О негативно эквивалентных расширениях минимальной логики.
##plugins.themes.bootstrap3.article.main##
Abstract
We define the relation of negative equivalence on the class of nontrivial extensions of minimal logic as follows. Logics are negatively equivalent if they define the same negative consequence relation or, equivalently, if they have the same class of inconsistent sets of formulas. We point out the least logic in any class of logics with fixed intuitionistic and negative counterparts and prove that each of such logics is closed under the rule $(\phi~\vee \perp)/\phi$. We prove also that negative counterparts of extensions of negative logics can be treated as theirs logics of contradictions.
##plugins.generic.usageStats.downloads##
##plugins.generic.usageStats.noStats##
##plugins.themes.bootstrap3.article.details##
How to Cite
Odintsov S. О негативно эквивалентных расширениях минимальной логики. // Logicheskie Issledovaniya / Logical Investigations. 2000. VOL. 7. C. 119-127.
Issue
Section
Papers