Независимость принципа двойного дополнения множеств от схемы собирания в теории множеств с интуиционистской логикой.

Main Article Content

В.Х. Хаханян

Аннотация

Let $ZFI_R + DCS$ is the intuitionistic set theory with the full list of set-theoretic axioms and the axiom of double complement of sets (DCS). There is an inner model of ZF (and ZFC) in our set theory; and this theory posesses the existential property ( Myhill and auther).
In 1993 1 also proved that the collection scheme is independent of our set theory . In present short note I give the proof independent sketch of DCS of $ZFI_R +$ collection - power axiom. I modife my model of realizabillity type (this model was constructed for the proof of consistency collection and DCS with $ZFI_R$) such that in the new model DCS is false and collection $+ ZFI_R$ is true ( I think, that power axiom also is true, but now I can’t to give such proof).
I will publish the full proof of this theorem in one of logic journals.

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
Хаханян В. Независимость принципа двойного дополнения множеств от схемы собирания в теории множеств с интуиционистской логикой. // Логические исследования / Logical Investigations. 1998. Т. 5. C. 160-162.
Выпуск
Раздел
Статьи