Implication, Equivalence, and Negation
Main Article Content
Аннотация
A system $HCL_{\overset{\neg}{\leftrightarrow}}$ in the language of {$ \neg, \leftrightarrow $} is obtained by adding a single negation-less axiom schema to $HLL_{\overset{\neg}{\leftrightarrow}}$ (the standard Hilbert-type system for multiplicative linear logic without propositional constants), and changing $ \rightarrow $ to $\leftrightarrow$. $HCL_{\overset{\neg}{\leftrightarrow}}$ is weakly, but not strongly, sound and complete for ${\bf CL}_{\overset{\neg}{\leftrightarrow}}$ (the {$ \neg,\leftrightarrow$} – fragment of classical logic). By adding the Ex Falso rule to $HCL_{\overset{\neg}{\leftrightarrow}}$ we get a system with is strongly sound and complete for ${\bf CL}_ {\overset{\neg}{\leftrightarrow}}$ . It is shown that the use of a new rule cannot be replaced by the addition of axiom schemas. A simple semantics for which $HCL_{\overset{\neg}{\leftrightarrow}}$ itself is strongly sound and complete is given. It is also shown that $L_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , the logic induced by $HCL_{\overset{\neg}{\leftrightarrow}}$ , has a single non-trivial proper axiomatic extension, that this extension and ${\bf CL}_{\overset{\neg}{\leftrightarrow}}$ are the only proper extensions in the language of { $\neg$, $\leftrightarrow$ } of $ {\bf L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , and that $ {\bf L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ and its single axiomatic extension are the only logics in {$ \neg, \leftrightarrow$ } which have a connective with the relevant deduction property, but are not equivalent $\neg$ to an axiomatic extension of ${\bf R}_{\overset{\neg}{\leftrightarrow}}$ (the intensional fragment of the relevant logic ${\bf R}$). Finally, we discuss the question whether $ {\bf L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ can be taken as a paraconsistent logic.
Скачивания
Article Details
Литература
Avron, 1988 – Avron, A. “The Semantics and Proof Theory of Linear Logic”, Theoretical Computer Science, 1988, Vol. 57, pp. 161–184.
Avron, 2015 – Avron, A. “Semi-implication: A chapter in universal logic”, The Road to Universal Logic, Volume I., ed. by A. Koslow and A. Buchsbaum. Studies in Universal Logic, Birkh¨auser, 2015, pp. 59–72.
Avron, 2020 – Avron, A. “A Note on Semi-implication with Negation”, Abstract Consequence and Logics: Essays in Honor of Edelcio G. de Souza, ed. by A. CostaLeite. Tributes 42, College Publications, 2020, pp. 221–226.
Avron et al., 2018 – Avron, A., Arieli, O., Zamansky, A. Theory of Effective Propositional Paraconsistent Logics. volume 75 of Studies in Logic, (Mathematical Logic and Foundations), College Publications, 2018.
Avron, Lev, 2005 – Avron, A., Lev, I. “Non-Deterministic Multiple-valued Structures”, Journal of Logic and Computation, 2005, Vol. 15, pp. 241–261.
Bennett, 1937 – Bennett, A.A. Review of [Mihailescu, 1937], Journal of Symbolic Logic, 1937, Vol. 2, No. 4, p. 173.
Church, 1956 – Church, A. Introduction to Mathematical Logic. Princeton University Press, 1956.
Diaz, 1980 – Diaz, M.R. “Deductive Completeness and Conditionalization in Systems of Weak Implication”, Notre Dame Journal of Formal Logic, 1980, Vol. 21, pp. 119–130.
Dunn, Restall, 2002 – Dunn, J.M., Restall, G. “Relevance logic”, Handbook of Philosophical Logic, Second edition, Vol. 6, ed. by D. Gabbay and F. Guenthner. Kluwer, 2002 pp. 1–136.
Girard, 1987 – Girard, J.Y. “Linear logic”, Theoretical Computer Science, 1987, Vol. 50, pp. 1–102.
Humberstone, 2011 – Humberstone, L. The Connectives. The MIT Press, 2011. Marcos, 2005 – Marcos, J. “On negation: Pure local rules”, Journal of Applied Logic, 2005, Vol. 3, pp. 185–219.
Massey, 1977 – Massey, G.J. “Negation, Material Equivalence, and Conditioned Nonconjunction: Completeness and Duality”, Notre Dame Journal of Formal Logic, 1977, Vol. 18, pp. 140–144.
Mihailescu, 1937 – Mihailescu, E.Gh. “Recherches sur la negation el l’´equivalence dans le calcul des proposition”, Annales scientifiques de l’Universit´e de Jassy, 1937, Vol. 23, pp. 369–408.
Post, 1941 – Post, E. The Two-Valued Iterative Systems of Mathematical Logic. Annals of Mathematics Series, Vol. 5, Princeton University Press, Princeton, NJ, 1941.
Prior, 1962 – Prior, A.N. Formal Logic, second edition. Oxford, 1962.
Rautenberg, 1981 – Rautenberg, W. “2-Element Matrices”, Studia Logica, 1981, Vol. 40, pp. 315–353.