К вопросу об обратной математике модальной логики.

##plugins.themes.bootstrap3.article.main##

A.V. Chagrov

Abstract

The problem o f eliminability o f Axiom o f Choice from the metatheoiy o f propositional modal logics is dicussed. Using o f the language o f modal formulas is proposed. Three examples o f applications o f this language are given: the Blok's theorem on the degree o f incompleteness; a logic without immediate predecessors; the finite axiomatizability o f tabular logics.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Papers

References

Семантика модальных и интенсиональных логик. М.: Прогресс, 1981. 424 с.

Фейс Р. Модальная логика. М.: Наука, 1974. 520 с.

Baker К.A. Finite equational bases for finite algebras in a congruence distributive equational class // Advances in Mathematics. 1977. V. 24. pp. 207-243.

Chagrov A. , Zakharyaschev M. Modal Logic. Oxford University Press, 1997. 605 p.

Chagrova L. On the degree of neighborhood incompleteness of normal modal logics // M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, eds. Advances in Modal Logic, volume 1. Stanford, CSLI Publications. 1998. P. 63-72.

Kracht M. Tools and Techniques in Modal Logic 11 Habilitationsschrift. Berlin, II. Mathematisches Institut. 1997.

Zakharyaschev M. Canonical formulas for modal and superintuitionistic logics: A short outline // M. de Rijke (ed.). Advances in Intensional Logic. Kluwer Academic Publishers. 1997. P. 195-248.

##plugins.generic.recommendByAuthor.heading##

1 2 > >>