Трехзначные изоморфы классической логики.

##plugins.themes.bootstrap3.article.main##

L. Y. Devyatkin

Abstract

Three-valued isomorph of the classic propositional logic $C_2$ is a set of three-valued connectives that verifies all classic axioms based on corresponding binary connectives and modus ponens. This paper deals with the implicative-negative case of such sets. An essential theorem concerning properties of three-valued isomorphs of $C_2$ is proven. In every isomorph, implication is only false (i.e. takes a non-designated value) iff an antecedent is true (i.e. takes a designated value) and a consequent is false. And the negation is only false iff a corresponding propositional variable takes a designated value. Once we have proved such a theorem we are able to show that every threevalued $C_2$ isomorph is consistent, count the total amount of three-valued $C_2$ isomorphs and devise a minimal condition for a three-valued logic to contain an isomorph of $C_2$.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Статьи

References

Бочвар Д. Л. Об одном трехзначном исчислении и его применении к анализу парадоксов классического расширенного функционального исчисления // Математический сборник. 1938. Т. 4, № 2.

Карпенко Л. С. Многозначные логики. М., 1997.

Комендантский В. Е. л-значные изоморфы классической логики. Дипломная работа выполнена на кафедре логики философского факультета МГУ, 2000.

Чёрч Л. Введение в математическую логику. М., 1960.

Epstein R. L. The Semantic foundations of Logic. Vol. 1: Propositional Logics. Dondrecht;Boston;London, 1990.

Malinowski G. On Many-Valuedness, Sentential Identity, Interference and Lukasiewicz Modalities // Logica Trianguli. Vol. 1, 1997.