On the expressive power of certain expansions of Belnap's four-valued logic

##plugins.themes.bootstrap3.article.main##

Leonid Yu. Devyatkin

Abstract

The paper is devoted to closed classes of functions of four-valued logic. We present the following results:


(1) The basic operations of the logic obtained by expanding the four-valued De Morgan algebra by the conflation operator generate a closed class of all functions that simultaneously preserve classical truth values and are self-dual with respect to conflation. This class is precomplete in the class of all functions that preserve classical truth values.


(2) There are exactly two closed classes between the closed class generated by the basic operations of von Wright's truth logic and the class of all functions that preserve classical truth values. Each of them is a class of all functions that simultaneously preserve classical truth values and one of the three-element supersets of the set of classical truth values.


(3) The basic operations of tetravalent modal logic obtained by expanding the
four-valued De Morgan algebra by the necessity operator generate a closed class
of all functions that simultaneously preserve classical truth values, are self-dual with respect to conflation, and also preserve both three-element supersets of the set of classical truth values. We show that this class is precomplete in the class of all functions that simultaneously preserve classical truth values and are self-dual with respect to conflation. In addition, we demonstrate that between this class and the closed class generated by the operations of von Wright's truth logic, there is exactly one closed class.


Thus, we obtain a seven-element lattice consisting of all possible four-valued extensions of tetravalent modal logic that preserve classical truth values.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Non-classical logics
Author Biography

Leonid Yu. Devyatkin, Institute of Philosophy, Russian Academy of Sciences

Старший научный сотрудник Сектора логики

References

Карпенко, 2015 - Карпенко А.С. Решетки четырехзначных модальных логик // Логические исследования. 2015. Т. 21. №1. С. 122-137.
Марченков, 2004 - Марченков С.С. Функциональные системы с операцией суперпозиции. М.: ФИЗМАТЛИТ, 2004. 104 с.
Томова, 2018 - Томова Н.Е. О четырехзначных паранормальных логиках // Логические исследования. 2018. Т. 24. №2. С. 137-143.
Avron, 1999 - Avron A. On the expressive power of three-valued and four-valued languages // Journal of Logic and Computation. 1999. Vol. 9. No 6. P. 977-994.
Arieli, Avron, 1998 - Arieli O., Avron A. The value of the four values // Artificial Intelligence. 1998. Vol. 102. No. 1. P. 97-141.
Arieli, Avron, 2017 - Arieli O., Avron A. Four-valued paradefinite logics // Studia Logica. 2017. Vol. 105. No. 6, P. 1087-1122.
Belnap, 1977 - Belnap N. A useful four-valued logic // Modern Uses of Multiple-Valued Logic / Ed. by J.M. Dunn, G. Epstein. D. Reidel Publishing Co., 1977. P. 8-37.
De, Omori, 2015 - De M., Omori H. Classical Negation and Expansions of Belnap-Dunn Logic // Studia Logica. 2015. Vol. 103. No. 5. P. 825-851.
Karpenko, 2013 - Karpenko A.S. Von Wright's truth-logic and around // Logical Investigations. 2013. Vol. 19. P. 39-50.
Karpenko, 2017 - Karpenko A.S. Four-valued logics BD and DM4: Expansions // Bulletin of the Section of Logic. 2017. Vol. 46. No. 1-2. P. 33-45.
Omori, Sano, 2014 - Omori H., Sano K. da Costa meets Belnap and Nelson // Recent Trends in Philosophical Logic / Ed. by R. Ciuni, H. Wansing, C. Willkommen. Springer, 2014. P. 145-166.
Omori, Sano, 2015 - Omori H., Sano K. Generalizing functional completeness in Belnap-Dunn logic // Studia Logica. 2015. Vol. 103. No. 5. P. 883-917.
Omori, Wansing, 2017 - Omori H., Wansing H. 40 years of FDE: an introductory overview // Studia Logica. 2017. Vol. 105. No. 6. P. 1021-1049.
Petrukhin, Shangin, 2019 - Petrukhin Ya.I., Shangin V.O. Correspondence analysis and automated proof-searching for rst degree entailment // European Journal of Mathematics. 2019. P. 1-44.
Shramko et al., 2017 - Shramko Y., Zaitsev D., Belikov A. First-Degree Entailment and its Relatives // Studia Logica. 2017). Vol. 105. P. 1291-1317.
Shramko et al., 2019 - Shramko Y., Zaitsev D., Belikov A. The FMLA-FMLA Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins // Journal of Philosophical Logic. 2019. Vol. 48. P. 787-808.