Three-valued generalizations of classical logic in weak languages: the degree of maximality
##plugins.themes.bootstrap3.article.main##
Abstract
This paper is deals with the degrees of maximality of consequence relations within the class of C-extending three-valued logics with languages of minimal expressive power. A logic is defined as C-extending if its operations coincide with those of classical logic when their domain is restricted to classical truth values. The degree of maximality of a logic is understood as the set of all its extensions in the same language. Every three-valued C-extending logic can be seen as a linguistic expansion of one of ten three-valued logics. We provide an assesment of the degree of maximality for each of these ten logics. In cases where the degree of maximality is finite, we have obtained exact values. In instances where it proves to be infinite, a lower bound for the cardinality of the lattice of extensions of the corresponding logic is provided. The exception is one system, for which it is demonstrated that the degree of maximality of its consequence relation has the cardinality of the continuum. The paper is devoted to the investigation of proof-theoretic properties of three-valued logics based on the expressive capabilities of their languages. The obtained results raise several questions, outlining new directions for research in this field.
##plugins.generic.usageStats.downloads##
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2024 Леонид Юрьевич Девяткин
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Девяткин, 2017 – Девяткин Л.Ю. Неклассические модификации многозначных матриц классической логики. Часть II // Логические исследования. 2017. Т. 23. № 1. C. 11–47.
Девяткин и др., 2007 – Девяткин Л.Ю., Карпенко А.С., Попов В.М. Трехзначные характеристические матрицы классической пропозициональной логики // Труды научно-исследовательского семинара Логического центра Института философии РАН. 2007. Т. 18. С. 50–62.
Карпенко, 2010 – Карпенко А.С. Развитие многозначной логики. М.: ЛКИ, 2010. 448 с.
Марченков, 2004 – Марченков С.С. Функциональные системы с операцией суперпозиции. М.: ФИЗМАТЛИТ, 2004. 104 с.
Томова, 2010 – Томова Н.Е. Импликативные расширения регулярных логик Клини // Логические исследования. 2010. Т. 16. C. 233–258.
Томова, 2012 – Томова Н.Е. Естественные трехзначные логики: функциональные свойства и отношения. М.: ИФ РАН, 2012. 89 с.
Ciuni, 2015 – Ciuni R. Conjunction in paraconsistent weak Kleene logic // Logica Yearbook 2014 / Ed. by P. Arazim and M. Danc´ak. London: College Publications, 2015. P. 61–76.
Grigolia, Finn, 1993 – Finn V.K., Grigolia R. Nonsense logics and their algebraic properties // Theoria. 1993. Vol. 59. No. 1–3. P. 207–273.
Gödel, 1986 – G¨odel K. Kurt G¨odel: Collected works — Volume I: Publications 19291936. Oxford University Press, 1986. 504 p.
Devyatkin, 2020 – Devyatkin L. The Set of closed classes P k+1 that can be homomorphically mapped on P k has the cardinality of continuum // Moscow University Mathematics Bulletin. 2020. Vol. 75. No. 1. P. 47–48.
Kleene, 1938 – Kleene S.C. On notation for ordinal numbers // The Journal of Symbolic Logic. 1938. Vol. 3. No. 4. P. 150–155.
Kleene, 1952 – Kleene S.C. Introduction to metamathematics. Groningen: WoltersNoordhoff Publishing, 1952. 560 p.
Łukasiewicz, 1970 – Lukasiewicz J. On three-valued Logic / Jan Lukasiewicz. Selected Works. North–Holland, 1970. P. 87–88.
Makarov, 2015 – Makarov A.V. Description of all minimal classes in the partially ordered set L 3 2 of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic // Moscow University Mathematics Bulletin. 2015. Vol. 70. No. 1. P. 48.
Makarov & Makarov, 2017 – Makarov A.V., Makarov V.V. Countablity of the set of closed overclasses of some minimal classes in the partly ordered set L 3 2 of all closed classes of three-valued logic that can be mapped homomorphically onto two-valued logic // Moscow University Mathematics Bulletin. 2017. Vol. 72. No. 1. P. 35–36.
Paoli, Pra Baldi, 2021 – Paoli F., Pra Baldi M. Extensions of paraconsistent weak Kleene logic // Logic Journal of the IGPL. 2021. Vol. 29. No. 5. P. 798–822.
Post, 1921 – Post E.L. Introduction to a general theory of elementary propositions // American journal of mathematics. 1921. Vol. 43. No. 3. P. 163–185.
Sobociński, 1952 – Soboci´nski B. Axiomatization of a partial system of three-value calculus of propositions // The journal of computing systems (St. Paul). 1952. Vol. 1. No. 1. P. 23–55.
Tokarz, 1973 – Tokarz M. Connections between some notions of completeness of structural propositional calculi // Studia Logica. 1973. Vol. 32. P. 77–91.
Tomova, 2012 – Tomova N.E. A lattice of implicative extensions of regular Kleene’s logics // Reports on Mathematical Logic. 2012. No. 47. P. 173–182.
Wójcicki, 1988 – W´ojcicki R. Theory of Logical Calculi. Dordrecht: Springer, 1988. 473 p.
Wojtylak, 1979 – Wojtylak P. Matrix representations for structural strengthenings of a propositional logic // Studia Logica. 1979. Vol. 38. No. 3. P. 263–266.
Wojtylak, 1981 – Wojtylak P. Mutual interpretability of sentential logic I // Reports on Mathematical Logic. 1981. Vol. 11. P. 69–89.
Zygmunt, 1974 – Zygmunt J. A note on direct products and ultraproducts of logical matrices // Studia Logica. 1974. Vol. 33. P. 349–357.