Фундаментальная силлогистика с неопределенно-местной константой.

##plugins.themes.bootstrap3.article.main##

V.I. Markin

Abstract

The paper concerns the problem of the representation of all possible extensional relations among any finite list of the universal terms by means of positive syllogistic - syllogistic without negative and other complex terms. I introduce new syllogistic constant @ with indefinite arity. The atomic formulae are of the type $S_1S_2...S_n@P_1P_2...P_m$, where $n+m> 1$, complex formulae are constructed by means of the propositional connectives. I offer the following translation * from the syllogistic language into the language of predicate calculus: $(S_1S_2...S_n@P_1P_2...P_m)^*=\neg\exists(S_1x\& S_2x\&...\& S_nx\&\neg P_1x\&\neg P_2x\&...\&\neg P_mx),(\neg A)^*=\neg A^*, (A\triangledown B)^*=A^*\triangledown B^*$, where $\triangledown$ is any binary connective. I formulate a syllogistic system which is the generalization of the fundamental positive syllogistic and prove that it is embedded into the classical predicate calculus under the translation *.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Статьи

References

Бочаров В.Л. Булева алгебра в терминах силлогистики // Логические исследования. М.: ИФ РАН, 1983. С. 32-42.

Маркин В.И. Обобщенная позитивная силлогистика // Логические исследования. Вып. 6. М.: РОССПЭН, 1999. С. 241-258.

Смирнов В.Л. Дефинициальная эквивалентность расширенной силлогистики С2Д булевой алгебре // Логические исследования. М.: ИФ РАН, 1983. С. 43-48.

##plugins.generic.recommendByAuthor.heading##