x 6= z, z 6= y. Obviously, APi ` (Γ⇒ ∆). However, its
τ¬-translation, namely (¬x = y ⇒ ¬x = z,¬z = y) is not derivable in SEQi.
Let M i

2 be a model with three worlds α, β and γ such that α ≤ β and α ≤ γ
and three objects a, b and c in D such that:

a = a
b = b
c = c

α

a = c
c = a

β

c = b
b = c

γ

3We observe that Negri’s result fails for the first-order version of the theory, with the
negatomic sequent ¬∀z(¬¬z 6= x ∨ ¬¬z 6= y) ⇒ ¬x 6= y being a counterexample, see [van
Dalen et al., 1979, p. 95].

4We thank one of the referees for suggesting the proof of this point.
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Let ϕ(x), ϕ(y) and ϕ(z) be a, b and c, respectively. Clearly, α 
ϕ ¬x = y,
for δ 1ϕ x = y for all δ ≥ α. However, α 1ϕ ¬x = z and α 1ϕ ¬z = y,
for there exist two worlds ε, ε′ ≥ α such that ε 
ϕ x = z and ε′ 
ϕ y = z.
Therefore, M i

2 1 (¬x = y ⇒ ¬x = z,¬z = y). Additionally, we need to show
that M i

2 is in S E Qi. We leave to the reader to verify that = is an equivalence
relation, whereas to see that M i

2 
 (¬¬x = y ⇒ x = y), i.e., it satisfies also the
stability principle, it is enough to show that α 
ϕi (¬¬x = y ⇒ x = y), for all
i = 1, . . . , 9 such that:

1. ϕ1(x) and ϕ1(y) are a

2. ϕ2(x) is a and ϕ2(y) is b

3. ϕ3(x) is a and ϕ3(y) is c

4. ϕ4(x) is b and ϕ4(y) is a

5. ϕ5(x) and ϕ5(y) are b

6. ϕ6(x) is b and ϕ6(y) is c

7. ϕ7(x) is c and ϕ7(y) is a

8. ϕ8(x) is c and ϕ8(y) is b

9. ϕ9(x) and ϕ9(y) are c

With respect to assignments in (1), (5) and (9), the sequent holds at α since
the formula in their succedent is true at all worlds ≥ α. All other cases the
sequent has a formula in the antecedent which is false at both α and β, so the
whole sequent holds at α. �

We conclude this section establishing the following.

Theorem 7. τ¬ does not preserve APi in EQi.

Proof. We need to show that there exists a sequent (Γ ⇒ ∆) in Li 6= such
that EQi ` τ¬(Γ ⇒ ∆) and APi 0 (Γ ⇒ ∆). Let (Γ ⇒ ∆) be the stability of
apartness, nameley ¬¬x 6= y ⇒ x 6= y. We have that τ¬(Γ ⇒ ∆) := ¬¬¬x =
y ⇒ ¬x = y) which can be derived in EQi (see proof of Proposition 3 above)
and that (Γ⇒ ∆) is not derivable in APi (as shown by M i

2, the countermodel
to the stability of apartness in WAPi given in the proof of Proposition 6, that
is actually a model of APi). �

Since EQi is stricly included in SEQi, we have that:

Corollary 3. The following holds:

1. τ¬ is not an interpretation of APi in EQi.

2. τ¬ does not preserve APi in SEQi.
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5. Relating = and 6= with co-negation

By extending σ¬ and τ¬ to L= and L6= the results established in the pre-
vious section also applies to the bi-intuitionistic versions of the four theories of
equality and apartness considered so far. Moreover, using ¬in place of ¬ one
can define the two further translations σ ¬: L= → L6= as follows:

σ ¬(x = y) := ¬x 6= y τ ¬(x 6= y) := ¬x = y

Informally, one can read the translation σ ¬as an attempt to define equality
in terms of aparntess and co-negation by taking a refutation of x = y to be
a method to transform a refutation of x 6= y into a refutation of >; and the
translation τ ¬can be read as an attempt to define apartness in terms of equality
and co-negation by taking a refutation of x 6= y as a method to transform a
refutation of x = y into a refutation of >.

One may expect that these two translations can help in getting a more
symmetric picture of the relationship between theories of equality and theory
of apartness. This is to some extent the case. As in the previous section, to
improve readability we summarize the results to be established in this section
in Figure 2.

WAP

APEQ

SEQ

σ¬

τ ¬

τ¬

idL=

idL 6=

τ¬ ◦ σ¬

Fig. 2. Relating EQ, SEQ, AP and WAP with ¬ and ¬

Theorem 8. τ ¬is a non-faithful interpretation of AP in EQ.

Proof. To show that τ ¬is an interpretation it is enough to prove:
EQ ` τ ¬(x 6= x ⇒), EQ ` τ ¬(x 6= y ⇒ x 6= z, z 6= y) and EQ ` τ ¬(x 6= y ⇒
y 6= x):
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⇒ x = x
¬x = x⇒ L ¬

x = z, z = y ⇒ x = y
x = z ⇒ x = y, ¬z = y R ¬

⇒ x = y, ¬x = z, ¬z = y R ¬

¬x = y ⇒ ¬x = z, ¬z = y L ¬

y = x⇒ x = y
⇒ ¬y = x, x = y R ¬

¬x = y ⇒ ¬y = x L ¬

To show that τ ¬is not faithful it is enough to find a sequent (Γ ⇒ ∆) ∈
S(L6=) such that EQ ` τ ¬(Γ ⇒ ∆) and AP 0 (Γ ⇒ ∆). Take (Γ ⇒ ∆) to
be an instance of co-stability x 6= y ⇒ ¬¬x 6= y. Now, τ ¬(x 6= y ⇒ ¬¬x 6=
y) := ( ¬x = y ⇒ ¬¬¬x = y). But EQ ` ( ¬x = y ⇒ ¬¬¬x = y) (to see this
take the dual of the derivation of ¬¬¬x = y ⇒ ¬x = y in AP, see the proof of
Proposition 3). However, apartness is not co-stable in AP. To see this, consider
a Kripke model M3 with two worlds α and β such that β ≤ α and two objects
a and b in D such that:

a 6= b
b 6= a

αβ

Let ϕ(x) and ϕ(y) be a and b, respectively. Clearly α 1ϕ ¬¬x 6= y, since for all
worlds δ ≤ α, namely β and α itself, there is a world ε ≤ δ such that ε 1ϕ x 6= y.
However, α 1ϕ x 6= y. We leave to the reader to check that M3 ∈ A P. �

Thus using both intuitionistic negation and dual-intuitionistic co-negation
we can interpret not only WAP (as we already could using τ¬) but also AP into
EQ, and actually, by composing the different embeddings depicted in Figure 2,
we have that all four theories can be interpreted into one another:

Corollary 4. The following hold:

1. σ¬ ◦ τ ¬is an interpretation of AP in WAP;

2. τ ¬is an interpretation of AP in SEQ.

3. τ ¬is an interpretation of WAP in EQ.

4. τ ¬is an interpretation of WAP in SEQ.

The picture is however far from symmetric. Although we can embed the
theories of apartness into those of equality, none of the former ones can be
faithfully interpreted into any of the latter ones (in contrast to the fact that



Equality and Apartness in Bi-intuitinistic Logic 101

SEQ can be faithfully interpreted into WAP and AP). Moreover, whereas both
τ¬ and σ¬ interpret at least some theory based on one language into one based
on the other language, we have that σ ¬does not interpret EQ into AP, and
hence a fortiori neither EQ or SEQ into either WAP or AP:

Theorem 9. σ ¬is not an interpretation of EQ in AP.

Proof. We need to find a seqent (Γ⇒ ∆) ∈ S(L=) such that SEQ ` (Γ⇒ ∆)
and AP 0 σ ¬(Γ ⇒ ∆). Let (Γ ⇒ ∆) be x = z, z = y ⇒ x = y. Clearly,
EQ ` (Γ ⇒ ∆). We need to show that AP 0 σ ¬(x = z, z = y ⇒ x = y). Since
σ ¬(x = z, z = y ⇒ x = y) := ( ¬x 6= z, ¬z 6= y ⇒ ¬x 6= y), we only need to
show that there is a Kripke model satisfying the axioms of apartness in which
¬x 6= z, ¬z 6= y ⇒ ¬x 6= y fails. Let M4 be a Kripke model with three worlds

α, β and γ such that β ≤ α and γ ≤ α and three objects a, b and c in Dγ and
D such that:

a 6= b
b 6= a
c 6= b
b 6= c
c 6= a
a 6= c

α

a 6= c
c 6= a
a 6= b
b 6= a

β

a 6= c
c 6= a
b 6= c
c 6= b

γ

Again let ϕ(x), ϕ(y) and ϕ(z) be a, b and c, respectively. Clearly, α 
ϕ ¬x 6= y,
for there exists a world δ ≤ α, namely γ, such that δ 1ϕ x 6= y . Similarly,
α 
ϕ ¬x 6= y. However, α 1ϕ ¬x 6= z, since for all worlds δ ≤ α, namely γ, β
and α itself, δ 
ϕ x 6= z. We leave to the reader to verify that M4 ∈ A P. �
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6. Enriching the picture

As intuitionistic negation does not allow to interpret AP, but only its weak-
ening WAP into some theory of equality, one can expect that co-negation can
be used to interpret only a weakening of the theory of equality into some theory
of apartness.

Similarly, the non-faithfulness of the interpretation τ ¬of AP into EQ wit-
nessed by the co-stability of apartness clearly mirrors the non-faithfulness of
the interpretation σ¬ of EQ into WAP and AP resulting by the fact that the
translation of the stability of equality holds in both theories. This suggests that
in order for τ ¬to faithfully interpret some theory of apartness into a theory of
equality, the former must at least validate co-stability.

Given these considerations, we take into account two further theories based
on the languages L= and L 6=. One, to be called SAP is the strengthening of AP
obtained by adding to it initial sequents expressing the co-stability of apartness

x 6= y ⇒ ¬¬x 6= y

The other one, to be called WEQ is the weakening of EQ obtained by replacing
the initial sequents expressing transitivity and symmetry with initial sequents
expressing what we may call “co-negative co-transitivity” and “co-negative sym-
metry”:

¬x = y ⇒ ¬x = z, ¬z = y

¬x = y ⇒ ¬y = x

Theorem 10. σ ¬is a non-faithful interpretation of WEQ into AP.

Proof. We have to show that AP ` σ ¬(⇒ x = x), AP ` σ ¬( ¬x = y ⇒ ¬x =
z, ¬z = y) and AP ` σ ¬( ¬x = y ⇒ ¬y = x). This sequents can be derived
using the dual of the derivations used in the proof of Proposition 3.

To establish the non-failtfulness we reason as in Propostion 8. We need to
find a sequent (Γ⇒ ∆) ∈ S(L=) such that AP ` σ ¬(Γ⇒ ∆) and WEQ 0 (Γ⇒
∆). Take (Γ ⇒ ∆) to be x = y ⇒ ¬¬x = y. Now, σ ¬(x = y ⇒ ¬¬x = y) :=
( ¬x 6= y ⇒ ¬¬¬x 6= y) and AP ` ( ¬x 6= y ⇒ ¬¬¬x 6= y) (to see this take
replace = with 6= in the dual of the derivation of ¬¬¬x = y ⇒ ¬x = y in AP,
see the proof of Proposition 3). However, equality is not “co-stable” in WEQ.
To see this, consider a Kripke model M4 with two worlds α and β such that
β ≤ α and two objects a and b in D such that:
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a = a b = b
a = b b = a

α

β

Let ϕ(x) and ϕ(y) be a and b, respectively. Clearly α 1ϕ ¬¬x = y, since
for all worlds δ ≤ α, namely β and α itself, there is a world ε ≤ δ such that
ε 1ϕ x = y. However, α 1ϕ x = y. We leave to the reader to check that
M4 ∈ W E Q (in fact M4 ∈ E Q). �

To establish the next proposition we will need the following:

Lemma 2. For all A ∈ L6=:

1. SAP ` (A⇒ σ ¬◦ τ ¬(A))

2. SAP ` (σ ¬◦ τ ¬(A)⇒ A)

Proof. As in the proof of Lemma 1, we establish the two claims by simultaneous
induction on A:

• A is x 6= y. Clearly, SAP ` ( ¬¬x = y ⇒ x = y):

x 6= y ⇒ x 6= y

⇒ x 6= y, ¬x 6= y
R ¬

¬¬x 6= y ⇒ x 6= y
L ¬

and obviously SAP ` (x = y ⇒ ¬¬x = y) given the co-stability initial
sequents.

• A is P ,> or ⊥. Obvious.

• A is B ⊃ C. The case is proved as the corresponding case of Lemma 1,
it suffice to replace τ¬ ◦ σ¬ with σ ¬◦ τ ¬.

• A is B ∧ C or B ∨ C. Similar to the previous case.

�

Corollary 5. σ ¬◦ τ ¬is a faithful interpretation of SAP into itself.

Proof. The proof follows the same pattern of that of Corollary 1. �
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We can now show that:

Theorem 11. τ ¬is a faithful interpretation of SAP into WEQ.

Proof.To show that τ ¬is an interpretation, we have to show that WEQ `
τ ¬(x 6= x ⇒), WEQ ` τ ¬(x 6= y ⇒ x 6= z, z 6= y), WEQ ` τ ¬(x 6= y ⇒ y 6= x)
and WEQ ` τ ¬(x 6= y ⇒ ¬¬x 6= y).

The sequent τ ¬(x 6= x ⇒) can be derived as in EQ (see proof of Pro-
position 8), while τ ¬(x 6= y ⇒ x 6= z, z 6= y) and τ ¬(x 6= y ⇒ y 6= x)
are obviously derivable in WEQ, being initial sequents. Finally, one can see
that WEQ ` ¬x 6= y ⇒ ¬¬¬x = y by taking the dual of the derivation of
¬¬¬x 6= y ⇒ ¬x 6= y in WAP in the proof of Proposition 4.

To show faithfulness, we need to show that, for all (Γ ⇒ ∆) ∈ S(L 6=),
if WEQ ` τ ¬(Γ ⇒ ∆), then SAP ` (Γ ⇒ ∆). We reason as in the proof
of Proposition 4. If WEQ ` τ ¬(Γ ⇒ ∆), then by Proposition 10, SAP `
σ ¬(τ ¬(Γ⇒ ∆)) and by Corollary 5 SAP ` (Γ⇒ ∆). �

We summarize our results in Figure 3.

WEQ WAP

APEQ

SEQ SAP

σ¬ τ ¬

τ¬

idL=

idL=

σ ¬

idL 6=

idL 6=

τ¬ ◦ σ¬ σ ¬◦ τ ¬

Fig. 3. Relating WEQ, EQ, SEQ, WAP, AP and SAP with ¬ and ¬

7. Concluding remarks

By considering theories of equality and apartness on the background of
bi-intuitionistic logic we attained a fully symmetric picture of the relationship
between the two notions. In particular we could show that not only the theories
of equality can be embedded into those of apartness, but the other way around
as well. However, we still lack a faithful interpretation of EQ into any theory
of apartness, and of AP in any theory of equality. We leave this to future work.
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The investigation undertaken in the present work can be further pursued
into different directions.

First, notice that a priori there are eight possibile translations, i.e., σi ◦ τ j
for i, j ∈ {¬, ¬}. However, only two have been explicitly considered here.
Our choice was motivated primarily by the fact that these two translation
are enough to provide a fully symmetric picture of the relationships among
the various theories presented, but of course it would be certainly interesting
to consider translations combining intuitionistic and co-intuitionistic negation.
We expect that in this case, bi-intuitionistic “mixed” double-negation laws such
as ¬ ¬A⇒ A and A⇒ ¬¬A will play a prominent role.5

Secondly, the partial faithfulness results of [Negri, 1999] for the negatomic
fragment suggest the possibility of establishing similar results using co-negation.

Thirdly, it seems natural to consider further bi-intuitionistic theories beyond
those considered in the present paper. On the one hand, one may consider the
theory of paraconsistent apartness as based on dual-intuitionistic logic, i.e.,
in the implication-free fragment of L6=, as is done in [Brunner, 2004]. Another
possibility is to apply the idea underlying the present paper to the investigation
of the theory of positive lattices [von Plato, 2001] by extending our theories with
operators of join and meet.

Finally, one could investigate the notions of equality and apartness (as well
as other notions) on the basis of other constructive systems based on a sym-
metry between positive and negative notions, such as Nelson’s logic of con-
structible falsity [Nelson, 1949], or Wansing’s 2-intuitionistic logic [Wansing,
2016].
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1. Introduction

Quasi-Nelson algebras are the subvariety of commutative integral bounded
residuated lattices (CIBRLs, see [Galatos et al., 2007]) obtained by adding the
Nelson identity :

(x⇒ (x⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x⇒ y.

In an involutive context (i.e. if the double negation law ∼∼x ≈ x is also
satisfied), the Nelson identity characterizes the class of Nelson algebras, the
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equivalent algebraic semantics of Nelson’s constructive logic with strong neg-
ation [Nelson, 1949]. Quasi-Nelson algebras, however, need not be involutive;
indeed, it is easy to verify that every Heyting algebra (viewed as a CIBRL)
satisfies the Nelson identity. Quasi-Nelson algebras are thus a common gener-
alization of Heyting algebras and Nelson algebras.

The logic of quasi-Nelson algebras corresponds to the axiomatic exten-
sion of the Full Lambek Calculus with exchange (e) and weakening (w),
FLew ([Galatos et al., 2007]) obtained by adding the Nelson Axiom:

(ϕ⇒ (ϕ⇒ ψ)) ∧ (∼ψ ⇒ (∼ψ ⇒ ∼ϕ))⇒ (ϕ⇒ ψ).

As such, quasi-Nelson logic is algebraizable, and has the class of quasi-
Nelson algebras as its equivalent algebraic semantics (see [Liang, Nascimento,
2019]; for further information and motivation on quasi-Nelson algebras, see
also [Rivieccio, Spinks, 2018; Rivieccio, Jansana, 2020; Rivieccio, Spinks,
2021]).

The language of (quasi-)Nelson logic includes two implication connect-
ives, the strong implication (⇒) that satisfies the residuation property and
the weak implication (→) that enjoys the standard version of the Deduction-
Detachment Theorem. Both quasi-Nelson and Nelson’s logic can be axio-
matized by taking any of the two implications as primitive, defining the
other through the following terms: p → q := p ⇒ (p ⇒ q) and
p ⇒ q := (p → q) ∧ (∼ q → ∼ p). From each of the above implications (and
the falsity constant 0) a negation can be defined in the standard way. In the
case of Nelson’s logic, the definition ∼ p := p ⇒ 0 yields the strong involutive
negation, whereas ¬p := p → 0 is sometimes referred to as the “intuitionistic
negation”. However, in the case of quasi-Nelson logics the above terminology is
less meaningful because neither of the two negations is involutive.

Like Nelson algebras, also quasi-Nelson algebras can be represented as so-
called twist-structures, though the twist construction needs to be generalized
to account for the non-involutivity of the negation (see [Rivieccio, Spinks,
2018; Rivieccio, Spinks, 2021]). Further generalizations allow us to give twist
representations for some subreducts of quasi-Nelson algebras: see the recent
papers [Rivieccio, Jansana, 2020; Rivieccio, 2020a; Rivieccio, 2020b; Rivieccio,
2020c]. In the present paper we are in particular interested in the representation
of QNI-algebras given in [Rivieccio, Jansana, 2020, Theorem 5], corresponding
to the {→,∼}-subreducts of quasi-Nelson algebras. This twist construction
proved to be quite useful for establishing results regarding congruences, sub-
directly irreducible algebras and subvarieties of QNI-algebras; see [Rivieccio,
2020a] for more details.
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As mentioned earlier, quasi-Nelson logic is algebraizable in the sense
of [Blok, Pigozzi, 1989]. As a set of equivalence formulas one can take
∆(ϕ,ψ) = {ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ}, and as defining equation
E(ϕ) = {ϕ ≈ ϕ→ ϕ}. These observations entail that the {→,∼}-fragment of
quasi-Nelson logic must also be algebraizable, with the same translations, with
respect to the corresponding subreducts of quasi-Nelson algebras (see e.g. [Font,
2016, Proposition 3.29]). In the present paper, we introduce a finite Hilbert-
style calculus that characterizes the {→,∼}-fragment of quasi-Nelson logic.
Indeed, we show that our calculus is algebraizable with respect to the variety
of QNI-algebras introduced in [Rivieccio, Jansana, 2020].

We shall proceed in the following way. In Section 2. we introduce QNI-alge-
bras and a lemma that will be useful in order to prove the equivalence between
the variety of QNI-algebras and Alg∗(LQNI), the equivalent quasivariety se-
mantics corresponding to our calculus. In Section 3. we introduce the QNI-cal-
culus and state the Deduction Theorem. In Section 4. we prove that QNI-logic
is algebraizable and give a quasi-equational presentation for Alg∗(LQNI). In
Section 5. we prove that the class of QNI-algebras and Alg∗(LQNI) coincide.
We obtain as a corollary that the class Alg∗(LQNI) has equationally defin-
able principal congruences (EDPC). In Section 6. we give the equation that
defines principal congruences on Alg∗(LQNI), and we consider a few axiomatic
extensions of QNI-logic, including (the negation-implication fragments of) in-
tutionistic logic and Nelson’s constructive logic with strong negation.

2. Preliminaries

In this section we recall the definition and a few properties of the class of
{→,∼}-subreducts of quasi-Nelson algebras introduced in [Rivieccio, 2020a].

Given an algebra A = 〈A;→,∼, 0, 1〉 and elements a, b ∈ A, we will write
a ≡ b as a shorthand for a→ b = b→ a = 1. We will also employ the following
abbreviations: a� b := ∼(a→ ∼ b) and

β(a, b, c) := (a→ b)→ ((b→ a)→ ((∼ a→ ∼ b)→ ((∼ b→ ∼ a)→ c))).

Definition 1 ([Rivieccio, 2020a], Definition 3.1). An algebra
A = 〈A;→,∼, 0, 1〉 of type 〈2, 1, 0, 0〉 is a quasi-Nelson implication algebra
(QNI-algebra) if the following properties are satisfied, for all a, b, c, d ∈ A:

(1) 1→ a = a

(2) a→ (b→ a) = a→ a = 0→ a = 1

(3) a→ (b→ c) = b→ (a→ c) = (a→ b)→ (a→ c)

(4) ∼ a→ (∼ b→ c) = (∼ a�∼ b)→ c
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(5) β(a, b, a) = β(a, b, b)

(6) if ∼ a→ ∼ b = 1, then ∼ a→ (∼ a�∼ b) = 1

(7) a� (b� c) ≡ (a� b)� c

(8) a� b ≡ b� a

(9) if a ≡ b and c ≡ d, then a→ c ≡ b→ d and a� c ≡ b� d

(10) ∼ a = ∼∼∼ a

(11) ∼ 1 = 0 and ∼ 0 = 1

(12) (a→ b)→ (∼∼ a→ ∼∼ b) = 1.

(13) a→ ∼∼ a = 1

(14) if a→ b = 1, then a� c→ b� c = 1 and c� a→ c� b = 1

(15) a� (a→ b) ≡ a� b

(16) a� b ≡ ∼∼ a�∼∼ b

(17) ∼(a→ b) ≡ ∼(∼∼ a→ ∼∼ b).

We shall denote by QNI the class of QNI-algebras. By definition, QNI is a
quasivariety; it was shown in [Rivieccio, 2020a, Corollary 3.15] that QNI is in
fact a variety.

Lemma 1 ([Rivieccio, 2020a], Lemma 3.3). Let A ∈ QNI and a, b, c ∈ A.
Then:

(1) (∼ a�∼ b)→ ∼ a = (∼ a�∼ b)→ ∼ b = 1.

(2) If a→ b = 1 and b→ c = 1, then a→ c = 1.

(3) The relation ≤ defined by a ≤ b iff (a → b = 1 and ∼ b → ∼ a = 1) is a
partial order on A, with minimum 0 and maximum 1.

3. A Hilbert calculus for QNI logic

In this section we introduce a Hilbert-style calculus that determines a logic
(in the sense of [Hamilton, 1978]) henceforth denoted by LQNI. Our aim is
to show that LQNI is regularly algebraizable, and that its equivalent algebraic
semantics is precisely the variety QNI.



Negation and Implication in Quasi-Nelson Logic 111

Fix a denumerable set Atprop of propositional variables. We use letters
p, q, r etc. to refer to generic elements of Atprop. The propositional language L
of LQNI over Atprop is defined recursively as follows:

ϕ ::= p | ∼ϕ | ϕ→ ϕ.

Consistently with the above-introduced notation for QNI-algebras, we abbre-
viate ϕ � ψ := ∼(ϕ → ∼ψ). The Hilbert-calculus for LQNI consists of the
following axiom schemes:

AX1 ϕ→ (ψ → ϕ)

AX2 (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ))

AX3 ∼∼∼ϕ→ ∼ϕ

AX4 (ϕ→ ψ)→ (∼∼ϕ→ ∼∼ψ)

AX5 ϕ→ ∼∼ϕ

AX6 (ϕ� (ϕ→ ψ))→ (ϕ� ψ)

AX7 ∼∼ϕ→ (∼ψ → ∼(ϕ→ ψ))

AX8 ∼(ϕ→ ψ)→ ∼ψ

AX9 ∼(ϕ→ ψ)→ ∼∼ϕ

AX10 ∼(ϕ→ ϕ)→ ψ.

The only rule is modus ponens (MP): from ϕ and ϕ→ ψ, derive ψ.
The proof of the following result is the standard one by induction on the

length of derivations.

Theorem 1 (Deduction-Detachment Theorem). If Φ ∪ {ϕ} `LQNI ψ, then
Φ `LQNI ϕ→ ψ.

Lemma 2.

(1) ∅ `LQNI ϕ→ ϕ

(2) {ϕ→ ψ,ψ → χ} `LQNI ϕ→ χ.
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4. LQNI is (regularly) algebraizable

In this section we prove that LQNI is regularly algebraizable. Using this
result, we axiomatize the equivalent algebraic semantics of LQNI via the al-
gorithm of [Blok, Pigozzi, 1989, Theorem 2.17]. We then prove that the class
of algebras thus obtained is equivalent to the class QNI given in Definition 1.
Given the formula algebra Fm, the associated set of equations, Fm×Fm, will
henceforth be denoted by Eq. We abbreviate an equation 〈ϕ,ψ〉 as ϕ ≈ ψ.

Theorem 2. A logic L is algebraizable if and only if there are a set of equations
E(ϕ) ⊆ Eq and a set of formulas ∆(ϕ,ψ) ⊆ Fm, such that:

(Alg) ϕ a`L ∆(E(ϕ))

(Ref) ∅ `L ∆(ϕ,ϕ)

(MP) ϕ,∆(ϕ,ψ) `L ψ

(Cong) for each n-ary operator •,⋃n
i=1 ∆(ϕi, ψi) `L ∆(•(ϕ1, . . . , ϕn), •(ψ1, . . . , ψn)).

We call any such E(ϕ) a set of defining equations and any such ∆(ϕ,ψ) a set
of equivalence formulas of L.

Definition 2. A logic L is regularly algebraizable when it is algebraizable and
satisfies:

(G) ϕ,ψ `L ∆(ϕ,ψ)

for any non-empty set ∆(ϕ,ψ) of equivalence formulas.

Proposition 1. LQNI is regularly algebraizable with ∆(ϕ,ψ) := {ϕ → ψ,
ψ → ϕ,∼ϕ→ ∼ψ,∼ψ → ∼ϕ} and E(ϕ) := {ϕ ≈ ϕ→ ϕ}.

Proof. As to (Alg), it suffices to prove that ϕ a`LQNI {ϕ → (ϕ → ϕ),
(ϕ → ϕ) → ϕ,∼ϕ → ∼(ϕ → ϕ),∼(ϕ → ϕ) → ∼ϕ}. From right to left,
thanks to Lemma 2.1, we have that ϕ → ϕ is a theorem and from ϕ → ϕ and
(ϕ → ϕ) → ϕ we get ϕ by using modus ponens. From left to right, we will
prove that (i) ϕ `LQNI ∼ϕ → ∼(ϕ → ϕ) and (ii) ϕ `LQNI ∼(ϕ → ϕ) → ∼ϕ,
the other two proofs easily follow from AX1. For (i),

1. ϕ Assumption
2. ϕ→ (∼ϕ→ ∼(ϕ→ ϕ)) AX7
3. ∼ϕ→ ∼(ϕ→ ϕ) 1, 2, MP

For (ii), notice that it is just AX10.
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In order to prove Ref , it is necessary to show that ∅ `LQNI {ϕ → ϕ,
∼ϕ → ∼ϕ}, and it is Lemma 2.1. (MP) is a straightforward consequence of
modus ponens.

As to (Cong), we need to prove for each connective • ∈ {→,∼}. For (∼),
we need to prove that: (i) {ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} `LQNI

∼ϕ → ∼ψ and {ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} `LQNI ∼ψ → ∼ϕ.
The two deductions follow by our hypothesis. And we also need to prove
(ii) {ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} `LQNI ∼∼ϕ → ∼∼ψ and
{ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ} `LQNI ∼∼ψ → ∼∼ϕ. The two
deductions follow from AX4 together with our hypothesis. For (→), we need
to prove that: (i) {ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 → ∼ψ1,∼ψ1 → ∼ϕ1} ∪ {ϕ2 →
ψ2, ψ2 → ϕ2,∼ϕ2 → ∼ψ2,∼ψ2 → ∼ϕ2} `LQNI (ϕ1 → ϕ2) → (ψ1 → ψ2) and
{ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 → ∼ψ1,∼ψ1 → ∼ϕ1}∪{ϕ2 → ψ2, ψ2 → ϕ2,∼ϕ2 →
∼ψ2,∼ψ2 → ∼ϕ2} `LQNI (ψ1 → ψ2) → (ϕ1 → ϕ2) , they can be shown by
Lemma 2.2; (ii) {ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 → ∼ψ1,∼ψ1 → ∼ϕ1} ∪ {ϕ2 →
ψ2, ψ2 → ϕ2,∼ϕ2 → ∼ψ2,∼ψ2 → ∼ϕ2} `LQNI ∼(ϕ1 → ϕ2) → ∼(ψ1 → ψ2)
and {ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 → ∼ψ1,∼ψ1 → ∼ϕ1} ∪ {ϕ2 → ψ2, ψ2 →
ϕ2,∼ϕ2 → ∼ψ2,∼ψ2 → ∼ϕ2} `LQNI ∼(ψ1 → ψ2) → ∼(ϕ1 → ϕ2), we only
prove the first one, the other proof is similar and hence omitted. Thanks to
Theorem 1, in order to prove that {ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 → ∼ψ1,∼ψ1 →
∼ϕ1} ∪ {ϕ2 → ψ2, ψ2 → ϕ2,∼ϕ2 → ∼ψ2,∼ψ2 → ∼ϕ2} `LQNI ∼(ϕ1 →
ϕ2) → ∼(ψ1 → ψ2) is sufficient to prove that {ϕ1 → ψ1, ψ1 → ϕ1,∼ϕ1 →
∼ψ1,∼ψ1 → ∼ϕ1} ∪ {ϕ2 → ψ2, ψ2 → ϕ2,∼ϕ2 → ∼ψ2,∼ψ2 → ∼ϕ2} ∪
{∼(ϕ1 → ϕ2)} `LQNI ∼(ψ1 → ψ2)

1. ϕ1 → ψ1 Assumption
2. ∼∼ϕ1 → ∼∼ψ1 Lemma 3.6
3. ∼(ϕ1 → ϕ2) Assumption
4. ∼ϕ2 Lemma 3.2
5. ∼∼ϕ1 Lemma 3.3
6. ∼ϕ2 → ∼ψ2 Assumption
7. ∼ψ2 4, 6, MP
8. ∼∼ψ1 2, 5, MP
9. ∼(ψ1 → ψ2) 7, 8, Lemma 3.1

It remains to prove (G), that is, that ϕ,ψ `LQNI {ϕ → ψ,ψ → ϕ,
∼ψ → ∼ϕ,∼ϕ → ∼ψ}. The deductions ϕ,ψ `LQNI ϕ → ψ and ϕ,ψ `LQNI

ψ → ϕ follow from the deduction theorem. Now, that ϕ,ψ `LQNI ∼ϕ → ∼ψ
and ϕ,ψ `LQNI ∼ψ → ∼ϕ follow from deduction theorem together with AX7
and AX10. �
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We now apply [Czelakowski, Pigozzi, 2004, Theorem 30] to obtain a present-
ation of the equivalent algebraic semantics of LQNI.

Theorem 3. Let L be a logic axiomatized by a set Ax of axioms and a set Ru
of proper inference rules. Assume L is regularly algebraizable with a finite set
of equivalence formulas ∆(ϕ,ψ) = {ε0(ϕ,ψ), · · · , εn−1(ϕ,ψ)}. Let > be a fixed
but arbitrary theorem of L. Then the unique equivalent quasivariety semantics
of L is defined by the following identities and quasi-identities:

(1) ϕ ≈ > for each ϕ ∈ Ax.

(2) (ψ0 ≈ >, · · · , ψp ≈ >) implies ϕ ≈ >, for each inference rule
ψ0, · · · , ψp ` ϕ in Ru.

(3) ∆(ϕ,ψ) ≈ > implies ϕ ≈ ψ.

In the above theorem, ∆(ϕ,ψ) ≈ > means that γ ≈ > for each γ ∈ ∆(ϕ,ψ).
Thanks to [Font, 2016, Proposition 3.47], we know that given a logic L that is
regularly algebraizable with equivalent algebraic semantics the class K, if ϕ is
any theorem of L, then ϕ is an algebraic constant of the class K. Having this
in mind, from now on we will let 1 := ϕ → ϕ and 0 := ∼(ϕ → ϕ). Applying
Theorem 3 to our calculus LQNI, we obtain the following axiomatization of
Alg∗(LQNI).

Proposition 2. The class Alg∗(LQNI) is axiomatized in the following way:

(1) ϕ ≈ 1 for each axiom ϕ of LQNI.

(2) If ϕ ≈ 1 and ϕ→ ψ ≈ 1, then ψ ≈ 1.

(3) If ϕ→ ψ ≈ ψ → ϕ ≈ ∼ϕ→ ∼ψ ≈ ∼ψ → ∼ϕ ≈ 1, then ϕ ≈ ψ.

5. Alg∗(LQNI) = QNI

In this section we prove that the class of QNI-algebras (Definition 1) coin-
cides with the class Alg∗(LQNI) given in Proposition 2.

Proposition 3. Alg∗(LQNI) ⊆ QNI.

Proof. Given A ∈ Alg∗(LQNI), we will prove that A satisfies all equations
and quasi-equations given in Definition 1. Recall that from Proposition 2.3, we
have that if ϕ→ ψ ≈ ψ → ϕ ≈ ∼ϕ→ ∼ψ ≈ ∼ψ → ∼ϕ ≈ 1, then ϕ ≈ ψ.

The proofs of (1), (3), (4) and (5) are very similar to one another; we show
the proof of (3) by way of an example. We have to prove that (ϕ → (ψ →
γ)) ≈ ((ϕ → ψ) → (ϕ → γ)). We are going to show that (ϕ → (ψ → γ)) →
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((ϕ → ψ) → (ϕ → γ)) ≈ 1, ((ϕ → ψ) → (ϕ → γ)) → (ϕ → (ψ → γ)) ≈ 1,
∼(ϕ → (ψ → γ)) → ∼((ϕ → ψ) → (ϕ → γ)) ≈ 1 and ∼((ϕ → ψ) →
(ϕ → γ)) → ∼(ϕ → (ψ → γ)) ≈ 1. The desired result will then follow from
Proposition 2.3. Thanks to Lemma 4.1 and Lemma 4.2, ∼(ϕ → (ψ → γ)) →
∼((ϕ → ψ) → (ϕ → γ)),∼((ϕ → ψ) → (ϕ → γ)) → ∼(ϕ → (ψ → γ)) are
theorems of LQNI and therefore by Proposition 2.1 we conclude that ∼(ϕ →
(ψ → γ)) → ∼((ϕ → ψ) → (ϕ → γ)) = 1,∼((ϕ → ψ) → (ϕ → γ)) → ∼(ϕ →
(ψ → γ)) ≈ 1, the same applies to (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ))
and ((ϕ → ψ) → (ϕ → γ)) → (ϕ → (ψ → γ)). As to (2), we have to prove
that ϕ → (ψ → ϕ) ≈ 1, ϕ → ϕ ≈ 1 and 0 → ϕ ≈ 1, since ϕ → (ψ → ϕ),
ϕ → ϕ and 0 → ϕ are theorems of LQNI (AX1, Lemma 2.1 and AX10,
respectively), thanks to Proposition 2.1 we have the desired equalities. As to
(6), we have to prove that if ∼ϕ → ∼ψ ≈ 1, then ∼ϕ → (∼ϕ � ∼ψ) ≈ 1.
Since (∼ϕ→ ∼ψ)→ (∼ϕ→ (∼ϕ�∼ψ)) is a theorem of LQNI, Lemma 4.6,
we conclude from Proposition 2.2 the equality. As to (7), it is just application
of Lemmas 4.10 and 4.11. And for (8), notice that is just application of Lemma
4.3. As to (9), supposing that ϕ → ψ ≈ 1, ψ → ϕ ≈ 1, γ → δ, δ → γ ≈ 1,
we want to prove that (ϕ → γ) → (ψ → δ) ≈ 1, (ψ → δ) → (ϕ → γ) ≈ 1
and that (ϕ → γ) � (ψ → δ) ≈ 1, (ψ → δ) � (ϕ → γ) ≈ 1, since (ψ →
ϕ) → ((γ → δ) → ((ϕ → γ) → (ψ → δ)) and (ψ → ϕ) → ((δ → γ) →
((ψ → δ) → (ϕ → γ))) are theorems of LQNI, Proposition 2.2 give us the
desired equalities. The same idea is applied to (ϕ → γ) � (ψ → δ) ≈ 1, (ψ →
δ)� (ϕ→ γ) ≈ 1. In order to prove (10) notice that Lemma 3.4 and 3.5 give us
that ∼ϕ → ∼∼∼ϕ,∼∼∼ϕ → ∼ϕ,∼∼ϕ → ∼∼∼∼ϕ,∼∼∼∼ϕ → ∼∼ϕ
are theorems of LQNI and therefore from Proposition 2.3, we conclude that
∼ϕ ≈ ∼∼∼ϕ. In order to prove (11), notice that 0 := ∼(ϕ → ϕ) and that
∼∼(ϕ → ϕ) is a theorem of LQNI, then thanks to Proposition 2.1, ∼∼(ϕ →
ϕ) ≈ 1, i.e, ∼ 0 ≈ 1. As to (12), it is just application of AX4. From AX5 and
Proposition 2.1, we have that ϕ → ∼∼ϕ ≈ 1, and it proves (13). As to (14),
supposing that ϕ→ ψ ≈ 1, we have to prove that (ϕ� γ)→ (ψ � γ) ≈ 1 and
that (γ � ϕ)→ (γ � ψ) ≈ 1, and it is Lemma 4.3, Lemma 4.7 and Proposition
2.1. (15), (16) and (17) are AX6, Lemma 4.4 and Lemma 4.5 together with
Proposition 2.2. �

Proposition 4. QNI ⊆ Alg∗(LQNI).

Proof. First for all, we will prove that A satisfies ϕ ≈ 1 for each axiom ϕ of
LQNI. In the proof below, the notation E(AX1) means ϕ ≈ 1 being ϕ the first
axiom of LQNI and so on.

As to E(AX1) and E(AX2), notice that thanks to (3), ϕ → (ψ → ϕ) ≈
1 and (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ)) ≈ 1. As to E(AX3),



116 Thiago Nascimento, Umberto Rivieccio

notice that thanks to (10) we have that ∼ϕ → ∼∼∼ϕ ≈ 1. As to E(AX4),
E(AX5) and E(AX6) notice that thanks to (12), (13) and (15), respectively,
we have the equality. As to E(AX7), notice that thanks to (4), we have that
∼∼ϕ→ (∼ψ → (∼∼ϕ�∼ψ)) ≈ (∼∼ϕ�∼ψ)→ (∼∼ϕ�∼ψ) and since
ϕ → ϕ ≈ 1 from (2), we conclude that ∼∼ϕ → (∼ψ → (∼∼ϕ � ∼ψ)) ≈ 1.
Now, notice that (∼∼ϕ � ∼ψ) ≈ ∼(∼∼ϕ → ∼∼ψ) and thanks to (17),
∼(∼∼ϕ → ∼∼ψ) ≡ ∼(ϕ → γ) and now from Lemma 1.2 we conclude that
∼∼ϕ → (∼ψ → ∼(ϕ → ψ)) ≈ 1. As to E(AX8) and E(AX9), notice that
thanks to (16) and Lemma 1.1 we have that ∼(ϕ → ψ) → ∼∼ϕ ≈ 1 and
∼(ϕ → ψ) → ∼ψ ≈ 1. As to E(AX10), it is (2). In order to prove that If
ϕ ≈ 1 and ϕ → ψ ≈ 1, then ψ ≈ 1, thanks to (1), since ϕ → ψ ≈ ψ, given
that ϕ → ψ ≈ 1 we conclude that ψ ≈ ϕ → ψ ≈ 1. It remains to prove that
if ϕ → ψ ≈ 1, ψ → ϕ ≈ 1,∼ϕ → ∼ψ ≈ 1 and ∼ψ → ∼ϕ ≈ 1, then ϕ ≈ ψ.
Thanks to Lemma 1.3 we conclude that from ϕ→ ψ ≈ 1 and ∼ψ → ∼ϕ ≈ 1,
ϕ ≤ ψ and from ψ → ϕ ≈ 1 and ∼ϕ → ∼ψ ≈ 1, ψ ≤ ϕ. From the two
inequalities we conclude that ϕ ≈ ψ. �

6. Extensions of LQNI and EDPC

In this section we look at some extensions of LQNI.

Proposition 5. The {→,∼}-fragment of intuitionistic propositional logic is a
strengthening of LQNI obtained by adding any of the axioms below:

(1) (ϕ→ ψ)→ (∼ψ → ∼ϕ)

(2) (ϕ→ ∼ψ)→ (ψ → ∼ϕ)

(3) (ϕ→ ∼(ϕ→ ϕ))→ ∼ϕ

(4) ∼(ϕ� (ϕ→ ϕ))→ ∼ϕ

(5) ∼(ϕ� ψ)→ ∼(ψ � ϕ)

(6) ∼(∼∼ϕ� (ϕ→ ϕ))→ ∼((ϕ→ ϕ)�∼∼ϕ)

(7) (ϕ→ ∼ϕ)→ ∼ϕ

(8) ∼(ϕ� ϕ)→ ∼ϕ.

Proof. Thanks to [Rivieccio, 2020a, Proposition 4.26 (iii)], we know that a
QNI-algebra A is a bounded Hilbert algebra iff A satisfies any of the equations
in [Rivieccio, 2020a, Lemma 4.25], the axioms (1), (2), (3), (4), (5) and (6)
are equivalent to the equations (i), (ii), (iii), (v), (vi) and (vii), respectively.
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In order to prove that (7) and (8) are equivalent, observe that (ϕ → ∼ϕ) →
∼(ϕ� ϕ) and ∼(ϕ� ϕ)→ (ϕ→ ∼ϕ) (See Lemma 4.9) are theorems of LQNI.
In order to finish the equivalence, observe that (ϕ→ ∼ϕ)→ (ϕ→ ∼(ϕ→ ϕ))
and (ϕ→ ∼(ϕ→ ϕ))→ (ϕ→ ∼ϕ) are theorems of LQNI. �

In order to axiomatize the {→,∼}-fragment of Nelson’s constructive logic
with strong negation, it is enough to add the involutive axiom (∼∼ϕ→ ϕ) to
LQNI. In order to obtain classical logic, we can add any of the following axioms
to LQNI:

(1) {(ϕ� (ϕ→ ϕ))→ ϕ,∼(ϕ� (ϕ→ ϕ))→ ∼ϕ}

(2) (∼ϕ→ ∼ψ)→ (ψ → ϕ)

(3) {(ϕ� ϕ)→ ϕ,∼(ϕ� ϕ)→ ∼ϕ}.

Proof. (1) and (2) are the logical counterparts identities in [Rivieccio, 2020a,
Proposition 4.26 (iv))]. In order to prove that (1) and (3) are equivalent,
suppose that (ϕ� ϕ)→ ϕ. Thanks to AX6, it follows that (ϕ� (ϕ→ ϕ))→
(ϕ � ϕ) and by using Lemma 2.2 it follows that (ϕ � (ϕ → ϕ)) → ϕ. Now,
suppose that ∼(ϕ�ϕ)→ ∼ϕ, as ∼(ϕ� (ϕ→ ϕ))→ ∼(ϕ�ϕ) is a theorem of
LQNI (Lemma 4.8), it follows by Lemma 2.2 that ∼(ϕ� (ϕ→ ϕ))→ ϕ. �

Remark 1. Consider the algebra A with universe {0, 12 , 1} and operations
given by the following tables:

∼
0 1
1
2

1
2

1 0

→ 0 1
2 1

0 1 1 1
1
2 1 1 1
1 0 1

2 1

It is not difficult to show that A is a QNI-algebra that witnesses
∼(ϕ � ψ) 6`LQNI ∼(ψ � ϕ). This entails that LQNI is not self-extensional,
see [Font, 2016, Definition 5.24] for a definition of self-extensionality.

It is well known that an algebraizable logic L with equivalent algebraic
semantics a variety K has the Deduction-Detachment Theorem if and only if K
has EDPC. Since LQNI enjoys the DDT (Theorem 1), we know that Alg∗(LQNI)
has EDPC. We give below the equations witnessing this.

Definition 3 ([Blok, Pigozzi, 1994]). An algebra A has definable principal
congruences (DPC) if there is a first-order formula ϕ(x, y, z, w) such that, for
all a, b, c, d ∈ A,

A |= ϕ[a, b, c, d]⇐⇒ c ≡ d (mod Θ(a, b)).
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A has equationally definable principal congruences (EDPC) if ϕ can be
taken to be a finite conjunction of identities pi(x, y, z, w) ≈ qi(x, y, z, w), for
i ∈ ω. A class K of algebras has EDPC if a single equation or conjunction of
equations defines principal congruences on every member of K.

Proposition 6 ([Font, 2016] Corollary 3.81). Let L be an algebraizable logic
with equivalent algebraic semantics a variety K. Then L satisfies the DDT if
and only if K has EDPC.

Theorem 4 ([Rivieccio, Jansana, 2020] Corollary 34). The term β(x, y, z)
satisfies:

c ≡ d (mod Θ(a, b))⇐⇒ β(a, b, c) ≈ β(a, b, d).

7. Conclusions and future work

As observed in [Rivieccio, 2020a], the translations that witness the algeb-
raizability of (quasi-)Nelson logic can be defined using different choices of con-
nectives. For the defining equation, one can let E(ϕ) := {ϕ ≈ ϕ → ϕ}, or
E(ϕ) := {ϕ ≈ 1}, or E(ϕ) := {ϕ ≈ ϕ → ϕ}, or E(ϕ) := {ϕ ≈ ϕ ↔ ϕ}, or
E(ϕ) := {ϕ ≈ ϕ ⇔ ϕ}, where ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) and ϕ ⇔ ψ :=
(ϕ → ψ) ∗ (ψ → ϕ), etc. For the equivalence formulas, one has for instance
the following options: ∆(ϕ,ψ) := {ϕ ⇔ ψ}, ∆(ϕ,ψ) := {ϕ ⇒ ψ,ψ ⇒ ϕ},
∆(ϕ,ψ) := {ϕ → ψ,ψ → ϕ,∼ϕ → ∼ψ,∼ψ → ∼ϕ}, etc. Indeed, one can
show that every fragment of quasi-Nelson logic containing either {⇒} or {⇔}
or {→,∼} is algebraizable.

With regards to future research, the above considerations suggest that a
number of further fragments may be worthwhile looking at from the point of
view of algebraizability. We note that, on the one hand, a successful character-
ization of a given fragment of quasi-Nelson logic may be easily specialized to the
involutive case, therefore also yielding a characterization of the corresponding
fragment of Nelson’s constructive logic with strong negation1. On the other
hand, quasi-Nelson logic certainly has a greater number of non-equivalent frag-
ments than Nelson’s (and intuitionistic) logic, suggesting that the landscape
may be quite complex.

While we know that the fragments containing either of the quasi-Nelson
implications must be algebraizable, finding a complete axiomatization for them
is a different question. Recent research experience on the topic suggests that
the latter issue is related to the problem of giving a twist representation for the

1As far as we know, the only studies on fragments of Nelson’s logic are those by A. Mon-
teiro’s school [Monteiro, 1963; Brignole, Monteiro, 1967; Cignoli, 1986] on the Kleene algebra
subreducts of Nelson algebras and Sendlewski’s [Sendlewski, 1991].
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corresponding classes of subreducts of quasi-Nelson algebras (see e.g. [Riviec-
cio, Spinks, 2021; Rivieccio, Jansana, 2020; Rivieccio, 2020a]). This endeavour,
in turn, may require non-trivial adaptations of the algebraic constructions em-
ployed so far in the study of (quasi-)Nelson algebras. We mention below a few
fragments regarding which a successful outcome may be anticipated, as well as
some that seem less tractable.

If we enrich the {→,∼}-fragment with the monoid or the lattice connectives
of quasi-Nelson algebras, then we obtain logics/classes of algebras that appear
to be well-behaved from the point of view that concerns us here. In particular,
the {∗,→,∼}-fragment of quasi-Nelson logic (which can be shown to be equi-
valent to the {∗,⇒,∼}-fragment) appears to be a particularly interesting one
because of its connection with the theory of other residuated structures; this is
currently the subject of ongoing research.

By contrast, the fragments that do not contain the negation (∼) seem to lie
beyond the applicability of the methods employed so far. The reason for this is
too technical to be discussed in detail here, but it appears to be related to the
observation that the property corresponding to the Nelson identity (not only
as it appears in the present paper, but also in any of its alternative formula-
tions: see [Rivieccio, Spinks, 2018; Rivieccio, Spinks, 2021]) can only be stated
through the interaction of the negation with some other connective. In other
words, what makes Nelson (and quasi-Nelson) algebras ‘Nelson’ seems to be
precisely the interaction of the negation with some other connective (e.g. the
interaction of the negation with the implications, of the negation with the lat-
tice connectives, of the negation with the monoid conjunction, etc.).

Between the two extreme cases mentioned above, there also appear to be
fragments that are not intractable in principle but (also for technical reasons)
may prove to be hard to tackle. Of these we mention, as an example, the
{⇒,∼}-fragment: this may turn out to be a particularly interesting case study,
for it is certainly algebraizable and it contains the {→,∼}-fragment, in the
sense that the weak implication is definable. We leave this suggestion as a
challenge for future investigations.

8. Appendix

The rules and valid formulas below are used in the proofs of Proposition 1
and Proposition 3.

Lemma 3.

(1) ∼∼ψ,∼∼ϕ `LQNI ϕ� ψ

(2) ∼(ϕ→ ψ) `LQNI ∼ψ
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(3) ∼(ϕ→ ψ) `LQNI ∼∼ϕ

(4) ϕ `LQNI ∼∼ϕ

(5) ∼∼∼ϕ `LQNI ∼ϕ

(6) (ϕ→ ψ) `LQNI (∼∼ϕ→ ∼∼ψ)

Lemma 4.

(1) ∅ `LQNI ∼(ϕ→ (ψ → γ))→ ∼((ϕ→ ψ)→ (ϕ→ γ))

(2) ∅ `LQNI ∼((ϕ→ ψ)→ (ϕ→ γ))→ ∼(ϕ→ (ψ → γ))

(3) ∅ `LQNI (ϕ� ψ)→ (ψ � ϕ)

(4) ∅ `LQNI (ϕ� ψ)→ (ϕ� (ϕ→ ψ))

(5) ∅ `LQNI (∼∼ϕ�∼ψ)→ ∼(ϕ→ ψ)

(6) ∅ `LQNI (∼ϕ→ ∼ψ)→ (∼ϕ→ (∼ϕ�∼ψ))

(7) ∅ `LQNI (ϕ→ ψ)→ (ϕ� γ)→ (ψ � γ)

(8) ∅ `LQNI ∼(ϕ� (ϕ→ ϕ))→ ∼(ϕ� ϕ)

(9) ∅ `LQNI ∼∼(ϕ→ ∼ψ)→ (ϕ→ ∼ψ)

(10) ∅ `LQNI (ϕ� (ψ � γ))→ ((ϕ� ψ)� γ)

(11) ∅ `LQNI ((ϕ� ψ)� γ)→ (ϕ� (ψ � γ))

Proof.[3.1]

1. ∼(ϕ→ (ψ → γ)) Assumption
2. ∼∼ϕ 1, Lemma 3.3
3. ∼(ψ → γ) 1, Lemma 3.2
4. ∼∼ψ 3, Lemma 3.3
5. ∼ γ 3, Lemma 3.2
6. ψ → (ϕ→ ψ) AX1
7. ∼∼ψ → ∼∼(ϕ→ ψ) 6, Lemma 3.6
8. ∼∼(ϕ→ ψ) 4, 7, MP
9. ∼(ϕ→ γ) 2, 5, AX7
10. ∼((ϕ→ ψ)→ (ϕ→ γ)) 8, 9, AX7

�

Proof.[3.3]

1. ϕ� ψ Assumption
2. ∼∼ϕ 1, Lemma 3.3
3. ∼∼ψ 2, Lemma 3.2
4. ψ � ϕ 2, 3, Lemma 3.1

�
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Proof.[3.4]

1. ϕ� ψ Assumption
2. ∼∼ϕ 1, Lemma 3.3
3. ∼∼ψ 2, Lemma 3.2
4. ψ → (ϕ→ ψ) AX1
5. ∼∼ψ → ∼∼(ϕ→ ψ) AX4
6. ∼∼(ϕ→ ψ) 3, 5, MP
7. ϕ� (ϕ→ ψ) 2, 6, Lemma 3.1

�

Proof.[3.5]

1. ∼∼ϕ�∼ψ Assumption
2. ∼∼∼∼ϕ 1, Lemma 3.3
3. ∼∼∼ψ 2, Lemma 3.2
4. ∼∼ϕ 3, Lemma 3.4
5. ∼ψ 4, Lemma 3.5
6. ∼∼ϕ→ (∼ψ → ∼(ϕ→ ψ)) AX7
7. ∼ψ → ∼(ϕ→ ψ) 4, 6, MP
8. ∼(ϕ→ ψ) 5, 7, MP

�

Proof.[3.6]

1. ∼ϕ→ ∼ψ Assumption
2. ∼ϕ Assumption
3. ∼ψ 1, 2, MP
4. ∼∼∼ϕ 2, Lemma 3.5
5. ∼∼∼ψ 3, Lemma 3.5
6. ∼∼∼ϕ→ (∼∼∼ψ → ∼(∼ϕ→ ∼∼ψ)) AX7
7. ∼∼∼ψ → ∼(∼ϕ→ ∼∼ψ) 4, 6, MP
8. ∼(∼ϕ→ ∼∼ψ) 5, 7, MP

�

Proof.[3.7]

1. ϕ→ ψ Assumption
2. ϕ� γ Assumption
3. ∼∼ϕ 2, Lemma 3.3
4. ∼∼ γ 2, Lemma 3.2
5. (ϕ→ ψ)→ (∼∼ϕ→ ∼∼ψ) AX4
6. ∼∼ϕ→ ∼∼ψ 1, 5, MP
7. ∼∼ψ 3, 6, MP
8. ψ � γ 4, 7, Lemma 3.1

�
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Proof.[3.10]

1. (ϕ� (ψ � γ)) Assumption
2. ϕ�∼(ψ → ∼ γ) Definition
3. ∼(ϕ→ ∼∼(ψ → ∼ γ)) Definition
4. ∼∼ϕ 3, Lemma 3.3
5. ∼∼∼(ψ → ∼ γ) 4, Lemma 3.2
6. ∼(ψ → ∼ γ) 5, Lemma 3.5
7. ∼∼ψ 6, Lemma 3.3
8. ∼∼ γ 7, Lemma 3.2
9. (ϕ� ψ) 4, 7, Lemma 3.1
10. ∼∼(ϕ� ψ) 9, Lemma 3.4
11. ((ϕ� ψ)� γ) 8, 10, Lemma 3.1

�
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1. Introduction

Nurgalieva and del Rio [Nurgalieva, del Rio, 2019] challenge the logic com-
munity to find a sound logical system to analyze agents’ reasoning when
quantum measurements are involved. They show that standard epistemic
modal logic is inadequate in quantum settings. In particular, they investig-
ate the Frauchiger–Renner paradox [Frauchiger, Renner, 2018] and establish
that modal logics are unable to deal properly with this paradox. Moreover,
they show that candidate workarounds like keeping track of the context of each
statement, are unpractical, requiring exponentially large memories.
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In this paper, we present an epistemic logic that can

1. adequately deal with the Frauchiger-Renner paradox, in particular
without resulting in an inconsistency, and also

2. model classical epistemic reasoning.

In order to achieve this, we develop a novel justification logic, CTJ. Jus-
tification logic is a variant of modal logic where the 2-modality is replaced
with explicit evidence terms [Artemov, Fitting, 2019; Kuznets, Studer, 2019].
Thus, instead of of formulas 2aA meaning agent a believes A, justification lo-
gic features formulas [s]aA meaning agent a believes A for reason s. In the
first justification logic, the Logic of Proofs, the evidence terms represented
formal proofs in say Peano arithmetic [Artemov, 2001; Kuznets, Studer, 2016].
Later, epistemic semantics for justification logic have been developed where
evidence terms can represent general justifications for an agent’s belief like dir-
ect observation or communication with other agents [Artemov, 2006; Artemov,
2008; Bucheli et al., 2011; Bucheli et al., 2014; Fitting, 2005; Kuznets, Studer,
2012; Studer, 2013].

The defining principle of our logic CTJ is the following: given some evid-
ence s

it is not possible that
s justifies some proposition P and s justifies the negation of P .

We call this a principle of no conflicts as any given evidence cannot justifiy
conflicting propositions.

However, our logic CTJ also is conflict tolerant in the sense that there
may be two different pieces of evidence, s and t, such that s justifies P and t
justifies ¬P . That is CTJ tolerates two contradicting pieces of evidence; but it
disallows one piece of evidence to support two conflicting propositions. Thus
CTJ maintains a fine balance between accepting all beliefs and banning all
contradictory beliefs.

In the next section, we introduce an axiomatic system for CTJ and discuss
its basic properties, in particular with respect to consistency statements of the
form [s]a⊥ and [s]a(A ∧ ¬A). Then we give semantics to CTJ using subset
models. The main idea there is that evidence terms are interpreted as sets
of possible worlds and a formula [s]aA is true if the interpretation of s is a
subset of the truthset of A. Subset models have been introduced in [Lehmann,
Studer, 2019] and turned out the be useful in many different contexts [Lehmann,
Studer, 2020]. Section 4. deals with epistemic reasoning in CTJ. We present
an example that shows how the principle of no conflicts interacts with positive
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introspection and also with the other axioms and rules of CTJ. Then we give
a first formalization of the Frauchiger–Renner paradox in CTJ showing that it
does not lead to an inconsistency. In Section 6. we discuss our formalization
and compare it with formalizations in traditional modal logic. For Sections 7.
and 8. we extend CTJ with a trust axiom and we discuss our epistemic reasoning
example and the formalization of the Frauchiger–Renner paradox in this setting.
The last section concludes the paper.

The justification logic principle of no conflicts has first been considered in a
deontic setting [Faroldi et al., 2020] where it states that two obligations A and
¬A cannot be mandatory for one and the same reason. In the present paper,
we put this principle in the frame of epistemic justification logic.

The Frauchiger-Renner paradox has been presented as a no-go theorem
stating that a particular situation is physically impossible. No-go theorems are
known also in other areas where they also have been investigated by logical
methods. In social choice theory, there is Arrow’s theorem [Arrow, 1950] say-
ing that no voting system is possible that meets certain fairness conditions.
Arrow’s theorem has been formalized in independence logic by Pacuit and
Yang [Pacuit, Yang, 2016]. In data privacy, there are a no-go theorems stating
that certain combinations of desirable privacy properites are impossible [Studer,
Werner, 2014]. These results have been analyzed and generalized using modal
logic [Studer, 2020].

2. Syntax

Justification terms are built from countably many constants ci and vari-
ables xi according to the following grammar:

t ::= ci | xi | t · t | !t .

The set of constants is denoted by Cons. The set of terms is denoted by Tm.
A term is called ground if it does not contain variables. We use a finite set of
agents Ag.

Formulas are built from countably many atomic propositions Pi and the
symbol ⊥ according to the following grammar where a ∈ Ag and t ∈ Tm:

F ::= Pi | ⊥ | F → F | [t]aF .

The set of atomic propositions is denoted by Prop and the set of all formulas
is denoted by Fml. The other classical Boolean connectives ¬,>,∧,∨,↔ are
defined as usual, in particular we have ¬A := A→ ⊥ and > := ¬⊥. Note that
our language does not include the usual sum-operation of justification logic.
This is on purpose, see Remark 1 later.
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The axioms of conflict tolerant justification logic CTJ are the following:

cl all axioms of classical logic
j [s]a(A→ B)→ ([t]aA→ [s · t]aB)
noc ¬([s]aA ∧ [s]a¬A)
j4 [s]aA→ [!s]a[s]aA

Justification logics are parameterized by a so-called constant specification,
which is a set of formulas

CS ⊆ {[cn]an . . . [c1]a1A |
for n ≥ 1, ci ∈ Cons, ai ∈ Ag and A is an axiom of CTJ}

that is downward closed, i.e. for n > 1

[cn]an . . . [c1]a1A ∈ CS implies [cn−1]an−1 . . . [c1]a1A ∈ CS.

Our logic CTJCS is now given by the axioms of CTJ and the rules modus
ponens

A A→ B (MP)
B

and axiom necessitation

(AN) where [cn]an . . . [c1]a1A ∈ CS .
[cn]an . . . [c1]a1A

We write ∆ `CS A to mean that a formula A is derivable in CTJCS from a
set of formulas ∆. As usual, we use ∆, A for ∆ ∪ {A}.

Definition 1 (Axiomatically appropriate CS). A constant specification CS is
called axiomatically appropriate if for each axiom A and each sequence of agents
an, . . . , a1, there is a sequence of constants cn, . . . , c1 such that

[cn]an . . . [c1]a1A ∈ CS.

Axiomatically appropriate constant specifications are important as they
provide a form of necessitation. For a proof of the following lemma see,
e.g., [Artemov, 2001; Artemov, Fitting, 2019; Kuznets, Studer, 2019].
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Lemma 1 (Internalization1). Let CS be an axiomatically appropriate constant
specification. For arbitrary formulas A,B1, . . . , Bn, arbitrary terms s1, . . . , sn,
and an arbitrary agent a, if

B1, . . . , Bn `CS A,

then there is a term t such that

[s1]aB1, . . . , [sn]aBn `CS [t]aA.

A consequence of internalization is that we can combine justifications in
CTJCS (for an axiomatically appropriate CS), i.e. we have the following lemma.

Lemma 2. Let CS be an axiomatically appropriate constant specification. For
all formulas A and B, there exists a term r such that for all terms s and t, the
following is provable in CTJCS

[s]aA ∧ [t]aB → [r · s · t]a(A ∧B).

Proof. By internalization, there exists a term r with

`CS [r]a(A→ (B → (A ∧B))).

Thus from [s]aA and [t]aB and using axiom j and modus ponens we get

[r · s · t]a(A ∧B).

�

In CTJCS we may have situations where there is a justification for A and
(another) justification for ¬A, see Example 1 later. Neither does the logic
CTJCS exclude a justification for ⊥; and there may be a justification for a
formula of the form A ∧ ¬A. That means that the formulas

[s]a⊥ and [s]a(A ∧ ¬A),

respectively, are satisfiable (if the constant specification is not too strong).
However, what is excluded in CTJCS is the existence of a justification s such

that s justifies A and s also justifies ¬A. That is the formula [s]aA ∧ [s]a¬A
is not satisfiable as this directly contradicts axiom noc. Hence, in particular,
there cannot be one justification for everything.

The situation is different when we consider schematic reasoning. We will
give the definition of schematic constant specifications and then show that they
are not compatible with conflicting evidence.

1We follow the naming convention of [Kuznets, Studer, 2019]. Internalization means that
a justification logic internalizes its own notion of derivation. In other places, e.g. [Artemov,
Fitting, 2019], this result is called lifting lemma.
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Definition 2 (Schematic constant specification). A constant specification CS
is called schematic if for each sequence of constants cn, . . . , c1 and each sequence
of agents an, . . . , a1, the set of axioms {A | [cn]an . . . [c1]a1A ∈ CS} consists of
all instances of one or several (possibly zero) axioms schemes of CTJ.

Schematic constant specifications are often considered for justification logics
as they support subsitutions in theorems.

Lemma 3. Let CS be a schematic constant specification. Let σ be a substitution
that in a given formula simultaneously replaces variables with terms and atomic
propositions with formulas. We have

`CS A implies `CS Aσ.

However, axiomatically appropriate and schematic constant specifications
prohibit conflicting justifications. Therefore, we will not allow them for the rest
of this paper.

Lemma 4. Let CS be an axiomatically appropriate and schematic constant
specification. It is inconsistent in CTJCS to have a justification for A and
(another) justification for ¬A. That is for all formulas [s]aA and [t]a¬A we
have

`CS ([s]aA ∧ [t]a¬A)→ ⊥.

Proof. Assume [s]aA and [t]a¬A . Using Lemma 2 we find a term r such that

[r · s · t]a(A ∧ ¬A).

Since CS is axiomatically appropriate, we find by internalization a term k with

[k]a(A ∧ ¬A→ P ).

Since CS is schematic, we find by Lemma 3 that

[k]a(A ∧ ¬A→ ¬P )

holds, too. Hence we find that both

[k · (r · s · t)]aP and [k · (r · s · t)]a¬P,

which contradicts axiom noc. �
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Remark 1. Note that if our language included the usual sum-operation of
justification logic, then

`CS ([s]aA ∧ [t]a¬A)→ ⊥

would hold for arbitrary constant specifications. Indeed, the sum axiom is

[s]aA ∨ [t]aA→ [s+ t]aA.

Hence, if this axiom is present, we immediately obtain that [s]aA ∧ [t]a¬A
implies [s+ t]aA∧ [s+ t]a¬A, which contradicts axiom noc. One possibility to
still include a sum-like principle could be to use an axiom like

([s]aA ∧ ¬[t]a¬A)→ ([s+ t]aA ∧ [t+ s]aA).

3. Semantics

We base our semantics on subset models, which have recently been intro-
duced in justification logic [Lehmann, Studer, 2019; Lehmann, Studer, 2020].

Definition 3 (Subset model). Given some constant specification CS, then a
CS-subset modelM = (W,W0, V, E) is defined by:

• W is a set of objects called worlds.

• W0 ⊆W and W0 6= ∅ .

• V : W × Fml→ {0, 1} such that for all ω ∈W0, t ∈ Tm, F,G ∈ Fml:

– V (ω,⊥) = 0;

– V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;

– V (ω, [t]aF ) = 1 iff Ea(ω, t) ⊆ {υ ∈W | V (υ, F ) = 1}.

• E : Ag→ (W ×Tm→ P(W )) that meets the following conditions where
we write Ea for E(a) and use the notation

[A] := {ω ∈W | V (ω,A) = 1}. (1)

For all a ∈ Ag, all ω ∈W0, and all s, t ∈ Tm:

– Ea(ω, s · t) ⊆ {υ ∈ W | ∀F ∈ APPa,ω(s, t)(υ ∈ [F ])} where APP
contains all formulas that can be justified by an application of s
to t, see below;
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– ∃υ ∈Wnc with υ ∈ Ea(ω, t) where

Wnc := {ω ∈W |
for all formulas A (V (ω,A) = 0 or V (ω,¬A) = 0)};

– Ea(ω, !t) ⊆

{ v ∈W | ∀F ∈ Fml (V (ω, [t]aF ) = 1⇒ V (v, [t]aF ) = 1) };

– for all [cn]an . . . [c1]a1A ∈ CS:

Ean(ω, cn) ⊆ [ [cn−1]an−1 . . . [c1]a1A ].

The set APP is formally defined as follows:

APPa,ω(s, t) := {F ∈ Fml | ∃H ∈ Fml s.t.
Ea(ω, s) ⊆ [H → F ] and Ea(ω, t) ⊆ [H]}.

W0 is the set of normal worlds. The conditions on V for normal worlds tell
us, in particular, that the laws of classical logic hold in normal worlds. The
set W \W0 consists of the non-normal worlds. Moreover, using the notation
introduced by (1), we can read the condition on V for justification formulas
[t]aF as:

V (ω, [t]aF ) = 1 iff Ea(ω, t) ⊆ [F ].

Since the valuation function V is defined on worlds and formulas, the defin-
ition of truth is standard.

Definition 4 (Truth). Given a subset model

M = (W,W0, V, E)

and a world ω ∈W and a formula F we define the relation 
 as follows:

M, ω 
 F iff V (ω, F ) = 1.

Validity is defined with respect to the normal worlds.

Definition 5 (Validity). Let CS be a constant specification. We say that a
formula F is CS-valid if for each CS-subset model

M = (W,W0, V, E)

and each ω ∈W0, we haveM, ω 
 F .
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As expected, we have soundness and completeness. A completeness proof
is easily obtained by combining the completeness proofs of [Lehmann, Studer,
2019] and [Faroldi et al., 2020].

Theorem 1. Let CS be an arbitrary constant specification. For each formula F
we have that

CTJCS ` F iff F is CS-valid.

Let us now present a small but instructive example of our semantics.

Example 1. There is a subset modelM with a normal world ω such that

M, ω 
 [s]aP and M, ω 
 [t]a¬P.

for some terms s and t, some agent a, and some atomic proposition P .
Indeed, letM be given by

1. W := {ω, µ, ν};

2. W0 := {ω, µ};

3. V (ω, P ) := 0, V (µ, P ) := 1, V (ν, P ) := 1, V (ν,¬P ) := 1;

4. Ea(ω, s) := {µ, ν}, Ea(ω, t) := {ω, ν}.

By the definition of V , we find

[P ] = {µ, ν} and [¬P ] = {ω, ν}.

Hence
Ea(ω, s) ⊆ [P ] and Ea(ω, t) ⊆ [¬P ]

and thus (since ω ∈W0)

V (ω, [s]aP ) = 1 and V (ω, [t]a¬P ) = 1

as desired.
Note that the modelM can never satisfy an axiomatically appropriate and

schematic constant specification (see Lemma 4). However, this example at least
implies 0∅ ([s]aA ∧ [t]a¬A)→ ⊥.

Remark 2. The logic CTJCS with an axiomatically appropriate and non-
schematic constant specification CS is not an explicit counterpart of any modal
logic. We can map formulas of justification logic to formulas of modal logic as
follows. The forgetful projection of a formula A of Fml is the result of replacing
all occurences of [t]a in A with 2a, i.e. we forget the explicit justification for
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agent a to believe a proposition and only represent that a believes the propos-
ition.

By the previous example, it is consistent in CTJCS to have [s]aP and [t]a¬P
for two different terms s and t. Thus in a corresponding modal logic we have
2aP and 2a¬P . This, however, contradicts the forgetful projection of ax-
iom noc, which is ¬(2aP ∧2a¬P ).

We finish this section with a remark on the notion of negation in CTJCS.

Remark 3. The justifcation operators of CTJCS provide hyperintensional con-
texts. That is they make it possible to distinguish between logically equivalent
formulas, which is necessary for a tolerant treatment of conflicts. Thus the
question arises which notion of negation do we get in these hyperintensional
contexts provided by CTJCS.

Let CS be an axiomatically appropriate but non-schematic constant specific-
ation. Then CTJCS internalizes the rules of contraposition and double negation.
Formally we can prove in CTJCS

[x]a(A→ B)→ [r1]a(¬B → ¬A)

[x]aA→ [r2]a¬¬A
[x]a¬¬A→ [r3]aA

for suitable terms r1, r2, and r3.
However, ex contradictione rules cannot be internalized in CTJCS, i.e. it is

in general not provable that

[x]a(A→ B) ∧ [y]a(A→ ¬B) → [r4]a(A→ C)

for any term r4.

4. Epistemic Reasoning

In this section, we discuss an epistemic situation that illustrates the use and
interplay of axiom noc, positive introspection and an axiomatically appropriate
constant specification. Note, in particular, how axiom noc is used to state that
if one observes that a hat is not red, then the same observation cannot lead to
the result that the hat is red.

Before we present our example for reasoning in CTJCS, let us talk about
terminology. Often we will read a formula [t]aF as agent a knows F for reason t
or t justifies agent a’s knowledge of F . However, we should emphasize that
CTJCS does not include a factivity (or truth) axiom of the form [t]aF → F .2 The

2The T in CTJCS stands for tolerant and not (as usual) for truth.
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reason that we still talk of knowledge is that we want to stay as close as possisble
to the presentation of the Frauchiger–Renner paradox given in[Nurgalieva, del
Rio, 2019]. A more appropriate reading of [t]aF in the context of CTJCS would
be t justifies agent a’s belief in F or agent a accepts t as evidence for F .

Consider the following scenario where we work with an axiomatically ap-
propriate constant specification. There are two agents, a and b. Agent a wears
a hat, which may be red or not. We use the propositional atom red to state
whether the hat is red. Assume further that agent a cannot see the color of
the hat. But a red hat will attract b’s attention and b will observe (and thus
know) that the hat is red. Formally, we express this by

red→ [obs]bred

where obs is a term representing b’s observation. We also assume that agent a
knows that a red hat will attract b’s attention and hence there is a term s1 with

[s1]a(red→ [obs]bred).

From this and the axiomatically appropriate constant specification, we can
construct a term s2 with

[s2]a(¬[obs]bred→ ¬red). (2)

Now suppose that the color of the hat was not red but yet agent b noticed
it and observed that the hat is not red. Hence we have

[obs]b¬red.

Agent b knows this by positive introspection (axiom j4), i.e. we have

[!obs]b[obs]b¬red. (3)

Using axiom noc we find

[obs]b¬red→ ¬[obs]bred.

Since we work with an axiomatically appropriate constant specification, we can
use Lemma 1 to find a term t with

[t]b([obs]b¬red→ ¬[obs]bred).

This, together with axiom j and (3), leads to

[t·!obs]b¬[obs]bred. (4)
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That means that agent b knows that

¬[obs]bred, (5)

i.e. agent b knows that it is not the case that agent b observed that the hat is
red. Hence agent b can announce (5) to agent a. Then we get

[ann]a¬[obs]bred, (6)

where ann is a term representing the announcement.
Now agent a knows that it is not the case that agent b observed that the

hat is red. Combining this with (2) yields

[s2 · ann]a¬red,

which means that after b’s announcement, agent a knows that the hat is not
red.

Remark 4. We use announcements in a very informal way and we did not
include any principles formalizing announcements in CTJCS. In the above ex-
ample, we have an announcement in the step from (4) to (6). We assume this
to work as follows. Agent b has evidence r for F , i.e. [r]bF . Thus agent b can
announce F to agent a. Then this announcement, represented by ann, is a’s
evidence for F , i.e. [ann]aF .

5. Frauchiger–Renner Experiment

The Frauchiger–Renner thought experiment [Frauchiger, Renner, 2018] is
used to formulate a no-go theorem in quantum physics. We follow the present-
ation of the thought experiment that is given in [Nurgalieva, del Rio, 2019]. We
omit all details and give only a very rough description of the experiment where
we omit the actual quantum physical construction and focus on the epistemic
logic view on the experiment. Thus we do not dicuss the quantum physical
assumptions of the paradox. Neither do we discuss whether the thought ex-
periment really is paradoxical, for more on this, see, e.g. [Lazarovici, Hubert,
2019].

The original no-go theorem claims that no physical theory can simultan-
eously satisfy the assumptions:

(Q) compatibility with the Born rule of quantum mechanics;

(C) logical consistency among agents;

(S) experimenters having the subjective experience of seeing only one out-
come.
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A fourth, implicitly used, assumption is discussed in [Nurgalieva, del Rio, 2019]:

(U) all agents are considering the evolution of the other agents in their labs
unitary.

This means that agents, when reasoning about statements other agents make,
do it according to a specific assumption of time evolution. Roughly, assump-
tion (U) states that time evolution is such that the probability of the quantum
system is conserved.

The setup of the experiment consists of four participants, Alice, Bob, Ur-
sula, and Wigner, where each of them is equipped with a quantum memory
(A,B,U, and W, respectively). The procedure of the experiment is as follows.

1. Alice measures a qubit R in a basis {|0〉R, |1〉R}. She records the outcome
in her memory A and, depending on the outcome, prepares a qubit S in
a certain way and sends it to Bob.

2. Bob measures S in a basis {|0〉S , |1〉S} and records the outcome in his
memory B.

3. Ursula measures Alice’s lab (consisting of R and A) in a basis
{|ok〉RA, |fail〉RA}.

4. Wigner measures Bob’s lab (consisting of S and B) in a basis
{|ok〉SB, |fail〉SB}.

5. Ursula and Wigner compare the outcomes of their measurements. If they
are both ok, they halt the experiment, otherwise they reset the experiment
and repeat it.

It can be shown that this experiment will halt at some point and we postselect
on this event. The setup of the experiment (i.e. the initial qubit R, the con-
struction of qubit S, and the bases in which the measurements are performed)
is carefully chosen such that the following hold:

If Ursula observes outcome ok, then Bob obtained outcome 1. (7)
If Bob observes outcome 1, then Alice obtained outcome 1. (8)

If Alice observes outcome 1, then Wigner will obtain outcome fail. (9)

Since the setup of the experiment is common knowledge, Wigner knows the
above implications. Hence by simple logical reasoning, Wigner knows that

if Ursula observes outcome ok, then Wigner will obtain outcome fail. (10)
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Since we consider the event when the experiment halts, Wigner knows that

Wigner observes outcome ok (11)

and
Ursula observes outcome ok. (12)

Taking (12) and (10) together, we obtain that Wigner knows that

Wigner observes outcome fail,

which contradicts (11) if agents experience only a single outcome of measure-
ments.

Let us now formalize the experiment in the language of justification logic.
We start with the fact that Wigner knows the implications (7)–(9). That means
there exists a term r such that

[r]W
(
(u = ok)→ (b = 1)

)
[r]W

(
(b = 1)→ (a = 1)

)
[r]W

(
(a = 1)→ (w = fail)

)
,

where we treat (u = ok), (b = 1), (a = 1), and (w = fail) as propositional
atoms. Further we let (w = ok) be an abbreviation for ¬(w = fail). Now we
can reason in CTJCS as follows. Using axiom j we find that for all terms x

[x]W (u = ok)→ [r · (r · (r · x))]W (w = fail). (13)

Again, since the setup is common knowledge and the experiment halts, Wigner
knows that both Ursula and Wigner obtained outcome ok. Since (w = ok) is
¬(w = fail), we may assume that there is a term s such that

[s]W (u = ok) (14)
[s]W¬(w = fail). (15)

From (14) and (13) we get

[r · (r · (r · s))]W (w = fail), (16)

which, in CTJCS, does not contradict (15). A model for a similar case is provided
in Example 1.

Note that there are sever restrictions on CS for (15) and (16) to not con-
tradict each other. In particular, the constant specification cannot be both
axiomatically appropriate and schematic (see Lemma 4). A good choice for
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CS would be an axiomatically appropriate CS that is not schematic because
then we still have internalization (Lemma 1). This is important for epistemic
reasoning in general (see Section 4.), and, in particular, in the context of as-
sumption (C) of the Frauchiger–Renner paradox (see the discussion in the next
section).

This formalization shows that justification logic is an adequate framework
to represent the Frauchiger–Renner paradox. CTJCS is strong enough to model
complex epistemic situations (as shown in the previous section) yet formalizing
the paradox does not lead to an inconsistency.

6. Discussion

Nurgalieva and del Rio [Nurgalieva, del Rio, 2019] discuss formalizations of
the Frauchiger–Renner paradox in modal logic. They claim that modal logic
is not adequate in quantum settings since formalizing the Frauchiger–Renner
paradox in modal logic leads to inconsistencies.

Essentially, their formalization is along the same lines as the one we present
in justification logic (actually we followed their model). The important dif-
ference, however, is that in modal logic one only has the 2-modality at hand
and thus cannot distinguish between different reasons for an agent’s belief. So
instead of our (15) and (16), one obtains in a modal logic setting

2W¬(w = fail) and 2W (w = fail), (17)

respectively.
In modal logic D, where the axiom

¬2a⊥ (18)

is present for all agents a, the situation (17) is obviously inconsistent. An easy
way out would be to drop axiom (18) and simply use modal logic K to avoid the
contradiction. However, this is not an option since axiom (18) is necessary to
adequately model the assumptions of the Frauchiger–Renner paradox in modal
logic. In particular, we have assumption

(S) experimenters having the subjective experience of seeing only one out-
come,

which is taken care of by (18) in the sense of experimenters cannot have the
subjective experience of contradicting outcomes. The problem, of course, is that
(18) does not talk about subjective experience but about belief of an agent;
and in the language of modal logic, one cannot distinguish whether an agent’s
belief originates from subjective experience, communication with other agents,
or logical reasoning.
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In justification logic CTJCS, asssumption (S) is modelled by axiom noc
saying that it is not possible that the same evidence justifies both a proposition
and its negation. This matches better the idea behind (S) because now we can
state that measurements have a unique outcome (from the perspective of the
agent carrying out the experiment). Yet, communication with other agents and
logical reasoning may lead to contradicting beliefs.

Now let us briefly look at assumption (C). Nurgalieva and del Rio state
that (C) is modelled by the distributivity axiom of modal logic, which cor-
responds to axiom j in CTJCS. If we work with an axiomatically appropriate
constant specification we additionally have an analogue to the necessitation rule
of modal logic (see Lemma 1). A more detailed discussion of assumption (C)
is given in the next two sections.

Nurgalieva and del Rio [Nurgalieva, del Rio, 2019] discuss a formalization of
the Frauchiger–Renner paradox in a modal logic with contexts [Schroeter, 2019].
There, the contradiction is avoided since the distributivity axiom can only be
applied in matching contexts. However, this also means that even simple logical
reasoning often cannot be performed. Another problem is that the contexts
may grow exponentially. There is strong evidence that such an exponential
blow-up does not happen in justification logic. Brezhnev and Kuznets [Brezh-
nev, Kuznets, 2006] present a realization procedure of the modal logic S4 into
the Logic of Proofs LP that produces justification terms of at most quadratic
length. Although CTJCS is not an explicit counterpart of a modal logic (see
Remark 2) and thus we cannot establish a realization result, we take Brezhnev
and Kuznets’ result as a hint that also CTJCS behaves well with respect to
complexity.

7. Epistemic Reasoning with Trust

Assumption (C) is originally explained as follows (where we omit the refer-
ences to time) [Frauchiger, Renner, 2018]: A theory T that satisfies (C) allows
any agent Alice to reason as follows. If Alice has established ‘I am certain that
agent B (upon reasoning using T ) is certain that P ’, then Alice can conclude
‘I am certain that P ’.

Therefore, Nurgalieva and del Rio [Nurgalieva, del Rio, 2019] suggest to use
a trust axiom of the form

2a2bP → 2aP

to model (C) properly. The above axiom expresses that agent a trusts agent b.
Formally one could consider a system where all agents trust each other or a
system with an explicit trust relation.
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To extend CTJCS with trust, we need a new operation on terms. Namely,

if s is a term, then ↓s is a term, too.

Then we can state the trust axiom as

ju [s]a[t]bA→ [↓s]aA)

Using this axiom, we get a more accurate formalization of the epistemic
situation given in Section 4.. This concerns the step when agent b makes the
announcement to agent a.

We start with (4)
[t·!obs]b¬[obs]bred.

Now agent b announces this to agent a. Then we have

[ann]a[t·!obs]b¬[obs]bred,

where ann is a term representing the announcement.
Now we use the Trust axiom ju to derive

[↓ann]a¬[obs]bred,

i.e. agent a knows that it is not the case that agent b observed that the hat is
red. Combining this with (2) yields

[s2· ↓ann]a¬red,

which means that after b’s announcement, agent a knows that the hat is not
red. Note that the evidence term for a’s knowledge contains the ↓-operation
meaning that the trust relation was used to obain that knowledge. One could
also extend the language and index the ↓ with the agents to show who trusted
whom, similar to Yavorskaya’s evidence conversion operator ↑ab , see [Yavorskaya,
2007]. Actually, the combination of the announcement and the trust axiom
employed in our example above has the same effect as the evidence conversion
operation, which is axiomatized by

[t]bA→ [↑ab t]aA.

Hence, in Yavorskaya’s system we would apply the ↑ba-operation to (4) to obtain

[↑ab (t·!obs)]a¬[obs]bred

and using (2) we could conclude

[s2· ↑ab (t·!obs)]a¬red.

Note that single agent versions of the trust axiom are discussed in the
frame of deontic justification logic by Faroldi and Protopopescu [Faroldi, Pro-
topopescu, 2019]. Also Fitting [Fitting, 2016] discusses them in the context of
realizing Geach logics.
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We want to finish this section with a remark showing how the trust principle
and our (informal) announcements play together in the context of conflicting
evidence.

Remark 5. Assume agent b has conflicting justifications [s]bF and [t]b¬F .
Using j4 we find that [!s]b[s]bF and [!t]b[t]b¬F . By Lemma 2 we find a term r
such that we get [r·!s·!t]b([s]bF ∧ [t]b¬F ). Now agent b can announce [s]bF ∧
[t]b¬F to agent a, which gives us

[ann]a([s]bF ∧ [t]b¬F ).

Since CS is axiomatically appropriate there are terms p1 and p2 such that

[p1]a([s]bF ∧ [t]b¬F → [s]bF ) and [p2]a([s]bF ∧ [t]b¬F → [t]b¬F )

are provable in CTJCS. Thus we obtain

[p1 · ann]a[s]bF and [p2 · ann]a[t]b¬F.

By ju we get
[↓(p1 · ann)]aF and [↓(p2 · ann)]a¬F.

The last two formulas are in accordance with noc. But this requires p1 and p2 to
be two different terms. Hence hyperintensionality, in particular distinguishing
between A ∧B and B ∧A, is essential for making our approach work.

8. Frauchiger–Renner with trust

In [Nurgalieva, del Rio, 2019], there is also a modal logic analysis of the
Frauchiger–Renner paradox given that takes into account the trust relation
between the agents where Bob trusts Alice, Ursula trusts Bob, Wigner trusts
Ursula.

Again we closely follow the presentation of [Nurgalieva, del Rio, 2019] and
adapt it to justification logic. Before the experiment begins, but after the agents
talked to each other, we have the following statements about Wigner’s beliefs:

[r1]W [s1]U
(
[obsU ]U (u = ok)→ [v1(obsU )]B(b = 1)

)
[r2]W [s2]U [v2]B

(
[obsB]B(b = 1)→ [w(obsB)]A(a = 1)

)
[r3]W [s3]U [v3]B[w3]A

(
[obsA]A(a = 1)→ [r4(obsA)]W (w = fail)

)
.

Applying the trust axiom several times leads to

[↓r1]W
(
[obsU ]U (u = ok)→ [v1(obsU )]B(b = 1)

)
[↓↓r2]W

(
[obsB]B(b = 1)→ [w(obsB)]A(a = 1)

)
[↓↓↓r3]W

(
[obsA]A(a = 1)→ [r4(obsA)]W (w = fail)

)
.
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Thus we find a term r5 such that

[r5]W
(
[x]U (u = ok)→ [r4(w(v1(x)))]W (w = fail)

)
. (19)

Now we run the experiment and consider the case when the experiment halts.
Then Ursula and Wigner are both ok, i.e. there are terms obsU and obsW such
that

[obsU ]U (u = ok) and [obsW ]W (w = ok).

Moreover they learn of each other’s outcomes, in particular, there is a term r6
such that

[r6]W [obsU ]U (u = ok).

Plugin this into (19) yields

[r5 · r6]W [r4(w(v1(obsU )))]W (w = fail).

Since Wigner trusts himself, we conclude

[↓(r5 · r6)]W (w = fail),

which again does not contradict [obsW ]W (w = ok) in CTJCS where we again
use an axiomatically appriopriate but non-schematic CS.

This is in contrast to the modal logic formalization given in [Nurgalieva, del
Rio, 2019] where we obtain a contradiction in the modal logic D extended by
the trust axioms.

9. Conclusion

We introduced CTJCS, a new epistemic justificaton logic. CTJCS disallows
one piece of evidence to justify both a proposition and its negation but still tol-
erates conflicting beliefs. We studied epistemic reasoning in CTJCS and showed
that it can adequately represent the Frauchiger–Renner paradox from quantum
physics. Further, we investigated an extension of CTJCS with trust axioms.

The price we had to pay for obtaining conflict tolerance was to drop the
sum-operation from standard justification logic. So this paper can also be seen
as a contribution to understanding the role of the +-operation. But sum also
is one of the most intuitive operations for justification logic and it is crucial for
obtaining normal realizations. Thus further investigations on the sum operation
are definitely needed.

It might also be interesting to investigate the relationship of CTJCS and
conflict tolerant non-normal modal logics. For instance, in Chellas’ minimal
deontic logic ¬2⊥ does not imply ¬(2A ∧2¬A), see [Chellas, 1980].
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Приложение
Appendix

Вопросы Майклу Данну

Г. Ванзинг
E-mail: Heinrich.Wansing@rub.de

Г.К. Ольховиков
E-mail: Grigory.Olkhovikov@rub.de

Х. Омори
E-mail: Hitoshi.Omori@rub.de

Аннотация. Мы представляем девять вопросов, относящихся к понятию
отрицания, и, в процессе, мы указываем на их связи со статьями в этом
специальном выпуске. Эти вопросы были высланы одному из самых бле-
стящих логиков, внесших вклад в теорию отрицания, профессору Джону
Майклу Данну, однако, к несчастью, профессор Данн уже не мог ответить
на них. Майкл Данн скончался 5 апреля 2021 г., и настоящий специальный
выпуск «Логических исследований» посвящен его памяти. Поднимаемые
вопросы затрагивают (i) связанные с отрицанием темы, которые особенно
занимали Майкла Данна или в которые он внес важный вклад, (ii) неко-
торые противоречивые аспекты логического анализа понятия отрицания,
или (iii) попросту свойства отрицания, в которых мы особенно заинтересо-
ваны. Хотя, к большому сожалению, эти вопросы остались без ответа от
выдающегося ученого, которому были адресованы, они остаются актуаль-
ны и могут повлечь ответы со стороны других логиков, а также дальнейшие
исследования.

Ключевые слова: Майкл Данн, отрицание, логика Белнапа – Данна,
американский план, австралийский план, паранепротиворечивость, про-
тиворечивость отрицания, правило контрапозиции, конструктивные ло-
гики Нельсона с сильным отрицанием, отрицание как аннулирование,
Ex contradictione nihil sequitur, полуотрицание, теоретико-доказательный
билатерализм.
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Повесть об исключении третьего

Дж. С. Билл
E-mail: jbeall@nd.edu

Г. Прист
E-mail: priest.graham@gmail.com

Аннотация. В статье обсуждается несколько взаимосвязанных идей, ка-
сающихся отрицания, истины, общезначимости и парадокса лжеца. В част-
ности, обсуждается аргумент в пользу диалетической природы «предло-
жения лжеца», который опирается на телеологическую концепцию истины
Дамметта. Хотя один подход к его формулировке проваливается, другой
оказывается успешным. Далее в статье обсуждается роль закона исклю-
ченного третьего в данном аргументе, а также той идеи, что истинность
в модели должна быть моделью истины.

Ключевые слова: отрицание, закон исключенного третьего, парадокс
лжеца, телеологическая концепция истины, Майкл Дамметт, Грэм Прист,
истина, общезначимость, истинность в модели.

Импликация, эквивалентность и отрицание

А. Аврон
E-mail: aa@cs.tau.ac.il

Аннотация. СистемаHCL ¬↔ в языке {¬,↔} получена добавлением един-
ственной схемы аксиом, не содержащей отрицания, к HLL ¬→ (стандартной
системе гильбертовского типа для мультипликативной линейной логики
без пропозициональных констант), а также заменой → на ↔. HCL ¬↔ сла-
бо, но не сильно, непротиворечива и полна для CL ¬↔ ({¬,↔}-фрагмента
классической логики). Добавляя правило Ex Falso к HCL ¬↔, мы получаем
систему, которая сильно непротиворечива и полна для CL ¬↔. Демонстриру-
ется, что использование нового правила нельзя заменить схемами аксиом.
Дана простая семантика, для которой сама HCL ¬↔ сильно непротиворе-
чива и полна. Также показано, что LHCL¬↔

, логика, порожденная HCL ¬↔,
имеет единственное не тривиальное собственное аксиоматическое расши-
рение, что это расширение и CL ¬↔ являются единственными собственны-
ми расширениями LHCL¬↔

в языке {¬,↔}, а также что только LHCL¬↔
и

ее единственное аксиоматическое расширение являются логиками в языке
{¬,↔}, которые содержат связку, обладающую свойством релевантной де-
дукции, но не эквивалентны какому-либо аксиоматическому расширению
R ¬→ (интенсионального фрагмента релевантной логики R). В заключение
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мы обсуждаем вопрос о том, может ли LHCL¬↔
рассматриваться как пара-

непротиворечивая логика.

Ключевые слова: импликация, полуимпликация, отрицание, эквивалент-
ность, бикондиционал, классическая пропозициональная логика, теоремы
о дедукции, паранепротиворечивые логики.

Отрицание кондиционалов
в естественном языке и мышлении

Г. Гомес
E-mail: ggomes@uenf.br

Аннотация. Внешнее отрицание кондиционалов возникает в предложе-
ниях, начинающихся с «Неверно, что если» или схожих фраз, и оно нередко
в естественном языке. Один кондиционал может также отрицаться другим
с таким же антецедентом и противоположным консеквентом. Чаще всего,
когда отрицаемый кондиционал импликативен, отрицающий его концесси-
вен и наоборот. Здесь я обосновываю, что в прагматике натурального языка
«Если A, ∼B» влечет «∼(если A, B)», но «∼(если A, B)» не влечет «Если
A, ∼B». «Если A, B» и «Если A, ∼B» отрицают друг друга, но контрарны,
а не контрадикторны. Условия истинности, которые играют роль в челове-
ческих рассуждениях, часто зависят не только от семантических, но также
от прагматических факторов. Даются примеры, показывающие, что пред-
ложения, имеющие формы «∼(если A, B)» и «Если A, ∼ B», могут иметь
разные прагматические условия истинности. Принцип кондиционального
исключенного третьего, таким образом, не применим к использованию кон-
диционалов в натуральном языке. Три квадрата противоположностей дают
представление упомянутых выше отношений.

Ключевые слова: внешнее отрицание, импликативные кондиционалы,
концессивные кондиционалы, прагматические условия истинности, тезис
Боэция, кондициональное исключенное третье, контрарность, контрадик-
торность, квадраты противоречия.

ggomes@uenf.br


Отрицание по умолчанию
как явное отрицание плюс обновление

Р. Кале
E-mail: kahle@mat.uc.pt

Аннотация. Мы утверждаем, что в рамках семантики стабильной мо-
дели отрицание по умолчанию может читаться как явное отрицание с об-
новлением. Мы показываем, что динамическое логическое программиро-
вание, которое основано на отрицании по умолчанию, можно трактовать
в варианте обновлений с только явным отрицанием. В качестве следствия
мы получаем простое описание отрицания по умолчанию в обобщенном
и нормальном логическом программировании, при котором первоначально
отрицаемые литералы обновляются. Эти результаты обсуждаются в связи
с пониманием отрицания в логическом программировании.

Ключевые слова: отрицание по умолчанию, явное отрицание, логическое
программирование, обновление.

Равенство и отделенность в биинтуиционистской логике

П. Маффециоли
E-mail: paolo.maffezioli@univr.it
Л. Транчини
E-mail: luca.tranchini@uni-tuebingen.de

Аннотация. В данной статье мы утверждаем, что симметричная картина
отношений между равенством и отделенностью может быть достигнута пу-
тем рассмотрения этих понятий на фоне биинтуиционистской логики вме-
сто обычной интуиционистской логики. В частности, мы показываем, что,
поскольку интуиционистское отрицание отношения отделенности являет-
ся равенством, дуально-интуиционистское коотрицание равенства являет-
ся отношением отделенности. В то же время, поскольку интуиционистское
отрицание равенства не является отделенностью, коинтуиционистское от-
рицание отделенности не является равенством.

Ключевые слова: биинтуиционистская логика, равенство, отделенность.
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Отрицание и импликация в квази-нельсоновой логике

Т. Нассименту
E-mail: thiagnascsilva@gmail.com

У. Ривеччио
E-mail: umberto.rivieccio@ufrn.br

Аннотация. Квази-нельсонова логика – это недавно введенное обобщение
конструктивной логики Нельсона с сильным отрицанием для неинволю-
тивных условий. В настоящей статье мы аксиоматизируем импликативно-
негативный фрагмент квази-нельсоновой логики (QNI-логики), который
представляет собой, в определенном смысле, алгебраизируемое ядро квази-
нельсоновой логики. Мы представляем конечное исчисление гильбертов-
ского типа для QNI-логики, демонстрируя полноту и алгебраизируе-
мость относительно многообразия QNI-алгебр. Элементы этого класса,
также введенного и исследованного в недавней статье, суть в точности
негативно-импликативные подредукты квази-нельсоновых алгебр. Опира-
ясь на наш результат о полноте, мы также демонстрируем, как негативно-
импликативные фрагменты интуиционистской логики и конструктивной
логики Нельсона могут быть получены в форме расширений QNI-логики
схемами аксиом.

Ключевые слова: конструктивная логика Нельсона с сильным отрица-
нием, квази-нельсоновы алгебры, импликативно-негативные подредукты,
QNI-алгебра, квази-нельсонова логика, алгебраизируемые логики.

Конфликтоустойчивая логика явных свидетельств

Т. Штудер
E-mail: thomas.studer@inf.unibe.ch

Аннотация. Стандартная эпистемическая модальная логика неспособ-
на адекватно справиться с парадоксом Фраушигер – Реннера в квантовой
физике. Мы вводим новую логику обоснования CTJ, в которой этот пара-
докс можно формализовать, не приходя к противоречию. В то же время,
CTJ достаточно сильна, чтобы моделировать традиционные эпистемиче-
ские рассуждения. Наша логика устойчива к наличию двух свидетельств,
таких что одно обосновывает высказывание, а другое обосновывает отри-
цание этого высказывания. Однако, наша логика запрещает одному свиде-
тельству обосновывать одновременно высказывание и его отрицание. Мы
представляем синтаксис и семантику для CTJ и описываем ее основные
свойства. Затем мы приводим пример эпистемического рассуждения в CTJ,
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который иллюстрирует взаимодействие различных принципов CTJ между
собой. В продолжение, мы приводим формализацию мысленного экспери-
мента Фраушигер–Реннера и обсуждаем его в детялях. Далее, мы добав-
ляем аксиому доверия к CTJ и вновь рассматриваем эпистемические рас-
суждения и парадокс в этих расширенных условиях.

Ключевые слова: противоречивые свидетельства, логика обоснования,
эпистемическая логика, парадокс Фраушигер–Реннера, квантовая физика.
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