Теорема дедукции для неклассических исчислений: два подхода.


E.A. Sidorenko


It is defines such the notion of the normalised standard inference from hypothesis that the deduction theorem in general form being relevant for every arbitrary calculus, including the empty one. This is reached without any change the notions of inference. The deduction theorem itself consist conditions of its adaptation.






Ackermann W. Wiederspruchsfreier Aufbau der Logik, I. Typenfreies System ohne tertium non datur II Joum. Symb. Logic. 1950. V. 15. № 1. P. 33-57.

Ackermann W. Wiederspruchsfreier Aufbau einer typenfreien Logik (erweitertes System) // Math.Zeitschr. 1952. Bd. 55. H.3. S. 364-384.

Harrop R. An investigation of the propositional calculus used in particular system of logic // Proc. Cambridge Philos. Society. 1954. V. 50. № 4. P.495-512.

Kripke S A. Semantical analysis of intuitionistic logic, I // Formal Systems and Recursive Functions. Proc. 8th logic colloq., Oxford, July 1963. Amsterdam, 1965. P. 92-130.

СкворцовД .П . О семантике пропозиционального фрагмента системы Аккермана/ / Автоматы, алгорифмы, языки. Калинин, 1982. С. 130-132.

Skvortso\’ D.P. A semantics for a consistent type-free system of Ackermann 11 In: Logic, methodology and philosophy of science (abstracts of papers of soviet scientists submitted to the Soviet National Organization Comittee for the VII International Congress of logic, methodology and philosophy of science. Austria, Salzburg, 1116 July 1983. Moscow, 1983. P. 38-41.

Воробьев H.H. Конструктивное исчисление высказываний с сильным отрицанием // ДАН СССР. 1952. Т. 85. № 3. С. 465-468.