Логическое всеведение и эпистемическое табличное исчисление предикатов.


M.N. Bezhanishvili


In the article a predicate version of epistemic tableaux cal-culus Ep4 based on semantics of partial possible worlds is constructed and investigated. In particular, it is shown that Ep4 is sound and com-plete. This non-normal and non-monotonic tableaux calculus enables us to avoid the socalled paradox of logical omniscience.






Fagin R.F. and Halpern J.Y. Belief, awareness, and limited reasoning 1 Artificial Intelligence. 1988. Vol. 34. P. 277-295.

Fitting M. Intuitionistic Logoc, Model Theory and Forcing, Amsterdam, North-Holland Publishing Co., 1969.

Hintikka J. Impossible possible worlds vindicated 11 Journal of Philosophical Logic. 1975. Vol. 4. P. 475-484.

van der Hoek W. and Meyer J. Possible logics for belief // Technical Report IR-170. Free University of Amsterdam, 1988.

Kripke S.A.. Semantical analysis of modal logic I. Normal modal propositional calculi // Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik. 1963. Bd. 9. S. 67-96.

Kripke S. A. Semantical considerations on modal logic // Acta Philosophica Fennica. 1963. Vol. 16. P. 83-94.

Levesque H.J. A logic of implicit and explicit belief // AAAI-84. Austin, Texas, 1984. P. 198-202.

Rant ala V. Impossible world semantics and logical omniscience // Acta Philosophica Fennica. 1982. Vol. 35. P. 106-115.

Wansing H. A general possible worlds framework for reasoning about knowledge and belief // Studia Logica. 1990. Vol. 49. P. 523-539.