Отмеченное субординатное натуральное исчисление для базовой интуиционистской кондициональной логики
Main Article Content
Аннотация
В статье осуществляется презентация и построение отмеченного субординатного натурального исчисления $\mathcal F\mathbf{IntCK}$ для интуиционистской кондициональной логики $\textbf{IntCK}$, предложенной Г.К. Ольховиковым как интуиционистский вариант минимальной нормальной кондициональной логики Б. Челласа $\textbf{CK}$ и полной относительно интуиционистского прочтения метатеории $\textbf{CK}$. Система $\textbf{IntCK}$ задает базовые дедуктивные принципы для формализации конструктивных контекстов, допускающих использование двух независимых контрфактических связок – $\square\mspace{-8mu}\to$ и ◇→. Описываемое в статье натуральное исчисление $\mathcal F\mathbf{IntCK}$ основывается на технике, задействующей метки (labels), реляционные атомы (relational atoms) и отмеченные квазиформулы, фигурирующие в правилах, причем данные правила позволяют метасинтаксически реализовать семантические условия истинности и неистинности формул относительно возможных миров интуиционистской кондициональной биреляционной модели. В рамках статьи предлагается индуктивное определение вывода, для чего применяется подход В.А. Смирнова с дальнейшей модификацией понятия субординатной последовательности на случай с отмеченными квазиформулами и реляционными атомами. Дана идея доказательства метатеорем о слабой полноте исчисления $\mathcal F\mathbf{IntCK}$ по отношению к классу всех интуиционистских кондициональных биреляционных шкал, а также дедуктивной эквивалентности натурального исчисления $\mathcal{F}\mathbf{IntCK}$ и аксиоматического исчисления $\mathbf{IntCK}$.
Скачивания
Article Details
Copyright (c) 2025 Игорь Васильевич Зайцев

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Литература
Смирнов, 2002 – Смирнов В.А. Логические методы анализа научного знания / Под ред. В.Н. Садовского, В.А. Бочарова. М.: Эдиториал УРСС, 2002. 264 c.
Смирнов, 1972 – Смирнов В.А. Формальный вывод и логические исчисления. М.: Наука, 1972. 272 с.
Balbiani, Çigdem, 2025 – Balbiani P., Çigdem G. Intuitionistic Modal Logics: a Minimal Setting, 2025. P. 1–57. URL: https://arxiv.org/pdf/2502.19060 (дата обращения: 15.05.2025).
Božić, Došen, 1984 – Božić M., Došen K. Models for Normal Intuitionistic Modal Logics // Studia Logica. 1984. Vol. 43. No. 3. P. 217–245.
Chellas, 1975 – Chellas B.F. Basic Conditional Logic // Journal of Philosophical Logic. 1975. Vol. 5. No. 2. P. 133–153.
Ciardelli, Liu, 2020 – Ciardelli I., Liu X. Intuitionistic Conditional Logics // Journal of Philosophical Logic. 2020. Vol. 49. No. 4. P. 807–832.
Ciardelli, Liu, 2019 – Ciardelli I., Liu X. Minimal-Change Counterfactuals in Intuitionistic Logic // Proc. 7th International Workshop: Logic, Rationality, and Interaction (LORI’19). Berlin, Heidelberg: Springer, 2019. P. 43–56.
Došen, 1988 – Došen K. Sequent-Systems and Groupoid Models I // Studia Logica. 1988. Vol. 47. No. 4. P. 353–385.
Dummett, 1991 – Dummett M. The Logical Basis of Metaphysics. London: Duckworth, 1991. 366 p.
Fischer Servi, 1984 – Fischer Servi G. Axiomatizations for Some Intuitionistic Modal Logics // Rendiconti del Seminario Matematico Universit`a e Politecnico di Torino. 1984. Vol. 42. No. 3. P. 179–194.
Fisher Servi, 1980 – Fischer Servi G. Semantics for a Class of Intuitionistic Modal Calculi // Italian Studies in the Philosophy of Science / Ed. by M.L. Dalla Chiara. Dordrecht: D. Reidel Pub. Comp., 1980. P. 59–72.
Goodman, 1947 – Goodman N. The Problem of Counterfactual Conditionals // Journal of Philosophy. 1947. Vol. 44. No. 5. P. 113–128.
Indrzejczak, 2010 – Indrzejczak A. Natural Deduction, Hybrid Systems and Modal Logic. Dordrecht: Springer, 2010. 506 p.
Lewis, 1971 – Lewis D. Completeness and Decidability of Three Logics of Counterfactual Conditionals // Theoria. 1971. Vol. 37. No. 1. P. 74–85.
Lewis, 1973 – Lewis D. Counterfactuals. Maulden: Blackwell Publishing, 1973. 163 p.
Liu, 2020 –Liu X. Monotonicity in Intuitionistic Minimal Change Semantics Given Gärdenfors’ Triviality Result // Proc. 2nd Tsinghua Interdisciplinary Workshop on Logic, Language and Meaning: Monotonicity in Logic and Language (TLLM’20). Berlin: Springer, 2020. P. 107–124.
Nute, 1980 – Nute D. Topics in Conditional Logic. Dordrecht: D. Reidel Pub. Comp., 1980. 175 p.
Olkhovikov, 2024 – Olkhovikov G.K. An Intuitionistically Complete System of Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2024. Vol. 53. No. 5. P. 1199–1240.
Plotkin, Stirling, 1986 – Plotkin G., Stirling C. A Framework for Intuitionistic Modal Logics // Proc. 1st Conference on Theoretical Aspects of Reasoning about Knowledge (TARK’86). Burlington: Morgan Kaufmann Publishers Inc., 1986. P. 399–406.
Roy, 2006 – Roy T. Natural Deductions for Priest, An Introduction to Non-Classical Logic // Australasian Journal of Logic. 2006. Vol. 5. P. 47–192.
Segerberg, 1989 – Segerberg K. Notes on Conditional Logic // Studia Logica. 1989. Vol. 48. No. 2. P. 157–168.
Simpson, 1994 – Simpson A. The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. thesis. Edinburgh: University of Edinburgh, 1994. 219 p.
Stalnaker, 1968 – Stalnaker R.C. A Theory of Conditionals // Studies in Logical Theory / Ed. by N. Rescher. Oxford: Basil Blackwell, 1968. P. 98–112.
Stalnaker, Thomason, 1970 – Stalnaker R.C., Thomason R.H. A Semantic Analysis of Conditional Logic // Theoria. 1970. Vol. 36. No. 1. P. 23–42.
Unterhuber, 2013 – Unterhuber M. Possible Worlds Semantics for Indicative and Counterfactual Conditionals? A Formal-Philosophical Inquiry into Chellas-Segerberg Semantics. Frankfurt: Ontos Ferlag, 2013. 348 p.
Viganò, 2000 – Viganò L. Labelled Non-Classical Logics. Dordrecht: Springer, 2000. 306 p.
Wansing, 1994 – Wansing H. Sequent Calculi for Normal Modal Propositional Logics // Journal of Logic and Computation. 1994. Vol. 4. No. 2. P. 125–142.
Weiss, 2019a – Weiss Y. Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2019. Vol. 48. No. 3. P. 447–469.
Weiss, 2019b – Weiss Y. Frontiers of Conditional Logic. Ph.D. thesis. New York: The City University of New York, 2019. 174 p.