Неполные структуры выводы и их использование.

Main Article Content

Н.Н. Непейвода

Аннотация

Structures resulting from omitting some formulas from proof graphs are considered. The following results are stated.

The problem whether graph with omitted formulas can be reconstructed up to proof is decidable but hard. It remains very hard if axioms are preserved. It becomes simple if are omitted only formulas corresponding (in constructive logics) to procedures but descriptions of their arguments and results are preserved. Vice versa arguments and results can be omitted if procedures are present.

Results are proved for intuitionistic and nilpotent logics, very divergent by their proof structures.

Some relations with re-engineering problems and CASE technologies are stated.

Скачивания

Данные скачивания пока не доступны.

Article Details

Как цитировать
Непейвода Н. Неполные структуры выводы и их использование. // Логические исследования / Logical Investigations. 1998. Т. 5. C. 61-73.
Выпуск
Раздел
Статьи