Использование нефинитных методов в исследовании взаимосвязи форм логического исчисления на основе оценки
Main Article Content
Аннотация
Рассматривается подход к изучению взаимозависимости различных типов логического исчисления, основанный на исследовании оценки как морфизма, сохраняющего структуру из алгебры формул в структуру, на которой принимает значение их оценка.
В настоящее время применение неклассических логик в математике ограничено. Однако постоянно растущие и изменяющиеся требования к математическому аппарату, применяемому в формальных моделях сложных объектов и процессов, могут существенно изменить это положение и привести к развитию математических теорий, основанных на использовании различных видов неклассической логики.
Исследование взаимосвязи различных типов логического исчисления на основе рассмотрения оценки связано с привлечением нефинитных методов теории структур, к которым можно отнести методы обобщенного нестандартного анализа как раздела теории категорий.
Это направление можно отнести к семантическому подходу к исследованию типов формальной логики на основе исследования оценки и отнести к исследованию взаимодействия синтаксиса и семантики, заявленному в работах Линдона.
Развитие подхода к исследованию типов формальной логики на основе использования нефинитных методов обобщенного нестандартного анализа позволяет рассматривать множество формул алгебры логики с введенным на нем отношением эквивалентности как фактор-алгебру с определенной структурой.
Применение методов, использующих современные математические теории, позволяет выявить математическую структуру формальной логики и проследить взаимосвязь различных видов логических исчислений, другими словами, выявить математическое содержание рассматриваемого вида логического исчисления.
Обоснованность использования нефинитных методов в логических исследованиях обусловлена тем, что метаматематика – теория, изучающая формализованные математические теории. Формализованная теория – множество конечных последовательностей символов (формул и термов) и множество операций над этими последовательностями. Операции заменяют элементарные шаги дедукции в математических рассуждениях. В такой постановке математическая логика (метаматематика) сама становится разделом математики. Т.е. сама логика в такой постановке становится объектом математического исследования.
Рассматриваемый подход, позволяет рассматривать формальную логику как динамическую систему, развитие которой заключается в раскрытии системы частных типов логического исчисления, для описания которого предлагается использовать нефинитные методы обобщенного нестандартного анализа. DOI: 10.21146/2074-1472-2018-24-2-129-136
В настоящее время применение неклассических логик в математике ограничено. Однако постоянно растущие и изменяющиеся требования к математическому аппарату, применяемому в формальных моделях сложных объектов и процессов, могут существенно изменить это положение и привести к развитию математических теорий, основанных на использовании различных видов неклассической логики.
Исследование взаимосвязи различных типов логического исчисления на основе рассмотрения оценки связано с привлечением нефинитных методов теории структур, к которым можно отнести методы обобщенного нестандартного анализа как раздела теории категорий.
Это направление можно отнести к семантическому подходу к исследованию типов формальной логики на основе исследования оценки и отнести к исследованию взаимодействия синтаксиса и семантики, заявленному в работах Линдона.
Развитие подхода к исследованию типов формальной логики на основе использования нефинитных методов обобщенного нестандартного анализа позволяет рассматривать множество формул алгебры логики с введенным на нем отношением эквивалентности как фактор-алгебру с определенной структурой.
Применение методов, использующих современные математические теории, позволяет выявить математическую структуру формальной логики и проследить взаимосвязь различных видов логических исчислений, другими словами, выявить математическое содержание рассматриваемого вида логического исчисления.
Обоснованность использования нефинитных методов в логических исследованиях обусловлена тем, что метаматематика – теория, изучающая формализованные математические теории. Формализованная теория – множество конечных последовательностей символов (формул и термов) и множество операций над этими последовательностями. Операции заменяют элементарные шаги дедукции в математических рассуждениях. В такой постановке математическая логика (метаматематика) сама становится разделом математики. Т.е. сама логика в такой постановке становится объектом математического исследования.
Рассматриваемый подход, позволяет рассматривать формальную логику как динамическую систему, развитие которой заключается в раскрытии системы частных типов логического исчисления, для описания которого предлагается использовать нефинитные методы обобщенного нестандартного анализа. DOI: 10.21146/2074-1472-2018-24-2-129-136
Скачивания
Данные скачивания пока не доступны.
Article Details
Как цитировать
Титов А. В. Использование нефинитных методов в исследовании взаимосвязи форм логического исчисления на основе оценки // Логические исследования / Logical Investigations. 2018. Т. 24. № 2. C. 129-136.
Выпуск
Раздел
Статьи
Литература
Васюков В.Л. Категорная логика. М.: АНО Ин-т логики, 2005. 194 с.
Гольдблатт Р. Топосы. Категорный анализ логики. М.: Мир, 1983. 468 с.
Любецкий В.А. Некоторые применения теории топосов к изучению алгебраических систем // Джонсон П.Т. Теория топосов. М.: Наука, 1986. С. 376–430.
Любецкий В.А. Оценки и пучки. О некоторых вопросах нестандартного анализа // УМН. 1989. Т. 44. Вып. 4(269). С. 99–153.
Титов А.В. Диалектика в развитии типов логических исчислений на основе структур значений оценки // Доказательство: очевидность, достоверность и убедительность в математике. Труды Московского семинара по философии математики / Под ред. В.А. Божанова, А.Н. Кричевца, В.А. Шапошникова. М.: ЛИБРОКОМ, 2014. С. 375–399.
Титов А.В. Использование нефинитных методов в семантическом подходе к исследованию типов формальных логики // Уч. зап. Крымского федерал. ун-та им. В.И. Вернадского. Сер.: Философия, Культурология, Политология, Социология. Симферополь: Крымский федерал. ун-т им. В.И. Вернадского, 2016. Т. 2(68). № 4. С. 143–156.
Гольдблатт Р. Топосы. Категорный анализ логики. М.: Мир, 1983. 468 с.
Любецкий В.А. Некоторые применения теории топосов к изучению алгебраических систем // Джонсон П.Т. Теория топосов. М.: Наука, 1986. С. 376–430.
Любецкий В.А. Оценки и пучки. О некоторых вопросах нестандартного анализа // УМН. 1989. Т. 44. Вып. 4(269). С. 99–153.
Титов А.В. Диалектика в развитии типов логических исчислений на основе структур значений оценки // Доказательство: очевидность, достоверность и убедительность в математике. Труды Московского семинара по философии математики / Под ред. В.А. Божанова, А.Н. Кричевца, В.А. Шапошникова. М.: ЛИБРОКОМ, 2014. С. 375–399.
Титов А.В. Использование нефинитных методов в семантическом подходе к исследованию типов формальных логики // Уч. зап. Крымского федерал. ун-та им. В.И. Вернадского. Сер.: Философия, Культурология, Политология, Социология. Симферополь: Крымский федерал. ун-т им. В.И. Вернадского, 2016. Т. 2(68). № 4. С. 143–156.