Обобщенная позитивная силлогистика.

Main Article Content

В.И. Маркин

Аннотация

The paper concerns the problem of the representation of all possible extensional relations between two general terms by means of positive syllogistic - syllogistic without negative terms. I introduce new syllogistic constants u and q: the statement of the form $S\textbf{u}P$ means «Everything is either $S$ or $P$», the statement of the form $S\textbf{q}P$ means «Something is neither $S$ nor $P%». I offer two syllogistic systems based on propositional calculus in the language with constants \textbf{a, i, e, o, u, q}. The first system is the generalization of the positive fragment of Brentano-Leibnitz fundamental syllogistic. I demonstrate that it is embedded into the predicate calculus under the following translation *: $(S\textbf{a}P)^*=\forall x(S_x\supset P_s,(S\textbf{i}P)^*=\exists x (S_x\& P_x),(S\textbf{e}P)^*=\forall(S_x\supset\neg P_x),(S\textbf{o}P)^*=\exists(S_x \&\neg P_x),(S\textbf{u}P)^*=\forall(S_x\vee P_x), (S\textbf{q}P)^*=\exists(\neg S_x\&\neg P_x),(\neg A)^*=\neg A^*, (A\bigtriangledown B)^*=F^*\bigtriangledown B^*$, where $\bigtriangledown$ is any binary connective. The second system is the generalization of Lukasiewicz' syllogistic which is a formalization of the traditional one. I prove that generalized traditional syllogistic is embedded into the predicate calculus under the translation $\Theta(A)=(\exists S_1x\&\exists x\neg S_1x\&...\&\exists xS_nx\&\exists\neg S_nx)\supset A^*$, where $S_1,...,S_n$ is a list of all general terms in $A$.

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
Маркин В. Обобщенная позитивная силлогистика. // Логические исследования / Logical Investigations. 1998. Т. 6. C. 241-258.
Выпуск
Раздел
Статьи