On the three-valued expansions of Kleene's logic

##plugins.themes.bootstrap3.article.main##

L.Yu. Devyatkin

Abstract

The paper is devoted to one of the most famous three-valued systems – Kleene's logic. The expressive capabilities of Kleene's logic and its three-valued expansions are described. We present two results. First, all possible three-valued expansions of Kleene's logic are found up to equivalence with respect to the mutual definability of connectives. It is shown that there are only twelve such expansions. This list includes both logics already known in the literature and completely new ones. For the found expansions, we describe the structure of the lattice ordered relative to the expressive power of its elements. Secondly, for Kleene's logic and its three-valued expansions we find how many extensions each of these logics has in the same language. Kleene's logic has only two proper extensions: the classical and the trivial ones. Generally, a three-valued logic in which Kleene's matrix is definable contains no more than three proper extensions: the classical one, the trivial one, and an intermediate logic, determined by the product of the the original logic's matrix and the matrix of classical logic in the same signature. Intermediate logics exist only for two types of three-valued expansions of Kleene's logic: in expansions equivalent to Łukasiewicz's logic, and in logics whose matrices contain both a bivalent submatrix, the universe of which consists of the classical truth values, and a submatrix, the universe of which consists the intermediate value alone. All three-valued expansions of Kleene's logic that do not preserve the classical values have only one extension of their own – the trivial one.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

Section
Non-classical logics
Author Biography

L.Yu. Devyatkin, Institute of Philosophy, Russian Academy of Sciences

Старший научный сотрудник Сектора логики

References

Жук, 2011 – Жук Д.Н. Предикатный метод построения решетки Поста // Дискретная математика. 2011. Т. 23. № 2. С. 115–128.
Жук, 2018 – Жук Д.Н. От двузначной к k-значной логике // Интеллектуальные системы. Теория и приложения. 2018. Т. 22. Вып. 1. С. 131–149.
Знаменская, 2012 – Знаменская Н.А. К проблеме выразимости операций характеристических матриц паранепротиворечивых и параполных логик // Логические исследования. 2012. Т. 18. C. 132–140.
Знаменская, Попов, 2009 – Знаменская Н.А., Попов В.М. Паранормальная логика PContPComp как пересечение паранепротиворечивой логики PCont и параполной логики PComp // Шестые смирновские чтения по логике. Материалы Международн. науч. конф. (г. Москва, 17–19 июня 2009). М., 2009. С. 63–65.
Карпенко, 2010 – Карпенко А.С. Развитие многозначной логики. М.: ЛКИ, 2010. 448 с.
Попов, 2009 – Попов В.М. Между Par и множеством всех формул // Шестые смирновские чтения по логике. Материалы Международн. науч. конф. (г. Москва, 17–19 июня 2009). М., 2009. С. 93–95.
Розоноэр, 1983 – Розоноэр Л.И. О выявлении противоречий в формальных теориях. I // Автоматика и телемеханика. 1983. Вып. 6. C. 113–124.
Томова, 2010 – Томова Н.Е. Импликативные расширения регулярных логик Клини // Логические исследования / Logical Investigations. 2010. Т. 16. C. 233–258.
Томова, 2012 – Томова Н.Е. Естественные трехзначные логики: функциональные свойства и отношения. М.: ИФ РАН, 2012. 89 с.
Финн, 1969 – Финн В.К. О предполноте класса функций, соответствующего трехзначной логике Я. Лукасевича // Научно-техническая информация. Сер 2. 1969. Вып 10. С. 35–38.
Яблонский, 1958 – Яблонский С.В. Функциональные построения в k-значной логике // Труды МИАН СССР. 1958. Т. 51. С. 5–142.
Adams, Dziobiak, 1994 – Adams M.E., Dziobiak W. Lattices of quasivarieties of 3-element algebras // Journal of Algebra. 1994. Vol. 166. № 1. P. 181–210.
Arieli, Avron, 2015 – Arieli O., Avron A. Three-valued paraconsistent propositional logics // New Directions in Paraconsistent Logic / Ed. by J.-Y. B´eziau et al. Springer India, 2015. P. 91–129.
Asenjo, 1966 – Asenjo F.G. A calculus of antinomies // Notre Dame Journal of Formal Logic. 1966. Vol. 7. P. 103–105.
Asenjo, Tamburino 1975 – Asenjo F.G., Tamburino J. Logic of antinomies // Notre Dame Journal of Formal Logic. 1975. Vol. 16. № 1. P. 17–44.
Avron, 1986 – Avron A. On an implication connective of RM // Notre Dame Journal of Formal Logic. 1986. Vol. 27. № 2. P. 201–209.
Avron, 1991 – Avron A. Natural 3-valued logics — characterization and proof theory // The Journal of Symbolic Logic. 1991. Vol. 56. № 1. P. 276–294.
Avron, 1999 – Avron A. On the expressive power of three-valued and four-valued languages // Journal of Logic and Computation. 1999. Vol. 9. № 6. P. 977–994.
Ciuni, 2015 – Ciuni R. Conjunction in paraconsistent weak Kleene logic // Logica Yearbook 2014 / Ed. by P. Arazim and M. Danc´ak. London: College Publications, 2015. P. 61–76.
Grigolia, Finn, 1993 – Finn V.K., Grigolia R. Nonsense logics and their algebraic properties // Theoria. 1993. Vol. 59. № 1–3. P. 207–273.
Kleene, 1938 – Kleene S.C. On notation for ordinal numbers // The Journal of Symbolic Logic. 1938. Vol. 3. № 4. P. 150–155.
Kleene, 1952 – Kleene S.C. Introduction to metamathematics. Groningen: WoltersNoordhoff Publishing, 1952. 560 p.
Lau, 2006 – Lau D. Function algebras on finite sets: Basic course on many-valued logic and clone theory. Springer Science & Business Media, 2006. 670 с.
Makarov, Makarov, 2019 – Makarov A.V., Makarov V.V. Cardinality of the continuum of closed superclasses of some minimal classes in the partially ordered set L 3 2 // Moscow University Mathematics Bulletin. 2009. Vol. 74. № 4. P. 174.
Paoli, Pra Baldi, 2021 – Paoli F., Pra Baldi M. Extensions of paraconsistent weak Kleene logic // Logic Journal of the IGPL. 2021. Vol. 29. № 5. P. 798–822.
Petrukhin, Shangin, 2018 – Petrukhin Y., Shangin V. Natural three-valued logics characterised by natural deduction // Logique et Analyse. 2018. Vol. 244. P. 407427.
Petrukhin, Shangin, 2019 – Petrukhin Y., Shangin V. Automated proof-searching for strong Kleene logic and its binary extensions via correspondence analysis // Logic and logical philosophy. 2019. Vol. 28. № 2. P. 223–257.
Priest, 1979 – Priest G. The logic of paradox // Journal of Philosophical Logic. 1979. Vol. 8. P. 219–241.
Pynko, 2000 – Pynko A.P. Subprevarieties versus extensions. Application to the logic of paradox // The Journal of Symbolic Logic. 2000. Vol. 65. № 2. P. 756–766.
Robles, 2019 – Robles G. Reduced Routley–Meyer semantics for the logics characterized by natural implicative expansions of Kleene’s strong 3-valued matrix // Logic Journal of the IGPL. 2019. Vol. 27. № 1. P. 69–92.
Robles, 2021 – Robles G. The class of all 3-valued implicative expansions of Kleene’s Strong Logic containing Anderson and Belnap’s First Degree Entailment Logic // Journal of Applied Logics. 2021. Vol. 8. № 7. P. 2035–2072.
Robles, L´opez, 2020 – Robles G., L´opez S. M. Selecting the class of all 3-valued implicative expansions of Kleene’s strong logic containing Routley and Meyer’s logic B // Logique et Analyse. 2020. Vol. 252. P. 443–464.
Robles, M´endez, 2019 – Robles G., M´endez J.M. Partiality and its dual in natural implicative expansions of Kleene’s strong 3-valued matrix with only one designated value // Logic Journal of the IGPL. 2019. Vol. 27. № 6. P. 910–932.
Robles, M´endez, 2020 – Robles G., M´endez J.M. The class of all natural implicative expansions of Kleene’s Strong Logic functionally equivalent to Lukasiewicz’s 3-Valued Logic L3 // Journal of Logic, Language and Information. 2020. Vol. 29. № 3. P. 349–374.
Robles, M´endez, 2021 – Robles G., M´endez J.M. A class of implicative expansions of Kleene’s Strong Logic, a subclass of which is shown functionally complete via the precompleteness of Lukasiewicz’s 3-Valued Logic L3 // Journal of Logic, Language and Information. 2021. Vol. 30. № 3. P. 533–556.
Robles, M´endez, 2022 – Robles G., M´endez, J.M. A remark on functional completeness of binary expansions of Kleene’s strong 3-valued logic // Logic Journal of the IGPL. 2022. Vol. 30. № 1. P. 21–33.
Robles, Salto, M´endez, 2020 – Robles G., Salto F., M´endez J.M. Belnap–Dunn semantics for natural implicative expansions of Kleene’s strong three-valued matrix II. Only one designated value // Journal of Applied Non-Classical Logics. 2019. Vol. 29. № 3. P. 307–325.
Slupecki, 1946 – Slupecki J. Pelny tr´ojwarto´sciowy rachunek zda´n // Annales Universitatis Mariae Curie-Sklodowska. 1946. Vol. 1. No. 3. Sectio F. P. 193–209.
Tamminga, 2014 – Tamminga A. Correspondence analysis for strong three-valued logic // Logical Investigations. 2014. Vol. 20. P. 253–266.
Tokarz, 1973 – Tokarz M. Connections between some notions of completeness of structural propositional calculi // Studia Logica. 1973. Vol. 32. P. 77–91.
Tomova, 2012 – Tomova N.E. A lattice of implicative extensions of regular Kleene’s logics // Reports on Mathematical Logic. 2012. No. 47. P. 173–182.
W´ojcicki, 1974 – W´ojcicki R. The logics stronger than Lukasiewicz’s three valued sentential calculus: The notion of degree of maximality versus the notion of degree of completeness // Studia Logica. 1974. Vol. 33. № 2. P. 201–214.
W´ojcicki, 1988 – W´ojcicki R. Theory of Logical Calculi. Dordrecht: Springer, 1988. 473 p.
Wojtylak, 1979 – Wojtylak P. Matrix representations for structural strengthenings of a propositional logic // Studia Logica. 1979. Vol. 38. № 3. P. 263–266.
Zygmunt, 1974 – Zygmunt J. A note on direct products and ultraproducts of logical matrices // Studia Logica. 1947. Vol. 33. P. 349–357.