Проблема контекста интерпретации в универсальной логике

##plugins.themes.bootstrap3.article.main##

V.L. Vasyukov

Abstract

In [1] some categorical constructions were introduced which describe the inner structure of the category of logical systems. But detailed analysis reveals the problems which turn out to be caused by the insufficient account of the context of the investigation. Those defects are repaired and it is shown that all categorical constructions from [1] would be exploited up to equivalence introduced to reflect the practice of the mutual interpretations of logical systems.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Статьи

References

Васюков В.Л. Проблема структуры универсальной логики // Логические исследования. Вып. 13. М., 2006. С. 95-114.
Голдблатт Р. Топосы. Категорный анализ логики. М., 1983.
Расева Е., Сикорский Р. Математика метаматематики. М., 1972.
Baader F. and Schulz К. U. (eds.). Frontiers of combining systems // Applied Logic Series. Vol. 3. Kluwer Academic Publishers, Dordrecht, 1996. Papers from the First International Workshop (FroCoS’96) held in Munich, March 26-29, 1996.
Beziau J.-Y., de Freitas R.P., Viana J.P. What is Classical Propositional Logic? (A Study in Universal Logic) // Logical Investigations. Vol. 8. 2001. P. 266-277.
Beziau J.-Y. From Consequence Operator to Universal Logic: A Survey of General Abstract Logic // Logica Universalis / J.-Y. Beziau (ed.). Basel, 2005. P. 3-18.
Caleiro C., Gongalves R. Equipollent Logical Systems // Logica Universalis / J.-Y. Beziau (ed.). Basel, 2005. P. 99-111.
Carnielli W. Possible-Translations Semantics for Paraconsistent Logics // Frontiers of Paraconsistent Logic / D. Batens et al (eds.). Research Studies Press Ltd., Baldock, Herfordshire, 2000. P.149-163.
J.M. Font, R. Jansana, D. Pigozzi. A Survey of Abstract Algebraic Logic // Studia Logica. Vol. 74, No 1/2. 2003. P.13-97.
Lambek J., Scott P.J. Introduction to higher order categorical logic. Cambridge, 1986.
Mortensen C. Inconsistent Mathematics. Dordrecht, 1995.
Rasga J., Sernadas A., Semadas C., and Vigano L. Fibring labelled deduction systems // Journal of Logic and Computation. Vol. 12, № 3. 2002. P. 443-473.
Rauszer C. A Formalization of the Propositional Calculus of H-B-logic // Studia Logica. Vol. 33. № 1. 1973. P. 23-34.
Sernadas A., Sernadas C., Caleiro C. Fibring of Logics as a Categorial Construction // Journal of Logic and Computation. Vol. 9. № 2. 1999. P. 149-179.
Wojcicki R. Theory of Logical Calculi // Synthese Library. Vol. 199. Dordrecht, 1988.

##plugins.generic.recommendByAuthor.heading##

1 2 > >>