What is propositional classical logic? (a study in universal logic).

Main Article Content

J.-Y. Beziau

Аннотация

The aim o f this paper is to try to characterize classical propositional logic (CPL) with the notion o f mathematical structure.

We start by justifying this approach. We recall the importance and significance o f the notion o f structure in mathematics and in logic. We explain the idea o f a general theory> o f logics based on structures, Universal Logic.

CPL is not one structure but a class o f equivalent structures, CPLstructures. We survey a series o f structures that can be considered as CPL-structures. The main problem is to find a notion o f equivalence which permits to gather into a whole this multiplicity.

We show in particular that the modern concept o f equivalence o f structures, based on the notion o f expansion by definition and isomorphism, is not adequate to define a satisfactory notion o f equivalence that will define the class o f CPL-structures. An alternative definition, postmodern equivalence, is introduced.

It appears that this tentative o f characterization o f the class o f CPL-structures is not only relevant fo r Universal Logic, but also fo r the general theory; o f mathematical structures, since the case o f CPLstructures shows the insufficiency o f the modern concept o f equivalence between structures.

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
Beziau J.-Y. What is propositional classical logic? (a study in universal logic). // Логические исследования / Logical Investigations. 2001. Т. 8. C. 266-277.
Выпуск
Раздел
Статьи

Литература

Beziau J.-Y. 1994, "Universal logic", in Lcgica'94 - Proceedings of the 8th International Symposium, T.Childers and O.Majer (eds), Czech Academy of Sciences, Prague, pp.73-93.

2. Beziau J.-Y. 1995, Recherches sur la logique universelle, PhD, Department of Mathematics, University of Paris 7, Paris.

3. Bourbaki N. 1950, "The architecture of mathematics", American Mathematical Monthly, 57, 221-232.

4. Bloom S., Brown D.J. 1973, "Classical abstract logics", Dissertationes Mathematicae, 102, pp.43-52.

5. Brown D.J., Suszko R. 1973, "Abstract logics", Dissertationes Mathematicae, 102, pp.9-41.

6. Corry L. 1996, Modern algebra and the rise of mathematical structures, Birkhauser, Basel.

7. Font J.-M., Jansana R. 1996, A general algebraic semantics for sentential logic, Springer, Berlin.

8 . Lavwere F.W., Schanuel S.M. 1997, Conceptual mathematics, CUP, Cambridge.

9. Los J., Suszko R. 1958, "Remarks on sentential logic", Indigationes Mathematicae, 20, pp.177-183.

10. Lukasiewicz У., Tarski A. 1930, "Untersuchungen uber den Aussagenkalkul", Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie, classe III, 23, pp.30-50.

Porte J. 1965, Recherches sur la theorie generale des sytemes formeis et sur les systemes deductifs, Gauthiers Villars, Paris and Nauwelaerts, Louvain.

Shoesmith D.J. Smiley T.J. 1978, Multiple-conclusion logic, CUP, Cambridge.

Tarski A. 1928, ’’Remarques sur les notions fondamentales de la methodologie des mathematiques”, Annales de la Societe Polonaise de Mathematiques, 7, pp.270-272.

Tarski A. 1935, "Grundz_ge des Systemenkalk_ls. Erster Teil", Fundamentae Mathematicae, 25, pp.503-526.