Some Preliminary Conditions for the Creation of the “Many-Worlds Theory of Everything” and the Development of Intellectual Intuition
##plugins.themes.bootstrap3.article.main##
Abstract
The article questions some of the classical principles of thinking based on traditional intellectual intuition. In particular, the intuitive acceptability of the requirement of consistency, of the “anything follows from a contradiction” principle, of the law of the excluded middle, and some others are under challenge.
The literature, especially logical one, devotes many studies to this problem during the 20th-21st centuries. This paper formulates a new approach based on the “many-worlds theory of everything” hypothesis which states the idea of recognizing the multiverse as an actual reality. Such a hypothesis challenges the existing approaches to scientific research, the concept and the criteria of scientific theory. It requires the rejection as counterintuitive of several traditional ideas, for example, the role of experiment in substantiating a theory.
The work proceeds from the assumption that the multiverse is an objective reality. Which of the currently widespread many-worlds models is close to reality is irrelevant to substantiate the main idea here. The only thing that matters is that such a model should result from current research in modern physics and cosmology (for example, the many-worlds interpretation of quantum mechanics, the string landscape, the chaotic inflation, and some others).
The corresponding to an accurate description of the world intellectual intuition is suggested as based on a many-worlds approach since this very approach allows to remove some unresolved problems as counterintuitive ones.
The article substantiates that paraconsistent and quantum logics can become the appropriate logical basis for such a theory as these use intuitive representations close to the actual state of the world (the fundamental structure of the world) as their basics.
##plugins.generic.usageStats.downloads##
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2023 Иван Александрович Карпенко
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
##plugins.generic.funding.fundingData##
-
Russian Science Foundation
##plugins.generic.funding.funderGrants## 22-18-00450
References
Декарт, 1989 – Декарт Р. Сочинения. В 2 т. / Под ред. В.В. Соколова. Т. 1. М.: Мысль, 1989. 654 с.
Карпенко, 2015 – Карпенко А.С. В поисках реальности: Исчезновение // Философия науки. 2015. Т. 20. С. 36–72.
Карпенко, 2021 – Карпенко И.А. Критика солипсизма в контексте многомировых моделей // Философия науки и техники. 2021. Т. 26. № 1. С. 78–90.
Ashok, Douglas, 2004 – Ashok S., Douglas М. Counting flux vacua // Journal of High Energy Physics. 2004. Vol. 1. P. 60.
Balaguer, 1998 – Balaguer M. Platonism and Anti-Platonism in Mathematics. Oxford: Oxford University Press, 1998. 240 p.
Bangu, 2020 – Bangu S. Mathematical Explanations of Physical Phenomena // Tandf: Australasian Journal of Philosophy. 2020. URL: \urlhttps://www.tandfonline.com/doi/abs/10.1080/00048402.2020.1822895?journalCode=rajp20 (дата обращения: 31.08.2022).
Barrow, 2008 – Barrow J. New Theories of Everything. Oxford: Oxford University Press, 2008. 272 p.
Barrow, Shaw, 2011 – John D.B., Douglas J.Sh. The value of the cosmological constant // General Relativity and Gravitation. 2011. Vol. 43. No. 10. P. 2555–2560.
Béziau, 2000 – Béziau J.-Y. What is Paraconsistent Logic? // Frontiers of Paraconsistent Logic / Ed. by D. Batens et al. Baldock: Research Studies Press, 2000. P. 95–111.
Birkhoff, Neumann, 1936 – Birkhoff G., Neumann von J. The Logic of Quantum Mechanics // Annals of Mathematics. 1936. Vol. 37. P. 823–843.
Brunner, Carnielli, 2005 – Brunner A., Carnielli W. Anti-intuitionism and paraconsistency // Journal of Applied Logic. 2005. Vol. 3. No. 1. P. 161–184.
Chudnoff, 2020 – Chudnoff E. In Search of Intuition // Australasian Journal of Philosophy. 2020, Vol. 98. No. 3. P. 46–480.
Colyvan et al., 2005 – Colyvan M., Garfield J., Priest G. Problems with the Argument from Fine Tuning // Synthese. 2005. Vol. 145. P. 325–338.
Côté, 2013 – Côté G. Mathematical Platonism and the Nature of Infinity // Open Journal of Philosophy. 2013. Vol. 3. No. 3. P. 372–375.
Everett, 2015 – Everett H. The Many-Worlds Interpretation of Quantum Mechanics / Ed. by B. DeWitt. Princeton: Princeton University Press, 2015. 263 p.
Filler, 2009 – Filler A. The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI // Nature Precedings. 2009. Vol. 7. No. 1. P. 1–76.
Gödel, 2001 – Gödel K. Kurt Gödel Collected works / Ed. by S. Feferman. Oxford: Oxford University Press. 2001. Vol. 1. 504 p.
Hilbert, 1902 – Hilbert D. Mathematical Problems // Bulletin of the American Mathematical Society. 1902. Vol. 8. No. 10. P. 437–479.
Jaśkowski, 1969 – Jaśkowski S. Propositional calculus for contradictory deductive systems // Studia Logica. 1969. Vol. 24. P. 143–157.
Linde, 1982 – Linde A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems // Physics Letters B. 1982. Vol. 108. No. 6. P. 389–393.
Linde, 1983 – Linde A. Chaotic inflation // Physics Letters B. 1983. Vol. 129. No. 3–4. P. 177–181.
Lloyd, 2013 – Lloyd S. The Universe as Quantum Computer. 2013. URL: \urlhttps://arxiv.org/pdf/1312.4455.pdf (дата обращения: 23.01.2023).
Nagashima, 2013 – Nagashima Y. Elementary Particle Physics: Foundations of the Standard Model. Vol. 2. Wiley: New York, 2013. 646 p.
Oriti, 2009 – Oriti D. Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter. Cambridge: Cambridge University Press, 2009. 604 p.
Panza, Sereni, 2013 – Panza M., Sereni A. Plato's Problem: An Introduction to Mathematical Platonism. London: Palgrave-Macmillan, 2013. 322 p.
Priest, 2002 – Priest G. Paraconsistent Logic // Handbook of Philosophical Logic / Ed. by D. Gabbay and F. Guenthner. The Netherlands: Kluwer Academic Publishers, Vol. 6 (2nd ed.), 2002. P. 287–393.
Pruss, 2003 – Pruss A.R. Actuality, Possibility, and Worlds. London: Continuum, 2011. 320 p.
Rees, 2001 – Rees M. Just Six Numbers: The Deep Forces That Shape The Universe. New York: Basic Books, 2001. 208 p.
Susskind, 2003 – Susskind L. The anthropic landscape of string theory. 2003. URL: \urlhttps://arxiv.org/pdf/hep-th/0302219.pdf (дата обращения: 31.08.2022).
Szmuc et al., 2018 – Szmuc D., Pailos F., Barrio E. What is a Paraconsistent Logic? // Contradictions, from Consistency to Inconsistency / Ed. by J. Malinowski. and W. Carnielli. Berlin: Springer, 2018. P. 89–108.
Tegmark, 1988 – Tegmark M. Is `the Theory of Everything' Merely the Ultimate Ensemble Theory? // Annals of Physics. 1988. Vol. 270. No. 1. P. 1–51.
Tieszen, 2011 – Tieszen R. After Godel: Platonism and Rationalism in Mathematics and Logic. Oxford: Oxford University Press, 2011. 245 p.
Tieszen, 2015 – Tieszen R. Arithmetic, Mathematical Intuition, and Evidence // Inquiry: An Interdisciplinary Journal of Philosophy. 2015. Vol. 58. No. 1. P. 28–56.
Van-Quynh, 2019 – Van-Quynh A. The Three Formal Phenomenological Structures: A Means to Assess the Essence of Mathematical Intuition // Journal of Consciousness Studies. 2019. Vol. 26. No. 5–6. P. 219–241.
Weinberg, 1987 – Weinberg S. Anthropic bound on the cosmological constant // Physical Review Letters. 1987. Vol. 59. P. 2607–2610.
Weinberg et al., 2001 – Weinberg J.M., Nichols S., Stich S. Normativity and Epistemic Intuitions // Philosophical Topics. 2001. Vol. 29. No. 1. P. 429–460.
Witten, 1995 – Witten E. String theory dynamics in various dimensions // Nuclear Physics B. 1995. Vol. 443. No. 1. P. 85–126.
Woods, 2003 – Woods J. Paradox and Paraconsistency: Conflict Resolution in the Abstract Sciences. Cambridge: Cambridge University Press, 2003. 382 p.
Yau, Nadis, 2010Y – Yau S., Nadis S. The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. New York: Basic Books, 2010. 400 p.